DERIVACIÓN DE LAS ECUACIONES DE TASA DE CONTEO DE PICO DESCRIBIENDO LAS COINCIDENCIAS-SUMA DE GAMMA Y RAYOS X

Ferreira Filho, A. L.^{1, 2}, Gomes, R. S.¹, da Silva, R. L.¹, da Cruz, P. A. L.¹, Delgado, J. U.¹ y Lopes, R. T.²

¹ Laboratório Nacional de Metrologia das Radiações Ionizantes (LNMRI/IRD/CNEN) Rio de Janeiro, Brasil
² Laboratório de Instrumentação Nuclear (LIN/PEN/COPPE/UFRJ) Rio de Janeiro, Brasil

RESUMEN

Con el objeto de estudiar el efecto de suma por coincidencia en la espectrometría de los rayos X y gamma del Ba-133, se presenta un método para, a través de una planilla Excel, aplicar la teoría desarrollada por Novkovic et al. basada en el seguimiento o rastreo de todas las rutas o trayectorias de decaimiento de radioisótopos con esquema de decaimiento complejo y sus consecuencias en un detector, es decir, las energías susceptibles de ser depositadas asociadas a las correspondientes probabilidades de detección. Se trata de, utilizando inicialmente una técnica matricial, derivar ecuaciones de tasa de conteo, de picos en espectros fotónicos, ecuaciones que describen las sumas por coincidencia de rayos X y gamma de radionucleido, como el Ba-133, en el que la cascada de desexcitación del núcleo tiene lugar simultáneamente con la desexcitación en cascada de la capa atómica. Por medio del análisis detallado del espectro del Ba-133, a partir de los 1860 resultados teóricos obtenidos de las 14 diferentes rutas de decaimiento, el método permite determinar, de entre los 167 picos posibles (foto-picos y picos-suma), la influencia de los efectos summing-in (efectos de suma en cascada) en los cerca de 50 picos normalmente registrados en un espectrómetro HPGe con una eficiencia relativa del 50%. **Palabras clave:** efecto suma-coincidencia, espectrometría de fotones, ecuaciones de tasa de conteo, Ba-133, determinación de la actividad.

1. INTRODUCCIÓN

Los detectores de germanio con altas resoluciones, buenas eficiencias y con rango de sensibilidad de varios keV a varios MeV están en amplio uso en espectrometría de rayos gamma. Entretanto los efectos suma por coincidencia deben tenerse en cuenta en particular a una baja distancia fuente-detector.

Cuando dos fotones, temporalmente coincidentes, interactúan con un detector, depositando cada uno toda su energía al mismo, la respuesta del detector es proporcional a la energía total depositada. Los tiempos de vida de los niveles nucleares para las transiciones de rayos γ son, por regla general, mucho más cortos que el tiempo de recolección de carga en los detectores de germanio disponibles. Así, la suma por coincidencia ocurre cuando dos o más fotones en cascada son emitidos desde el mismo núcleo y detectados dentro del tiempo de resolución de un espectrómetro. En general, tres tipos de efectos resultan de la suma por coincidencia. Si un dado fotón deposita toda su energía en el detector y otro fotón coincidente deposita apenas parte de su energía, se produce una "pérdida en el pico" del primero fotón, usualmente referida como efecto "*summing-out*". Alternativamente, en el caso del efecto "*summing-in*", si dos fotones coincidentes depositan todas sus energías en el detector, un "pico suma" aparece en el espectro. El tercer fenómeno se produce cuando los rayos coincidentes depositan apenas

¹ E-mail del autor: alfredo@ird.gov.br

parte de sus energías en el detector, lo que contribuye sólo al fondo y no influye ni en las intensidades de los picos ni en las eficiencias de pico.

De hecho, si dos o más fotones se emiten en cascada, cualquiera dos de ellos pueden depositar todas sus energías en el detector para formar un pulso compuesto indistinguible de aquel debido a un solo evento. Los rayos X (que surgen de capturas de electrón, de decaimientos de positrón o de conversiones internas) son otro tipo de radiación que puede contribuir a la verdadera coincidencia (efecto "*summing-in*"). Los picos debidos a la suma por coincidencia de rayos (X + X), $(X + \gamma)$ y $(\gamma + \gamma)$ pueden, por consiguiente, complicar el espectro obtenido por este tipo de detector y cambiar significativamente las tasas de conteo de los foto-picos.

La aplicación de enfoques analíticos para calcular efectos de suma por coincidencia, como en [1], permite predecir todos los picos de suma que se producen en un espectro. Son enfoques que permiten escribir ecuaciones de tasa de conteo para foto-picos, para los picos suma por coincidencia y para la tasa de conteo total. Determinando-se, por programas matemáticos comerciales, las raíces del sistema de estas ecuaciones, se puede determinar las eficiencias de pico y total, así como la actividad de las fuentes radioactivas, incógnitas en estas ecuaciones. Métodos como estos son adecuados para derivar las tasas de conteo para espectros gamma de radionucleidos en los que tiene lugar la cascada de desexcitación del núcleo simultáneamente con la desexcitación en cascada de la capa atómica. El método DMM (multiplicación directa de matrices) genera expresiones teóricas de las tasas de conteo para cada pico de un espectro (foto-picos y picos-suma, excluyendo los picos de escape), así como para la tasa de conteo total. Utilizando este método, se pueden identificar todas las posibles rutas de decaimiento y calcular sus consecuencias en un detector (energías depositadas y las respectivas probabilidades de deposición), para los casos en los que se desconocen las eficiencias de pico v total del mismo v la actividad de la fuente medida. En diversos estudios [2] [3] [4] [5] se encontró que las tasas de conteo de picos evaluadas teóricamente mediante el método DMM estaban en buen acuerdo con los valores obtenidos experimentalmente.

