Safety Design Concept and related Safety R&D in Korea

IAEA-GIF Workshop on Operational and Safety Aspects of SFRs

IAEA Headquarters, Vienna 23-25 June, 2010

H.-Y. Jeong

Safety Design Approach

System Analysis Code Development


Safety Analysis

Summary

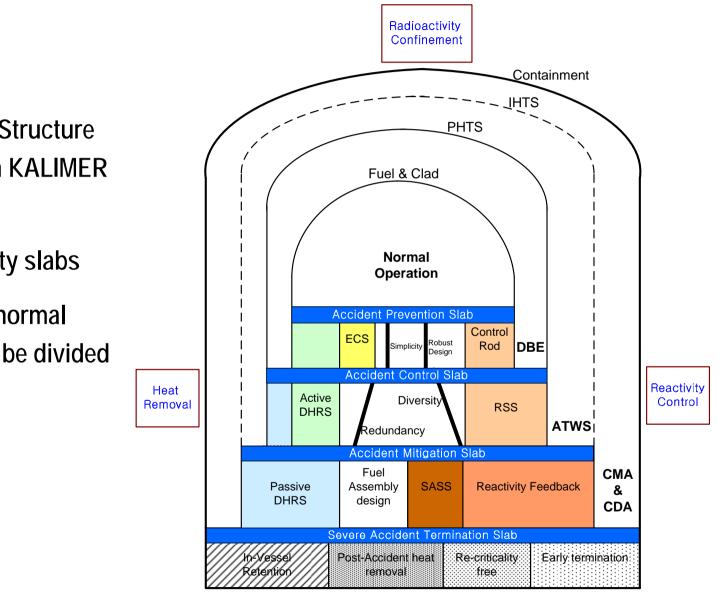
I.1 Safety Philosophy

Design Defense-in-Depth (DID)* is implemented by

- Engineered SSCs, which constitute a set of radio nuclide transport barriers
- Engineered Safety Features (ESFs) to protect the integrity of these barriers
 - Reactivity control
 - Decay heat removal
 - Radioactivity confinement

Scenario Defense-in-Depth* is defined in terms of a scenario framework

- Prevention of abnormal operation and failures (Design Simplicity & Robustness)
- Control of abnormal operation and detection failures (Accident Prevention)
- Control accidents (Redundancy & Diversity of ESFs, Accident Protection)
- Control of severe conditions (Accident Mitigation)
- Mitigation of radiological consequences (Emergency Planning or SA Termination)


Deterministic approach harmonized by Probabilistic approach

- Single failure criteria
- CDF quantification
- Probabilistic decision making

* Defined by K.N. Fleming, 2002

I.2 Implementation of DID

- DID concept & Structure implemented in KALIMER design
- ✤ 4-levels of safety slabs
- Normal and abnormal conditions can be divided with LCOs

I.3 Safety Goals

- The general target is to satisfy the safety goals for the Generation IV nuclear systems
- ✤ Gen IV nuclear energy systems will excel in safety and reliability
 - Assure the safety and reliability equivalent at least to those of an advanced thermal reactor which is acceptable by the public
- Gen IV nuclear energy systems will have a very low likelihood and degree of reactor core damage
 - $-CDF < 10^{-6}/RY$
- Gen IV nuclear energy systems will eliminate the need for offsite emergency response
 - Minimized LERF < $10^{-7}/RY$, containment integrity
 - Termination of severe accidents

I.4 Safety Design Concept

Inherent safety features

- Use of sodium as a coolant, metallic fueled core with fast spectrum provides superior heat transfer and inherent reactivity feedback characteristics
- These inherent features imbedded in design are the basis for achieving severe accident termination
 - Sodium void coefficient
 - In-pin fuel motion and relocation

Passive Engineered Safety Features


- Passive DHRS provides superior reliability in accident control and mitigation
- The Self-Actuated Shutdown System is effective in control of severe conditions

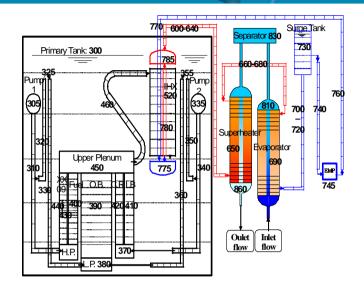

Reliable Active ESFs

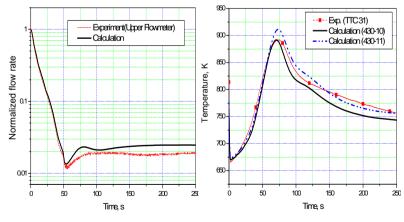
 Redundancy and Diversity in Reactor Shutdown System and DHRS increase the reliability of ESFs

