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Safety Design Approach I
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I.1 Safety Philosophy

Design Defense-in-Depth (DID)* is implemented by
- Engineered SSCs, which constitute a set of radio nuclide transport barriers
- Engineered Safety Features (ESFs) to protect the integrity of these barriers

• Reactivity control
• Decay heat removal 
• Radioactivity confinement

Scenario Defense-in-Depth* is defined in terms of a scenario framework
- Prevention of  abnormal operation and failures (Design Simplicity & Robustness)
- Control of abnormal operation and detection failures (Accident Prevention)
- Control accidents (Redundancy & Diversity of ESFs, Accident Protection)
- Control of severe conditions (Accident Mitigation)
- Mitigation of radiological consequences (Emergency Planning or SA Termination)

Deterministic approach harmonized by Probabilistic approach
- Single failure criteria
- CDF quantification 
- Probabilistic decision making * Defined by K.N. Fleming, 2002
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I.2 Implementation of DID

DID concept & Structure 
implemented in KALIMER 
design
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I.3 Safety Goals

The general target is to satisfy the safety goals for the Generation IV 
nuclear systems

Gen IV nuclear energy systems will excel in safety and reliability
- Assure the safety and reliability equivalent at least to those of an advanced thermal reactor 

which is acceptable by the public 

Gen IV nuclear energy systems will have a very low likelihood and 
degree of reactor core damage

- CDF < 10 -6/RY

Gen IV nuclear energy systems will eliminate the need for offsite 
emergency response

- Minimized LERF < 10 -7/RY, containment integrity
- Termination of severe accidents
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I.4 Safety Design Concept

Inherent safety features
- Use of sodium as a coolant, metallic fueled core with fast spectrum provides superior heat 

transfer and inherent reactivity feedback characteristics 
- These inherent features imbedded in design are the basis for achieving severe accident 

termination
• Sodium void coefficient
• In-pin fuel motion and relocation 

Passive Engineered Safety Features
- Passive DHRS provides superior reliability in accident control and mitigation 
- The Self-Actuated Shutdown System  is effective in control of severe conditions 

Reliable Active ESFs
- Redundancy and Diversity in Reactor Shutdown System and DHRS increase the reliability 

of ESFs
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Development of System Analysis 
CodeII
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II.1 Background

The KAERI is developing a system analysis code, MARS-LMR, for SFR 
application

- This code will be used as a basic tool in the design and analysis of future SFR systems in 
Korea

The KAERI is concentrating on the verification and validation of the code 
models using available data

- The data on natural circulation and ATWS condition from EBR-II reactor have been 
evaluated with the MARS-LMR 

The validation with data from CEA launched PHENIX end-of-life (EOL) 
test is undergoing

- The KAERI joined Phenix EOL program to evaluate the capability and limitation of the 
MARS-LMR code
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II.2 MARS-LMR Code 

EBR-II SHRT-17 LOF analysis results

MARS-LMR Nodalization for EBR-II
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The MARS-LMR is a liquid metal version of 
MARS code evolved from RELAP5/MOD3

- The models of equation of state (EOS), core 
pressure drop, heat transfer for SFR system have 
been reinforced for a sodium system

The applicability of the code to a small SFR 
system has been evaluated with EBR-II data

- Three shutdown heat removal tests (SHRT) 17, 39, 
and 45 have been simulated

- Simulated results for the temperature and flow rate 
agreed well with the experimental data

Pre-test analysis of  natural circulation test of 
PHENIX EOL is being performed

- One-dimensional thermal-hydraulic behaviors for 
large pool design are analyzed
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II.3 Pretest Analysis of PHENIX NC Test
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The main purpose of the present study is to 
evaluate the applicability of the MARS-LMR to 
a large pool-type reactor

- The preliminary calculation of steady-state and 
transient condition have been completed

Higher core outlet temperature is predicted 
by MARS-LMR than DYN2B

- This is caused by the higher reactor power at the 
moment of reactor scram

The trend of temperatures at subassembly 
outlets are reasonable but slightly over-
predicted