El radionucleido Ba-133 se eligió en este estudio porque su decaimiento es complejo y tiene amplia aplicación en espectrometría gamma. En su espectro de energía notamos un gran número de picos sumadores. La suposición implícita es que los fotones K_{α} , K_{β} y γ son emitidos desde el mismo núcleo. Los fotones emitidos desde diferentes núcleos pueden producir sólo una suma de coincidencia aleatoria que puede eliminarse eligiendo una fuente con baja actividad. El Ba-133 transita por cuatro capturas de electrones (Tabla 1) a los niveles excitados del Cs-133, 437 keV (85,41%), 384 keV (14,46%), 160,61 keV (0,3%) y 81,00 keV (0,7%). La transición por captura electrónica al estado fundamental del Cs-133 se ha descuidado ya que su rendimiento es inferior al 0,001%. Los valores para las energías gamma, los coeficientes de conversión interna para la capa K, α_{K} , y total, α , se enumeran en la Tabla 2. Además de los fotones gamma, el decaimiento del Ba-133 es seguido de la emisión de rayos X (Tabla 3) como consecuencia de los procesos de captura de electrones o de conversión interna [6]. Con el estado fundamental del Ba-133 representado por n = 5, como se fuera más un nivel excitado del núcleo hija, las características principales de su complejo esquema de decaimiento se muestran en la Figura 1. El estado fundamental del Cs-133 es etiquetado por 0. Entre estos dos estados fundamentales, hay n - 1 niveles excitados. Además de los fotones gamma, el decaimiento del radionucleido Ba-133 es seguido por emisiones de 2 fotones KX (Tabla 3) como una consecuencia de los procesos de captura electrónica y conversión interna, razón por la cual hay un gran número de picos de coincidencia en el espectro. En el presente estudio sólo se toman en cuenta los rayos X K_a y K_{β} , mientras que otros rayos X y radiación de Bremsstrahlung se descuidan.

Transición	Probabilidad de captura electrónica	Probabilidad de captura de electrones de la capa K
$Ba \rightarrow Cs$	y _{ii} (%)	P _K
$\epsilon_{5\rightarrow4}$	0,854100	0,671
ɛ _{5→3}	0,144600	0,7727
$\epsilon_{5\rightarrow 2}$	0,003000	0,83
$\epsilon_{5 \rightarrow 1}$	0,007000	0,84

Tabla 1: Datos nucleares del Ba-133 para captura electrónica

 Tabla 2: Datos nucleares para transiciones gamma

Transición en el Cs-133	Energía (keV)	Probabilidad IC + γ	Probabilidad Normalizada	Coeficiente	Coeficiente total
nivel $i \rightarrow j$		x 100	y_{ij}	w _k y	α _{ij}
$\gamma_{4\rightarrow 3}$	53,1622 (18)	14,25 (46)	0,166842	4,78 (7)	5,66 (11)
$\gamma_{2 \rightarrow 1}$	79,6142 (19)	7,3 (5)	0,898351	1,495 (22)	1,77 (3)
$\gamma_{1 \rightarrow 0}$	80,9979 (11)	90,05 (6)	1,000000	1,431 (20)	1,703 (24)
$\gamma_{2\rightarrow 0}$	160,6121 (16)	0,826 (9)	0,101649	0,234 (4)	0,294 (6)
$\gamma_{3\rightarrow 2}$	223,237 (2)	0,494 (6)	0,017204	0,0836 (12)	0,0975 (14)
$\gamma_{4\rightarrow 2}$	276,3992 (21	7,53 (6)	0,088163	0,0460 (7)	0,0566 (8)
$\gamma_{3\rightarrow 1}$	302,8512 (16)	19,10 (12)	0,665181	0,0373 (6)	0,0434 (6)
$\gamma_{4\rightarrow 1}$	356,0134 (17)	63,63 (20)	0,744995	0,0211 (3)	0,0254 (4)
<u>γ</u> 3→0	383,8491 (12)	9,12 (6)	0,317615	0,01684 (24)	0,0202 (3)

Tabla 3: Datos atómicos del Bario

	Energía media ponderada	Probabilidad relativa	Probabilidad normalizada, g	Rendimiento de fluorescencia, ω _k
Kα	30,8	154,13	0,809251	0.804 (4)
K_{β}	35,3	36,13	0,190749	0,094 (4)

Figura 1: Esquema de decaimiento del Ba-133

2. EXPONIENDO LAS TRAYECTORIA Y SUS PROBABILIDADES

Una ruta o trayectoria de decaimiento seguido en el curso del proceso de desintegración se define por las transiciones en cascada desde el estado fundamental del núcleo padre hasta el estado fundamental de la hija. La transición del Ba-133 al estado fundamental del Cs-133 puede ocurrir a través de 14 rutas alternativas. La **Figura 2** muestra una planilla con las rutas de decaimiento y, en la parte inferior de cada fila representando las transición paso a paso. Representando una hoja de trabajo de Excel, la figura también muestra (al final de cada fila de probabilidades de transición) la probabilidad de cada ruta (correspondiente al producto de las probabilidades normalizadas de transición), desde el Ba-133 al estado fundamental del Cs-133, en 2, 3, 4 o 5 pasos. Como cada ruta se ve como una serie temporal, la probabilidad de seguirla, calculada aquí mediante una hoja de cálculo de Excel y revisada mediante un formalismo matricial, simplemente puede verse como un producto de probabilidades normalizadas de transición.

