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ABSTRACT

A simulating beam parameter is considered in a compact beam simulator constructed with
a Malmberg–Penning trap device for heavy ion inertial fusion. The Malmberg–Penning trap
device is expected as an experimental device to simulate longitudinal pulse compression in a
driver system for heavy ion inertial fusion. Tune depression is estimated with Brillouin density
limit, rigid–rotor Vlasov equilibrium, and a model considering with radial distribution of charge
density. As a result, it is considered that these estimations are not suitable for the space charge
strength of the condition in the device.
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1 Introduction

In inertial confinement fusion driven by intense

heavy–ion–beam irradiation, so–called heavy ion

inertial fusion (HIF), beam physics and dynamics

should be cleared well for effective target pellet

implosion [1]. Especially, the extreme longitudi-

nal pulse compression scheme is required in the

final stage of energy driver in HIF accelerator sys-

tem [2–4].

Theoretically, it is predicted that the beam pa-

rameters passage through a risky regime to in-

crease the emittance [5, 6]. For this reason, the

emittance growth should be estimated to design

the heavy ion accelerator for HIF system during

the longitudinal pulse compression.

A Malmberg–Penning trap device [7, 8] is ex-

pected as an experimental device to simulate the

longitudinal pulse compression for HIF driver sys-

tem [9]. In the Malmberg–Penning trap device,

the magnetic flux density Bz applied in the axial z

direction confines the charged particle in radial r

direction, and the electrostatic potential applied

at both the ends of axial direction reflects the

charged particle. Electron devices scaled by the

parameters of the heavy ion beam in HIF driver

system were useful experimental device due to the

compact size [10–12]. Not only the experimental

work, but also the numerical approach was carried

out [13], and the electron dynamics is simulated

during the pulse compression manipulation [13].

In this study, the simulating beam parameter

is estimated by using theoretical approach. One of

most unique properties is ”space–charge–dominated

beam” for the HIF driver system. The simulating

beam parameter in the Malmberg–Penning trap

device as a compact simulator is indicated from

the viewpoint of the space charge strength of the

beam.
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Figure 1: Tune depression estimated by Brillouin
density limit.

2 Simulating Beam Parameter

To simulate the beam dynamics in HIF driver sys-

tem, there are some indexes such as space charge

wave velocity, generalized perveance, compression

ratio, aspect ratio of bunch size, beam velocity di-

vided by speed of light, and so on.

A tune depression is one of indexes to estimate

the space–charge strength of the charged particle

beams. The tune depression σ/σ0 is explained by

the ratio of the undepressed tune σ to the un-

depressed tune σ0 [14–16]. For σ/σ0 → 1, the

beam is in weak space–charge strength, so–called

emittance–dominated beam. On the other hand,

the beam is in strong space–charge strength, so–

called space–charge–dominated beam, for σ/σ0 →
0.

3 Estimation of Tune depres-
sion with Brillouin density
limit

Figure 1 shows the tune depression estimated by

the Brillouin density limit [17]. The tune depres-

sion is estimated by [17]

σ/σ0 =

√
1− ñ

nlim
(1)

Figure 2: Rotation angular frequency ωr in rigid-
rotor Vlasov equilibrium and cyclotron frequency
ωc .

where ñ is the average density and nlim is the den-

sity evaluated by the Brillouin density limit. In

the case of electron, the limiting density is esti-

mated as nlim = 4.86 × 104B2
z cm−3, where Bz is

in unit of Gauss.

As shown in Fig. 1, when the number density

is assumed in 1011 ∼ 1012 m−3 with the solenoidal

strength Bz = 0.01 ∼ 1 T according to the ex-

perimental condition [9], and the tune depression

σ/σ0 ∼ 1 is expected.

As mentioned in Ref. [17], this estimation is

”based on the KV model and is not very accurate

for low–density plasma.” For this reason, it is ex-

pected that the evaluation result in this assump-

tion is not suitable for the parameters in this ex-

perimental setup.

4 Estimation of Tune depres-
sion with Rigid-Rotor Vlasov
equilibrium

The tune depression is also described by using a

dimensionless parameter ∆. The dimensionless

parameter indicates the ratio of applied focusing

strength to the space–charge defocusing strength [18].

In the case of Malmberg–Penning trap configu-

ration, the dimensionless parameter ∆ is written

by [18]

∆ =
2
(
ωr ωc − ω2

r

)

ω2
p

− 1 (2)

where ωr is the rotation angular frequency in the

assumption of rigid rotation, ωc is the cyclotron

frequency, and ωp is the plasma frequency, respec-

tively. Figure 2 shows the relation between the

rotation angular frequency and the cyclotron fre-

quency. For the assumption of the thermal equi-

librium distribution, the dimensionless parameter
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Figure 3: Tune depression σ/σ0 and dimensionless
paratmeter ∆ as a function of rotation angular fre-
quency ωr for T =1 eV and Bz =0.1 T.

∆ is related by the tune depression as shown in Ta-

ble V in Ref. [19], e.g., σ/σ0 = 0.9 for ∆ = 1.851

and σ/σ0 = 0.1 for ∆ = 4.975× 10−12.