- The predicted temperatures have similar trend to 
the measured SA outlet temperatures
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Safety AnalysisIII
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III.1 Safety Evaluation 

DBE analysis : MARS-LMR, MATRA-LMR/FB
- To assure safety margin provided by inherent safety features and ESFs
- DBE scope includes the following categories of events:

• Reactivity events : TOP 
• Loss of flow type events : LOF
• Loss of heat removal events : LOHS
• Primary and secondary boundary failure : Vessel leak
• Local faults
• Others : Tube leak 

ATWS analysis : SSC-K
- To assure the inherent safety characteristics provided by the reactivity feedbacks 

imbedded in the design
• UTOP
• ULOF
• ULOHS
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Typical DBEs are analyzed by MARS-LMR 
- LOF, TOP, LOHS, Pipe Break, Vessel Leak, SBO

All events are assumed to be occurred at the rated power and flow
Reactor is scrammed by following conditions;

- High power trip: 111 %
- High core outlet temperature: 555 °C
- Low pumping flow rate: 84 %
- Low hot-pool level: 5 cm below normal level

Decay heat model: ANS-79 (conservative)

Pump trip is assumed to be occurred at 5 seconds after reactor scram

Feedwater line isolation time is the same as pump trip

Two independent PDRCs are available

III.2.1 DBE Analysis – Scope and Assumptions
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Event Sequence
- Accident initiation: 10 s (FW isolation)
- Reactor scram by High outlet T: 76.65 s
- PHTS Pump trip: 81.65 s
- SG dryout (IHTS sodium heated): ~20 s
- Pump Coastdown end: ~200 s
- IHTS Tcold ≅ Thot : ~85 s
- PDRC overflow start: ~2000 s
- Overflow quasi-steady: ~6800 s
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III.2.2 DBE Analysis - LOHS
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Doppler and Sodium density
– Detail-meshed reactivity coefficients

Fuel axial expansion
– Free expansion before fuel-cladding 

contact
– Force-balance between fuel & cladding

Core radial expansion
– Simple model: only thermal expansion 

of GP and ACLP
– Subassembly bowing model

CRDL expansion
– Coupled with 2-dim. hot pool model
– Consider a reactor vessel expansion

Reactivity Feedback Components 

III.3.1 ATWS Analysis – Reactivity Feedback
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Assumptions 
– All primary pump trips at full power 

followed by a coastdown
– Normal heat removal path and 

PDRC are available

ULOF 797 773 (80s)* 769590

Peak Fuel 
Temp., ℃

Peak Clad 
Temp., ℃

Peak Na 
Temp., ℃

Av. Core 
Outlet 

Temp., ℃

Limit 1,070 700–790 
(<0.3hr)

Pump on: 
1,055

Pump off: 940
650–700 (<5hr)
700-760 (<1hr)

Normalized Power and Flow Reactivity Feedbacks Peak Temperatures

Results
– Peak temperatures calculated

* holding time

III.3.2 ATWS Analysis Results – ULOF
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KALIMER-600 design has 
capability to accommodate all 
the analyzed ATWS events

A refined design for control rod 
stop system is necessary to 
limit the potential magnitude of 
the UTOP initiator

Self-regulation capability is 
mainly due to the inherent and 
passive reactivity feedback 
mechanisms

Analysis results for ATWS
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III.3.3 ATWS Analysis Results – Summary
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IV. Summary

KAERI is concentrating on the development of key technologies for the 
implementation of safety design concept.

- Validation of Passive function of DHRS

- MA bearing metallic fuel

The licensing of demonstration SFR will be pursued in the current 
regulatory framework on the basis of deterministic approach. The safety 
design will be supported by probabilistic approach.

A system analysis code for SFR system has been developed. This code will 
be validated further with available test data worldwide.

An evaluation methodology for DBEs is under development which aims to 
perform the safety analysis of demonstration SFR. 