Pasos	Rutas	Nivel n=5 - P	rob de C	aptura	Nivel 4		Nivel 3		Nivel 2		Nivel 1		Nivel	Prob. da Cascata
2 pasos	ruta 1	ε ₅₋₁ (Ba)									$\gamma_{1,0}$		(Cs)	
			0.0070								1			0.007000
2 pasos	ruta 2	ε ₅₋₂ (Ba)							Y2,0				(Cs)	
			0.0030						0.101649					0.000305
3 pasos	ruta 3								Y2,1		γ 1,0		(Cs)	
			0.0030						0.898351		1	/		0.002695
2 pasos	ruta 4	ε ₅₋₃ (Ba)					Y _{3,0}						(Cs)	
			0.1446				0.317615							0.045927
3 pasos	ruta 5						γ _{3,1}				$\gamma_{1,0}$		(Cs)	
			0.1446			\sim	0.665181				1			0.096185
3 pasos	ruta 6						Y _{3,2}		γ _{2,0}				(Cs)	
			0.1446				0.017204		0.101649					0.000253
4 pasos	ruta 7					$\neg A$	Y3,2		γ _{2,1}		$\gamma_{1,0}$	$ \longrightarrow $	(Cs)	
			0.1446				0.017204	V	0.898351		1	V		0.002235
3 pasos	ruta 8	ε ₅₋₄ (Ba)			Y _{4,1}						$\gamma_{1,0}$		(Cs)	
			0.8541		0.744995						1	V		0.636300
3 pasos	ruta 9				γ _{4,2}				Y 2,0				(Cs)	
			0.8541	\rightarrow	0.088163				0.101649					0.007654
4 pasos	ruta 10			$\neg A$	$\gamma_{4,2}$	-			γ _{2,1}		$\gamma_{1,0}$		(Cs)	
			0.8541		0.088163				0.898351		1			0.067646
3 pasos	ruta 11				γ _{4,3}		Y3,0						(Cs)	
			0.8541		0.166842		0.317615						(-)	0.045260
4 pasos	ruta 12			\vdash	Y _{4,3}		γ _{3,1}				γ _{1,0}	\square	(CS)	
			0.8541		0.166842		0.665181	N			1		(0-)	0.094788
4 pasos	ruta 13		0.0541	A	γ _{4,3}		γ _{3,2}		γ _{2,0}				(CS)	0.000240
E nasas	nute 14		0.8541	- A	0.166842	\rightarrow	0.017204	м N	0.101649		~	×	(Ca)	0.000249
5 pasos	ruta 14		0.0541		14,3 0 100042	5	¥3,2		V2,1		¥1,0		(US)	0.000000
			0.8541	Y	0.100842	٢	0.017204	٣	0.898351	*	1	,	Σ=	0.002202

Figura 2: Trayectorias de decaimiento para la transición del estado fundamental del Ba-133 (nivel 5) al estado fundamental del Cs-133 (nivel 0) en 2, 3, 4 y 5 pasos.

El número de rutas o trayectorias de decaimiento del Ba-133 al Cs-133 y respectivas probabilidades se resume en la tabla 4. La desintegración directa del núcleo padre al estado fundamental de la hija (ruta de desintegración en 1 paso) se ha descuidado.

Tabla 4. Número de rutas de decaimiento y probabilidades en diferentes pasos para latransición desde el estado fundamental del Ba-133 al estado fundamental del Cs-133

Número de pasos	1	2	3	4	5	Total
Número de rutas	0	3	6	4	1	14
Probabilidades	0	0,053232	0,7883474	0,164918	0,0022023897	1

3. ENFOQUE ANALÍTICO USANDO UN FORMALISMO MATRICIAL

Un posible enfoque para verificar la identificación de todas las rutas de decaimiento y sus probabilidades y obtener las ecuaciones de tasa de conteo (que describe la suma por coincidencia que se produce en espectroscopia gamma) se basa en un formalismo matricial desarrollado por Novković et al. 2007 [2] y por Nađđerđ et al. [7] para esquemas de decaimiento complejos.

El método de Novković, aquí utilizado, fue más tarde denominado Método de Multiplicación de Matrices Directas (DMM) (Novković et al., 2012) [4]. Usando un formalismo matemático, que incluye el producto directo y las sumas directas de algunas matrices, cuyos elementos no son números sino listas de probabilidades de detección y energías adecuadamente arregladas, se puede identificar todos los posibles caminos de desintegración, calcular las probabilidades de cada trayectoria y determinar las consecuencias en un detector, o sea, la probabilidad de detección de fotones y la energía correspondiente depositada. El método permite determinar expresiones teóricas para las tasas de conteo para cada pico (excluyendo picos de escape), así como la tasa de conteo total. El método de Novkovic [2] representó la extensión del método de matriz, introducido por Semkow et al. [8] y modificado por Korun y Martinčić [9] que introdujo niveles virtuales en el esquema de desintegración para cada transición que resultase rayos X. El método anterior se aplicaba apenas a núcleos con un esquema de desintegración relativamente simple, aunque seguido por emisión de rayos X. El enfoque actual de este problema se basó en el formalismo matricial sólo en la fase inicial. El análisis posterior se basa en la identificación de todas las vías de desintegración y sus múltiples resultados.

Nadderd et al. [7] [10] presentaron una variación del método anterior para derivar estas ecuaciones de tasa de conteo. Este enfoque también genera expresiones teóricas para todas las tasas de conteo de picos de absorción completa (foto-picos y picos-suma) en el espectro, así como para la tasa de conteo total. Permite también, de manera sencilla, una estimación de la contribución de efectos suma por coincidencia para radionuclideos de esquemas complejos de decaimiento, tal como el Ba-133.

4. MATRIZ DE LAS TRAYECTORIAS DE DECAIMIENTO

Con el fin de determinar las trayectorias de decaimiento (rutas o caminos de desintegración) se introduce una matriz triangular estrictamente inferior (*strictly lower-triangular matrix*), como X, expresión (1), con los elementos de interés colocados debajo de la diagonal principal (algunos de ellos pudiendo hasta ser nulos). En álgebra lineal, una matriz triangular estrictamente inferior es un tipo especial de matriz cuadrada, cuyos valores de la diagonal principal y por encima de ella son todos iguales a 0, o sea $x_{ij} = 0$ para $i \le j$.

Comenzaremos imaginando un esquema de desintegración general que representa un núcleo que se desintegra por *n* capturas de electrón en un núcleo hija que tiene *n*-1 niveles excitados, recordando que el estado fundamental del núcleo progenitor se presenta como un nivel excitado del núcleo hija, marcado por n, y el estado fundamental del núcleo hija es etiquetado por 0. La matriz correspondiente a este esquema así modificado, X, es una matriz cuadrada $(n + 1) \times (n + 1)$.

$$\mathbf{X} = \begin{bmatrix} 0 & 0 & 0 & \cdots & 0 \\ \mathbf{x}_{10} & 0 & 0 & \cdots & 0 \\ \mathbf{x}_{20} & \mathbf{x}_{21} & 0 & \cdots & 0 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \mathbf{x}_{n0} & \mathbf{x}_{n1} & \cdots & \mathbf{x}_{nn-1} & 0 \end{bmatrix},$$
(1)

donde x_{ij} , representa transiciones del i-ésimo nivel al *j*-ésimo (j < i < n) (x_{nj} , en la última fila, representa transiciones por captura electrónica del nivel *n* al nivel *j*).