II.1 Background

The KAERI is developing a system analysis code, MARS-LMR, for SFR application

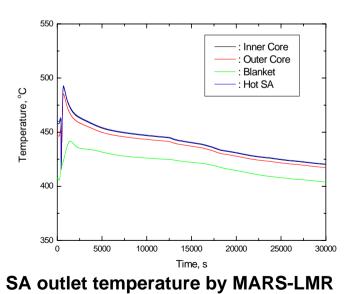
 This code will be used as a basic tool in the design and analysis of future SFR systems in Korea

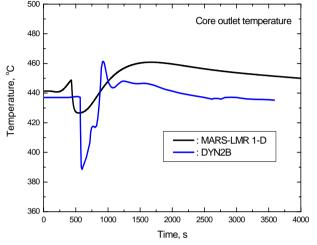

- The KAERI is concentrating on the verification and validation of the code models using available data
 - The data on natural circulation and ATWS condition from EBR-II reactor have been evaluated with the MARS-LMR
- The validation with data from CEA launched PHENIX end-of-life (EOL) test is undergoing
 - The KAERI joined Phenix EOL program to evaluate the capability and limitation of the MARS-LMR code


II.2 MARS-LMR Code

The MARS-LMR is a liquid metal version of MARS code evolved from RELAP5/MOD3

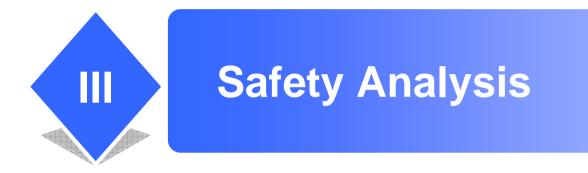
- The models of equation of state (EOS), core pressure drop, heat transfer for SFR system have been reinforced for a sodium system
- The applicability of the code to a small SFR system has been evaluated with EBR-II data
 - Three shutdown heat removal tests (SHRT) 17, 39, and 45 have been simulated
 - Simulated results for the temperature and flow rate agreed well with the experimental data
- Pre-test analysis of natural circulation test of PHENIX EOL is being performed
 - One-dimensional thermal-hydraulic behaviors for large pool design are analyzed


EBR-II SHRT-17 LOF analysis results



II.3 Pretest Analysis of PHENIX NC Test

- The main purpose of the present study is to evaluate the applicability of the MARS-LMR to a large pool-type reactor
 - The preliminary calculation of steady-state and transient condition have been completed
- Higher core outlet temperature is predicted by MARS-LMR than DYN2B
 - This is caused by the higher reactor power at the moment of reactor scram
- The trend of temperatures at subassembly outlets are reasonable but slightly over-predicted
 - The predicted temperatures have similar trend to the measured SA outlet temperatures

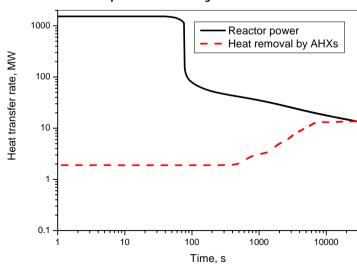


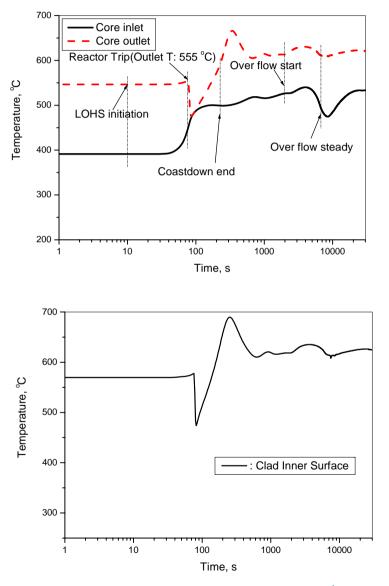
III.1 Safety Evaluation

DBE analysis : MARS-LMR, MATRA-LMR/FB

- To assure safety margin provided by inherent safety features and ESFs
- DBE scope includes the following categories of events:
 - Reactivity events : TOP
 - Loss of flow type events : LOF
 - Loss of heat removal events : LOHS
 - Primary and secondary boundary failure : Vessel leak
 - Local faults
 - Others : Tube leak
- ✤ ATWS analysis : SSC-K
 - To assure the inherent safety characteristics provided by the reactivity feedbacks imbedded in the design
 - UTOP
 - ULOF
 - ULOHS

III.2.1 DBE Analysis – Scope and Assumptions


- Typical DBEs are analyzed by MARS-LMR
 - LOF, TOP, LOHS, Pipe Break, Vessel Leak, SBO
- ✤ All events are assumed to be occurred at the rated power and flow
- Reactor is scrammed by following conditions;
 - High power trip: 111 %
 - High core outlet temperature: 555 ° C
 - Low pumping flow rate: 84 %
 - Low hot-pool level: 5 cm below normal level
- Decay heat model: ANS-79 (conservative)
- Pump trip is assumed to be occurred at 5 seconds after reactor scram
- Feedwater line isolation time is the same as pump trip
- Two independent PDRCs are available