Figure 3 shows the tune depression estimated

with the above dimensionless parameter. The tem-

perature is assumed by 1 eV. As shown in Fig.3,

the tune depression is controlled in the range of

σ/σ0 = 1 ∼ 0 for number density n = 1011 ∼
1012 m−3 with the several–10 krad/s of the rota-

tion angular frequency.

5 Estimation of Tune depres-
sion considering with radial
distribution of charge den-
sity

The frequency of rigid rotation of the plasma col-

umn ωr, the cyclotron frequency ωc, (electron) plasma

frequency ωp are defined by

ωr =
Er

rBz
(3)

ωc =
eBz

me
(4)

ω2
p =

n0 e2

me ε0
. (5)

Here Bz is the magnetic flux density in axial (z)

direction, e is the elementary charge, me is the

electron mass, n0 is the number density at uni-

form inside the beam, ε0 is the permittivity of free

space, and the electric field in radial (r) direction

is

Er =
e

ε0

1

r

∫ r

0
n(r) r dr =

n0 e

ε0 r

∫ r

0
ñ(r) r dr (6)

where n(r) = n0 ñ(r).

Substituting Eqs.(3), (4), (5), and (6) into Eq.(2),

∆ = 2

(
1− me n0

ε0 B2
z

Ẽr

r

)
Ẽr

r
− 1 (7)

where
Ẽr

r
=

1

r2

∫ r

0
ñ(r) r dr (8)

depends on the density profile inside the beam.

From Eq.(7), the dependence of ∆ is written with

∆ ∝ 1− n0

B2
z

. (9)

As a result, it is found that the condition for dense

and weak strength of applied magnetic flux density

creates the space–charge–dominated state.

If the distribution is flat top for strong space-

charge-dominated state (tune depression σ/σ0 =

0, temperature T → 0), the number density of the

beam is described with

ñ(r) =

{
1 (r < a0)

0 (otherwise)
(10)

where a0 is the zero-temperature beam radius [14].

Substituting Eq.(10) into Eq.(8), Ẽr/r inside the

beam is given by

Ẽr

r
=

1

2
= 0.5. (11)

If the distribution becomes Gaussian for weak

space-charge-dominated state (= emittance-dominated

limit) (σ/σ0 = 1, T → ∞), the number density of

the beam is assumed with

ñ(r) =
n(0)

n0
exp

(
−r2

r̃20

)
(12)

where r̃0 = a0/
√
2. Substituting Eq.(12) into Eq.(8),

Ẽr

r
= 1− 1

e
( 0.632... (13)

for r = r̃0 (beam edge radius of equivalent rms

beam). Here n(0)/n0 = 2 for T → ∞ [14].

Figure 4 shows the∆ using Eq.(7) as a function

of number density and magnetic flux density for

103103



!"
!"

!"
!!

!"
!#

!"
!$ "%""!

"%"!

"%!

"

"%!

"%#

"%$

!

!"#$%&'(%)*+,-'!. /#012
34
5)%
,+6'7
8"9'
(%)
*+,-
'"#
/:2

Figure 4: Dimensionless paratmeter ∆ as a func-
tion of number density and magnetic flux density
for Ẽr/r = 0.632.

Ẽr/r = 0.632 (i.e., at beam edge radius of equiva-

lent rms beam for Gaussian distribution).

For this reason, the range of Ẽr/r is written by

1

2
<

Ẽr

r
< 1− 1

e
(14)

or

0.5 <
Ẽr

r
< 0.632 (15)

If in case of low density (n0 → 0) and/or ex-

treme strong magnetic flux (Bz → ∞) condition,

the maximum value of ∆ is given by

∆ ( 2
Ẽr

r
− 1 ( 0.264... (16)

for Ẽr/r = 0.632. From Ref. [19], the dimension-

less parameter ∆ = 0.264 corresponds to the tune

depression σ/σ0 = 0.7. Also, as shown in Fig.4,

the tune depression is always below 0.7.

6 Conclusion

The simulating beam parameter was studied in

the compact beam simulator constructed with the

Malmberg–Penning trap device for HIF system.

The tune depression was estimated with the Bril-

louin density limit, the rigid–rotor Vlasov equilib-

rium, and the model considering with the radial

distribution of charge density.

The estimation of tune depression based on the

Brillouin limit implied the quite weak in the space

charge condition in the experimental device.

The estimation of tune depression based on

the rigid–rotor Vlasov equilibrium indicated from

weak to strong space charge condition. However,

the assumption of the rigid–rotor model is a lit-

tle bit odd, because of the rotation is driven by

E×B drift, and the electrical field E depends on

the charge density distribution in the radial direc-

tion. The rigid–rotor equilibrium fixes the linear

electric field distribution.

The estimation of tune depression considering

with the radial distribution of charge density was

derived, and indicated that the tune depression

becomes always below 0.7, theoretically.

As a result, it is considered that the above

estimations are not suitable for the space charge

strength of the condition in the device.
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