El núcleo hija del Ba-133, el Cs-133, tiene 4 niveles excitados, y las matrices de las trayectorias de decaimiento tiene 6 filas y 6 columnas, incluidos los estados fundamentales del Ba-133 y del Cs-133. La transición desde el estado fundamental del núcleo padre hasta el estado fundamental del núcleo hija puede ocurrir a través de rutas alternativas en k pasos o etapas (k = 1, 2, ..., n). Cuando k = 1, el núcleo del Ba-133 decae por captura electrónica directamente al estado fundamental del Cs-133, probabilidad descuidada en este estudio (rendimiento despreciable, inferior al 0,001%).

Todas estas posibles rutas de desintegración se identifican calculando los elementos matriciales $[X^k]_{50}$ (k = 1, 2, 3, 4, 5), es decir, $[X]_{50}$, $[X^2]_{50}$, $[X^3]_{50}$, $[X^4]_{50}$ y $[X^5]_{50}$. Estos son elementos en la primera columna (o columna número 0 en nuestra notación) de la 6^a fila de estas 6 matrices abajo, (2), (3), (4), (5) y (6).

La quinta potencia de la matriz (6) contiene sólo un elemento distinto de cero. La transición desde el estado fundamental del Ba-133 al estado fundamental del Cs-133 pueden, como resultado, ocurrir por:

• tres rutas de desintegración en dos etapas (para k=2): $[X^2]_{50} = x_{53}x_{30} + x_{52}x_{20} + x_{51}x_{10}$ representando la transición en cascada 5 \rightarrow 3 \rightarrow 0, 5 \rightarrow 2 \rightarrow 0 y 5 \rightarrow 1 \rightarrow 0;

• seis rutas de decaimiento en tres etapas (k=3): $[X^3]_{50} = x_{52}x_{21}x_{10} + x_{53}x_{31}x_{10} + x_{53}x_{32}x_{20} + x_{54}x_{41}x_{10} + x_{54}x_{42}x_{20} + x_{54}x_{43}x_{30}$ denotando las transiciones en cascada $5 \rightarrow 3 \rightarrow 1 \rightarrow 0$, $5 \rightarrow 3 \rightarrow 2 \rightarrow 0$, $5 \rightarrow 4 \rightarrow 1 \rightarrow 0$, $5 \rightarrow 4 \rightarrow 2 \rightarrow 0$, $5 \rightarrow 4 \rightarrow 3 \rightarrow 0$ y $5 \rightarrow 2 \rightarrow 1 \rightarrow 0$;

• cuatro rutas de decaimiento en cuatro etapas (k=4): $[X^4]_{50} = x_{53}x_{32}x_{21}x_{10} + x_{54}x_{42}x_{21}x_{10} + x_{54}x_{43}x_{31}x_{10} + x_{54}x_{43}x_{32}x_{20}$ denotando las transiciones en cascada $5 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 0$, $5 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 0$, $5 \rightarrow 4 \rightarrow 3 \rightarrow 1 \rightarrow 0$ y $5 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 0$ y

• una ruta de decaimiento en cinco etapas (k=5): $[X^5]_{50} = x_{54}x_{43}x_{32}x_{21}x_{10}$ denotando una transición en cascada $5 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 0$.

Estas rutas o trayectorias de desintegración tienen diferentes probabilidades (**Tabla 4**), que se pueden determinar a través de una matriz de probabilidad de transición, conforme sigue.

5. MATRIZ DE PROBABILIDAD DE TRANSICIÓN

Para la creación de las ecuaciones de tasa de conteo se debe construir también de manera similar la matriz de probabilidad de transición (10) desde el Ba-133, reemplazando los elementos x_{ij} (diferentes de cero) de la matriz 6×6 anterior por los datos de desintegración nuclear, deducidos fácilmente de los esquemas de decaimiento estándar, disponibles en la literatura [4]. Son los valores de y_{ij} de las tablas 1 (columna 2) y 2 (columna 4) designando la probabilidad normalizada de transición entre dos niveles, del nivel *i* al nivel *j* (*j* < *i* <6). Los elementos de la matriz satisfacen las siguientes relaciones (7) (8) (o sea, la suma de los componentes de una fila, diferentes de cero, debe ser igual a la unidad):

$$\sum_{i=0}^{t-1} y_{ij} = 1, \quad i = 1, \dots, n \tag{8}$$

El significado físico de estas relaciones es que el *i*-ésimo nivel excitado del Cs-133 debe decaer a uno de los más bajos, aplicándose esta regla también al estado fundamental del Ba-133, nivel n = i = 5. De hecho, los elementos y_{54} , y_{53} , y_{52} y y_{51} , de la última fila de la matriz Y, representan las probabilidades de las transiciones por captura de electrones, en destaque en la Figura 1, del Ba-133 a los niveles 437, 383, 160 y 81 keV del Cs-133, respectivamente. El elemento matricial de la matriz Y^k configurado en la enésima fila (última fila) y primera columna, $[Y^k]_{n0}$, representa la probabilidad de la transición del núcleo padre al estado fundamental del núcleo hija en k pasos. Estos elementos de la matriz deben cumplir la siguiente condición:

$$\sum_{k=1}^{n} \left[\mathbf{Y}^{k} \right]_{n0} = 1 \tag{9}$$

Es decir, el núcleo padre tiene el 100% de probabilidad de transitar al estado fundamental del núcleo hija, en hasta k = n pasos. Por consiguiente, las probabilidades de transición del Ba-133 al estado fundamental del Cs-133 en 1, 2, 3, 4 y 5 pasos están dados por los elementos matriciales $[Y]_{50}$, $[Y^2]_{50}$, $[Y^3]_{50}$, $[Y^4]_{50}$ y $[Y^5]_{50}$, respectivamente (10), (11), (12), (13), (14).

$$\begin{pmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 \\ 0.101649 & 0.89835 & 0 & 0 & 0 & 0 \\ 0.317615 & 0.66518 & 0.017204 & 0 & 0 & 0 \\ 0 & 0.744994 & 0.088162 & 0.166842 & 0 & 0 \\ 0 & 0.007 & 0.003 & 0.1446 & 0.8541 & 0 \end{pmatrix}$$
(10)

Elevando la matriz al cuadrado, Y^2 :

(0.	0.	0.	Ο.	Ο.	0.)		
l	0.	0.	0.	0.	Ο.	0.		
	0.804774	0.	0.	0.	Ο.	0.	(11\
	0.664182	0.0130739	0.	0.	Ο.	0.	(11)
	0.899224	0.100289	0.000487456	0.	Ο.	0.		
ĺ	0.0542544	0.841083	0.0877351	0.0256278	Ο.	ο.)		

al cubo, Y^3 :

a la quinta potencia, Y⁵ (contiendo sólo un elemento distinto de cero):

Las probabilidades de transición desde el estado fundamental del Ba-133 a lo del Cs-133 se resumen en la Tabla 5.