III.2.2 DBE Analysis – LOHS

Event Sequence

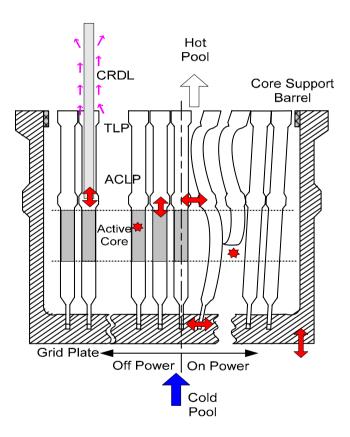
- Accident initiation: 10 s (FW isolation)
- Reactor scram by High outlet T: 76.65 s
- PHTS Pump trip: 81.65 s
- SG dryout (IHTS sodium heated): ~20 s
- Pump Coastdown end: ~200 s
- IHTS $T_{cold}\cong T_{hot}$: ~85 s
- PDRC overflow start: ~2000 s
- Overflow quasi-steady: ~6800 s

III.3.1 ATWS Analysis – Reactivity Feedback

Doppler and Sodium density

- Detail-meshed reactivity coefficients

Fuel axial expansion


- Free expansion before fuel-cladding contact
- Force-balance between fuel & cladding

Core radial expansion

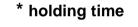
- Simple model: only thermal expansion of GP and ACLP
- Subassembly bowing model

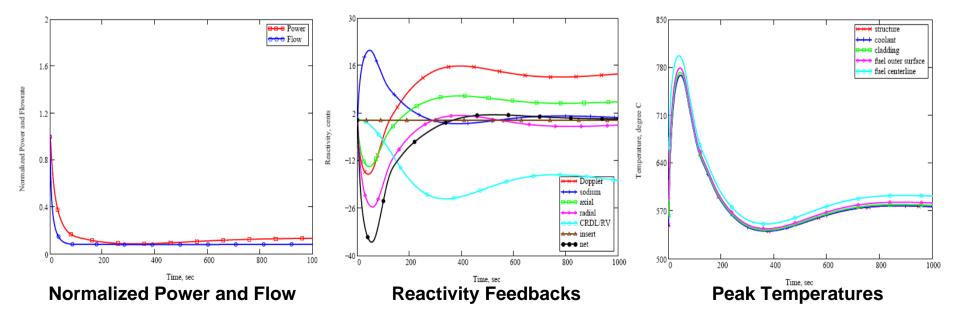
CRDL expansion

- Coupled with 2-dim. hot pool model
- Consider a reactor vessel expansion

Reactivity Feedback Components

III.3.2 ATWS Analysis Results – ULOF

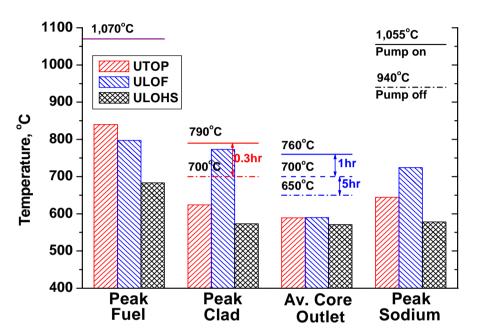

Assumptions


- All primary pump trips at full power followed by a coastdown
- Normal heat removal path and PDRC are available

* Results

- Peak temperatures calculated

	Peak Fuel Temp., °C	Peak Clad Temp., °C	Av. Core Outlet Temp., ℃	Peak Na Temp., ℃
Limit	1,070	700–790 (<0.3hr)	650–700 (<5hr) 700-760 (<1hr)	Pump on: 1,055 Pump off: 940
ULOF	797	773 (80s)*	590	769



III.3.3 ATWS Analysis Results – Summary

- KALIMER-600 design has capability to accommodate all the analyzed ATWS events
- A refined design for control rod stop system is necessary to limit the potential magnitude of the UTOP initiator
- Self-regulation capability is mainly due to the inherent and passive reactivity feedback mechanisms

	Peak Fuel Temp., ℃	Peak Clad Temp., ℃	Av. Core Outlet Temp., °C	Peak Na Temp., °C
Limit	1,070	700–790 (<0.3hr)	650–700 (<5hr) 700–760 (<1hr)	Pump on: 1,055 Pump off: 940
0.4\$ UTOP (Pump on)	840	624	589	613
ULOF (Pump off)	797	773 (80 s)*	590	769
ULOHS (Pump off)	683	573	571	571

* holding time

Analysis results for ATWS

IV. Summary

- KAERI is concentrating on the development of key technologies for the implementation of safety design concept.
 - Validation of Passive function of DHRS
 - MA bearing metallic fuel
- The licensing of demonstration SFR will be pursued in the current regulatory framework on the basis of deterministic approach. The safety design will be supported by probabilistic approach.
- A system analysis code for SFR system has been developed. This code will be validated further with available test data worldwide.
- An evaluation methodology for DBEs is under development which aims to perform the safety analysis of demonstration SFR.