6. CONSECUENCIAS EN EL DETECTOR RESULTANTES DE LAS RUTAS DE DECAIMIENTO

La detección de una desintegración de un núcleo se caracteriza por un par de fenómenos: la **suma** de las energías que se depositan en el detector y la **multiplicación** de las probabilidades de detección (o no detección) de toda energía de los fotones emitidos en la transición del nivel superior al inferior. Por tanto, después de la determinación de todas las rutas de decaimiento, es necesario encontrar este correspondiente par, estrictamente correlacionado, de consecuencias resultantes en el detector. Cada par representando **el producto** de probabilidades de detección (o no detección) de una cierta combinación de fotones de energías determinadas (combinación a establecer a partir de las rutas ya identificadas) y la correspondiente **suma** de energías pasibles de ser completamente depositadas en el detector.

Elemento matricial	k Pasos	14 Rutas de Decaimiento	Transiciones	Probabilidade	N⁰ de Rutas	N° de resultantes por ruta $3 \times 4^{k-1}$	Número total de resultantes
		x ₅₁ x ₁₀	$5 \rightarrow 1 \rightarrow 0$	0,0070000000			
$[X^2]_{50}$	2	x ₅₂ x ₂₀	$5 \rightarrow 2 \rightarrow 0$	0,0003049471	3	12	36
		x ₅₃ x ₃₀	$5 \rightarrow 3 \rightarrow 0$	0,0459271436			
		x ₅₂ x ₂₁ x ₁₀	$5 \rightarrow 2 \rightarrow 1 \rightarrow 0$	0,0026950529			
[V ³]		x ₅₃ x ₃₁ x ₁₀	$5 \rightarrow 3 \rightarrow 1 \rightarrow 0$	0,0961851362			
	2	x ₅₃ x ₃₂ x ₂₀	$5 \rightarrow 3 \rightarrow 2 \rightarrow 0$	0,0002528743	6	19	288
[A]50	3	x ₅₄ x ₄₁ x ₁₀	$5 \rightarrow 4 \rightarrow 1 \rightarrow 0$	0,6363000000	0	40	
		x ₅₄ x ₄₂ x ₂₀	$5 \rightarrow 4 \rightarrow 2 \rightarrow 0$	0,0076541718	_		
		x ₅₄ x ₄₃ x ₃₀	$5 \rightarrow 4 \rightarrow 3 \rightarrow 0$	0,0452601518			
		$x_{53} x_{32} x_{21} x_{10}$	$5 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 0$	0,0022348459	_		
\mathbf{v}^{4}	4	$x_{54} \ x_{42} \ x_{21} \ x_{10}$	$5 \rightarrow 4 \rightarrow 2 \rightarrow 1 \rightarrow 0$	0,0676458282	1	102	769
[A]50	4	$x_{54} x_{43} x_{31} x_{10}$	$5 \rightarrow 4 \rightarrow 3 \rightarrow 1 \rightarrow 0$	0,0947882566	- 4	192	708
		$x_{54} x_{43} x_{32} x_{20}$	$5 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 0$	0,0002492019			
$[X^5]_{50}$	5	$x_{54} x_{43} x_{32} x_{21} x_{10}$	$5 \rightarrow 4 \rightarrow 3 \rightarrow 2 \rightarrow 1 \rightarrow 0$	0,0022023897	1	768	768
				$\Sigma = 1$	$\Sigma = 14$		$\Sigma = 1.860$

Tabla 5: Rutas de Decaimiento, sus probabilidades y número de resultantes en términos de detección

Conforme el diagrama de árbol de la **Figura 3**, cada transición de un nivel a otro es un punto de bifurcación, porque las consecuencias en el detector de una transición pueden ser diferentes.

Como consecuencia de las transiciones por captura de electrones (del nivel *n* al nivel *j*), con respecto a la detección de fotones son posibles los siguientes tres casos alternativos: la detección (con cierta probabilidad y energía) de un fotón K_{α} o un K_{β} , emitidos en cada captura electrónica, o la ausencia de detección. A cada detección está asociada una probabilidad y una energía depositada. Cada ruta de decaimiento en k pasos tiene $3 \times 4^{k-1}$ pares de consecuencias resultantes en el detector (Tabla 5). El número total de resultantes de las 14 rutas de decaimiento desde el estado fundamental del Ba-133 al estado fundamental del Cs-133 es 1860 (Tabla 5). Denotamos las probabilidades de detección de toda la energía de fotones K_{α} y K_{β} , que resultan de capturas de electrón con transiciones al *j*-ésimo nivel del Cs-133, por a_{nj} y b_{nj} respectivamente, y las probabilidades de ausencia de detección de estos fotones por q_{nj} . Obsérvese que, en el esquema modificado de la figura 1, *n* es igual a 5. A estas 3 probabilidades están estrictamente correlacionadas las energías $E_{K\alpha}$, $E_{K\beta}$ y 0, correspondientemente. $E_{K\alpha}$ y $E_{K\beta}$ son las energías de los fotones K_{α} y K_{β} , respectivamente, y 0 corresponde a la no detección.

De manera similar, cuando tiene lugar las transiciones del núcleo de Cs-133 de un nivel superior *i* a un inferior *j* tenemos las siguientes 4 posibilidades: la detección de un fotón K_a o un K_β (que se originan a partir de una conversión interna), la detección del fotón gamma o la ausencia de detección de cualquier fotón. Las probabilidades correspondientes son denotadas por a_{ij} , b_{ij} , γ_{ij} y q_{ij} . A estas 4 probabilidades están estrictamente correlacionadas las energías E_{Ka} , $E_{K\beta}$, $E\gamma_{ij}$ y 0, respectivamente. $E\gamma_{ij}$ es la energía del fotón gamma en la transición $i \rightarrow j$.

O sea, para determinar todos los pares resultantes por ruta de decaimiento, cada elemento matricial x_{ij} se reemplaza por vectores-fila de 3 o 4 elementos cada. Cada uno está asociado con los elementos matriciales z_{ij} de una matriz Z, cuyos elementos contienen las energías depositadas en el detector correspondientes a las probabilidades de detección a_{ij} , b_{ij} , γ_{ij} , q_{ij} .

Para captura electro	ónica $(i = n)$:			
	$\mathbf{x}_{5i} = [a_{ni}; b_{ni}; q_{ni}]$	(15)	$z_{5i} = [E_{K\alpha}; E_{K\beta}; 0]$	(16)
O sea	5 57 57 - 5		у I	
	$x_{54} = [a_{54}; b_{54}; q_{54}]$		$z_{54} = [30,8; 35,3; 0]$	
	$\mathbf{x}_{53} = [a_{53}; b_{53}; q_{53}]$		$z_{53} = [30,8; 35,3; 0]$	
	$x_{52}=[a_{52}; b_{52}; q_{52}]$		$z_{52} = [30,8; 35,3; 0]$	
	$\mathbf{x}_{51} = [a_{51}; b_{51}; q_{51}]$		$z_{51} = [30,8; 35,3; 0]$	
En las transiciones	gama :			
	$\mathbf{x}_{ij} = [a_{ij}, b_{ij}, \gamma_{ij}, q_{ij}]$	(17)	$\mathbf{z}_{ij} = [\mathbf{E}_{\mathbf{K}\alpha}; \mathbf{E}_{\mathbf{K}\beta}; \mathbf{E}\gamma_{ij}; 0]$	(18)
O sea:				
	\mathbf{x}_{43} =[a_{43} ; b_{43} ; γ_{43} ; q_{43}]		$z_{43} = [30,8; 35,3; 53,16]$; 0]
	$\mathbf{x}_{42}=[a_{42}; b_{42}; \gamma_{42}; q_{42}]$		$z_{42} = [30,8; 35,3; 276,4;$	0]
	$\mathbf{x}_{41} = [a_{41}; b_{41}; \gamma_{41}; q_{41}]$		$z_{41} = [30,8; 35,3; 356,01]$;0]
	$\mathbf{x}_{32} = [a_{32}; b_{32}; \gamma_{32}; q_{32}]$		$z_{32} = [30,8; 35,3; 223,24]$; 0]
	$\mathbf{x}_{31} = [a_{31}; b_{31}; \gamma_{31}; q_{31}]$		$z_{31} = [30,8; 35,3; 302,85]$; 0]
	$\mathbf{x}_{30} = [a_{30}, b_{30}, \gamma_{30}, q_{30}]$		$z_{30} = [30,8; 35,3; 383,85]$; 0]
	$\mathbf{x}_{21} = [a_{21}; b_{21}; \gamma_{21}; q_{21}]$		$z_{21} = [30,8; 35,3; 79,61]$; 0]
	$\mathbf{x}_{20} = [a_{20}; b_{20}; \gamma_{20}; q_{20}]$		$z_{20} = [30,8; 35,3; 160,61]$;0]
	$\mathbf{x}_{10} = [a_{10}; b_{10}; \gamma_{10}; q_{10}]$		$z_{10} = [30,8; 35,3; 81; 0]$	

donde *a*, *b* y γ denotan las probabilidades de detección de los fotones X K_a, X K_b y γ , respectivamente, y *q* es la probabilidad de no detección.

Figura 3: Los productos de las probabilidades de detección a_{nj} , b_{nj} y q_{nj} (con j = i, a título ilustrativo) por las probabilidades de detección a_{ij} , b_{ij} , γ_{ij} y q_{ij} para i > j corresponden distintas energías depositadas en el detector, como K_a (E_{Ka}), K_β (E_{kβ}), E γ_{i0} (E γ_{ij}) y 0, o sumas de estas energías. Nótese que la misma energía depositada en el detector puede ser consecuencia resultante de diferentes rutas de decaimiento con diferentes probabilidades de deposición. En este ejemplo, con transiciones al estado fundamental en dos pasos (resultando doce probabilidades de detección), en cuatro casos rutas distintas corresponden a una misma energía, resultando al cabo sólo nueve energías distintas.

7. EXPRESIONES TEÓRICAS DE TASA DE CONTEO

Una ecuación de tasa de conteo contiene las probabilidades de detección (o no detección) de fotones que resulten una dada energía (Apéndice B). Como estas probabilidades contienen, además de parámetros atómicos y nucleares conocidos (Tablas 1-3), valores inicialmente desconocidos (las eficiencias del detector, total e de pico) las expresiones de tasa de conteo contienen las probabilidades, en general, en forma literal o no explícita (a_{ij} , b_{ij} , γ_{ij} , q_{ij} , por ejemplo).

La resultante de una ruta de decaimiento caracterizase por una lista de probabilidades de detección (o no detección) de los fotones involucrados (con deposición de todas las respectivas energías) y por una correspondiente lista de valores de las energías depositadas en el detector. La energía depositada y la probabilidad de ese evento tienen la misma posición en las listas correspondientes. Todos los resultados posibles a lo largo de la trayectoria deben tenerse en cuenta **multiplicando** sus listas de probabilidades y **sumando** sus listas de energía como ilustrado por medio de una planilla Excel descrita en el apéndice C. Cada energía final resultante e_i, correspondiendo a cierto producto p_i, de probabilidades de detección, corresponde a un posible pico en el espectro, dando lugar a una ecuación de tasa de conteo donde el número de conteos del pico (de energía e_i) será igual al producto de la actividad de la fuente (incógnita) por la suma de las parcelas con los productos, p_i, que representan las probabilidades de deposición de la energía e_i en el detector. El número de pares p_i - e_i es, como ya expuesto, $3 \times 4^{k-1}$, donde k es el número de pasos para la transición del estado fundamental del Ba-133 al del Cs-133.

La sustitución de todos los elementos matriciales que componen las diversas rutas de decaimiento (la primera columna en la Tabla 5) por los vectores-fila (4) y su **multiplicación** mediante la aplicación de un operador M da como resultado 14 nuevas listas de probabilidades. Estas 14 listas pueden entonces reunirse en la lista unificada, lP (21),

$$l\mathbf{P} = \{\mathbf{p}_1, \mathbf{p}_2, ..., \mathbf{p}_{1860}\}$$
(21)

donde p_i (i = 1, 2, ..., 1860) denota la probabilidad total del i-ésimo resultado. Un operador S debe aplicarse en el mismo orden a las listas z_{ij} (5) y las listas obtenidas se agruparán en la lista unificada, *l*E, (22):

$$lE = \{e_1, e_2, ..., e_{1860}\},$$
(22)

donde e_i denota la energía depositada en el detector en el i-ésimo resultado. Estas cantidades tienen la misma posición en las listas correspondientes y la agrupación de elementos en *l*P se puede realizar de acuerdo con las mismas deposiciones de energía. Entretanto la misma energía depositada en el detector puede ser consecuencia resultante de diferentes rutas de decaimiento (**Figura 3**). Si reducimos la lista *l*E agrupando las mismas energías, se obtiene una nueva lista de 168 elementos diferentes, *l*E_r, presentada en la **Tabla 6**.

Las energías en la lista lE_r determinan todas las posibles posiciones de los picos en un espectro a analizar. Las ecuaciones de la tasa de conteo se determinan sumando todos (los productos que forman) los elementos de la lista lP con la misma energía depositada y multiplicando por la actividad de la fuente, R. El número total de ecuaciones de tasa de conteo para el Ba-133 es 168, pero muchos de los 167 picos tienen tasas de conteo insignificantes. La ecuación de la tasa de conteo total y las ecuaciones de la tasa de conteo de pico para los picos más importantes se dan en el Apéndice A.

Energía	Fotones		$K_{\alpha} + \gamma_{21} + \gamma_{10}$		$K_{\alpha} + \gamma_{43} + \gamma_{32}$	401,14	$2K_\alpha+K_\beta+\gamma_{32}+\gamma_{10}$
0		194,36	$4K_{\beta} + \gamma_{43}$	311 7	$K_{\beta} + \gamma_{42}$	404 25	$K_{\alpha}+2K_{\beta}+\gamma_{31}$
30,8	Κα	194,37	$2K_{\alpha} + \gamma_{43} + \gamma_{21}$		$K_{\beta} + \gamma_{43} + \gamma_{32}$	101,20	$K_{\alpha}+2K_{\beta}+\gamma_{32}+\gamma_{21}$
35,3	K _β	195,76	$2K_{\alpha} + \gamma_{43} + \gamma_{10}$	315,64	$3K_{\alpha} + \gamma_{32}$	405,64	$K_{\alpha} + 2K_{\beta} + \gamma_{32} + \gamma_{10}$
53,16	γ_{43}	195,91	$K_{\beta} + \gamma_{20}$	320,14	$\frac{2K_{\alpha} + K_{\beta} + \gamma_{32}}{K_{\alpha} + 2K_{\beta} + \gamma_{32}}$	408,75	$3K_{\beta} + \gamma_{31}$
61,6	<u>2K_α</u>	100.07	$\frac{K_{\beta} + \gamma_{21} + \gamma_{10}}{V_{\beta} + V_{\beta} + V_{\beta}}$	324,64	$\frac{\mathbf{K}_{\alpha} + 2\mathbf{K}_{\beta} + \gamma_{32}}{2\mathbf{K}_{\beta} + \mathbf{v}_{32}}$	410.14	$\frac{3K_{\beta} + \gamma_{32} + \gamma_{21}}{2K_{\beta} + \gamma_{\beta} + \gamma_{\beta}}$
66,1	$K_{\alpha} + K_{\beta}$	200.26	$\frac{\mathbf{K}_{\alpha} + \mathbf{K}_{\beta} + \gamma_{43} + \gamma_{21}}{\mathbf{K}_{\alpha} + \mathbf{K}_{\alpha} + \gamma_{43} + \gamma_{21}}$	329,14	$5K_{\beta} + \gamma_{32}$	410,14	$\frac{5K_{\beta} + \gamma_{32} + \gamma_{10}}{K_{\beta} + \gamma_{10}}$
70,6	<u>2K</u> β	200,20	$\frac{\mathbf{K}_{\alpha} + \mathbf{K}_{\beta} + \gamma_{43} + \gamma_{10}}{4\mathbf{K}_{\alpha} + \gamma_{43}}$	333,65	$K_{\alpha} + \gamma_{31}$ $K_{\alpha} + \gamma_{22} + \gamma_{23}$		$K_{\alpha} + \gamma_{30}$ $K_{\alpha} + \gamma_{21} + \gamma_{10}$
79,61	<u> </u>	202,81	$\frac{4K_{\alpha} + \gamma_{21}}{2K_{\alpha} + \gamma_{42} + \gamma_{21}}$	335.04	$\frac{\mathbf{K}_{\alpha} + \gamma_{32} + \gamma_{21}}{\mathbf{K}_{\alpha} + \gamma_{32} + \gamma_{10}}$	414,65	$\mathbf{K}_{\alpha} + \gamma_{32} + \gamma_{20}$
83.96	$\frac{\gamma_{10}}{K_{+} \gamma_{10}}$	203,37	$\frac{2K_{p} + \gamma_{43} + \gamma_{21}}{4K_{\alpha} + \gamma_{10}}$	<u></u>	$\frac{14\alpha + \gamma_{32} + \gamma_{10}}{2K_{\alpha} + \gamma_{42}}$		$K_{\alpha} + \gamma_{32} + \gamma_{21} + \gamma_{10}$
88.46	$K_{\alpha} + \gamma_{43}$ $K_{\theta} + \gamma_{42}$	204,76	$2K_{\beta} + \gamma_{43} + \gamma_{10}$	338	$2K_{\alpha} + \gamma_{43} + \gamma_{32}$		$2K_{\alpha} + \gamma_{41}$
92.4	3K _a	207,31	$3K_{\alpha} + K_{\beta} + \gamma_{21}$	220 1E	$K_{\beta} + \gamma_{31}$	417 61	$2K_{\alpha} + \gamma_{42} + \gamma_{21}$
96,9	$2K_{\alpha} + K_{\beta}$	208,7	$3K_{\alpha} + K_{\beta} + \gamma_{10}$	556,15	$K_{\beta} + \gamma_{32} + \gamma_{21}$	417,01	$2K_{\alpha} + \gamma_{43} + \gamma_{31}$
101,4	$K_{\alpha} + 2K_{\beta}$	211,81	$2K_{\alpha} + 2K_{\beta} + \gamma_{21}$	339,54	$K_{\beta} + \gamma_{32} + \gamma_{10}$		$2K_\alpha+\gamma_{43}+\gamma_{32}+\gamma_{21}$
105,9	3K _β	213,2	$2K_{\alpha}+2K_{\beta}+\gamma_{10}$	342.5	$K_{\alpha} + K_{\beta} + \gamma_{42}$	/10	$2K_{\alpha}+\gamma_{42}+\gamma_{10}$
110,41	$K_{\alpha} + \gamma_{21}$	213.77	$\gamma_{43} + \gamma_{20}$	246.44	$\frac{K_{\alpha} + K_{\beta} + \gamma_{43} + \gamma_{32}}{4W}$	415	$2K_{\alpha}+\gamma_{43}+\gamma_{32}+\gamma_{10}$
111,8	$K_{\alpha} + \gamma_{10}$		$\gamma_{43} + \gamma_{21} + \gamma_{10}$	346,44	$\frac{4K_{\alpha} + \gamma_{32}}{2K_{\alpha} + \gamma_{32}}$		$K_{\beta} + \gamma_{30}$
114,76	$2K_{\alpha} + \gamma_{43}$	216,31	$\frac{K_{\alpha} + 3K_{\beta} + \gamma_{21}}{K_{\alpha} + 3K_{\beta} + \gamma_{21}}$	347	$2\mathbf{K}_{\beta} + \gamma_{42}$ $2\mathbf{K}_{\alpha} + \gamma_{42} + \gamma_{42}$	419,15	$K_{\beta} + \gamma_{31} + \gamma_{10}$
114,91	$K_{\beta} + \gamma_{21}$	217,7	$\frac{K_{\alpha} + 3K_{\beta} + \gamma_{10}}{4K_{\beta} + \gamma_{10}}$	350.94	$\frac{2\mathbf{K}_{\beta} + \gamma_{43} + \gamma_{32}}{3\mathbf{K}_{\mu} + \mathbf{K}_{\theta} + \gamma_{32}}$		$\mathbf{K}_{\beta} + \gamma_{32} + \gamma_{20}$ $\mathbf{K}_{\alpha} + \gamma_{\alpha \alpha} + \gamma_{\alpha \alpha} + \gamma_{\alpha \alpha}$
116,3	$K_{\beta} + \gamma_{10}$	220,81	$\frac{4\mathbf{K}_{\beta} + \gamma_{21}}{4\mathbf{K}_{z} + \gamma_{z1}}$	355.44	$\frac{3K_{\alpha}+K_{\beta}+\gamma_{32}}{2K_{\alpha}+2K_{\beta}+\gamma_{32}}$		$K_{\beta} + \gamma_{32} + \gamma_{21} + \gamma_{10}$ $K_{zz} + K_{0} + \gamma_{41}$
119,26	$K_{\alpha} + K_{\beta} + \gamma_{43}$	222,2	$\frac{4K_{\beta} + \gamma_{10}}{2K_{z} + \gamma_{20}}$	/	<u>γ</u> ₄₁		$K_{\alpha} + K_{\beta} + \gamma_{42} + \gamma_{21}$ $K_{\alpha} + K_{\beta} + \gamma_{42} + \gamma_{21}$
123,2	$\frac{4K_{\alpha}}{2K}$	222,21	$2K_{\alpha} + \gamma_{21} + \gamma_{10}$ $2K_{\alpha} + \gamma_{21} + \gamma_{10}$	356,01	$\gamma_{42} + \gamma_{21}$	422,11	$K_{\alpha} + K_{\beta} + \gamma_{43} + \gamma_{31}$
123,70	$\frac{2\mathbf{K}_{\beta} + \gamma_{43}}{3\mathbf{K}_{\beta} + \mathbf{K}_{\alpha}}$	223,24	γ ₃₂		$\gamma_{43} + \gamma_{32} + \gamma_{21}$		$K_{\alpha}+K_{\beta}+\gamma_{43}+\gamma_{32}+\gamma_{21}$
132.2	$3K_{\alpha} + K_{\beta}$ $2K_{\alpha} + 2K_{\beta}$	225,17	$3K_{\alpha} + \gamma_{43} + \gamma_{21}$	357.4	$\gamma_{42} + \gamma_{10}$	423 5	$K_\alpha + K_\beta + \gamma_{42} + \gamma_{10}$
132.77	$\gamma_{42} + \gamma_{21}$	226,56	$3K_{\alpha} + \gamma_{43} + \gamma_{10}$		$\gamma_{43} + \gamma_{32} + \gamma_{10}$	423,5	$K_{\alpha}+K_{\beta}+\gamma_{43}+\gamma_{32}+\gamma_{10}$
134,16	$\gamma_{43} + \gamma_{10}$	226 71	$K_{\alpha} + K_{\beta} + \gamma_{20}$	359,94	$\frac{K_{\alpha} + 3K_{\beta} + \gamma_{32}}{4K}$		$2K_{\beta} + \gamma_{41}$
136,7	$K_{\alpha} + 3K_{\beta}$	220,71	$K_{\alpha}+K_{\beta}+\gamma_{21}+\gamma_{10}$	364,44	$\frac{4K_{\beta} + \gamma_{32}}{2K_{\beta} + \gamma_{32}}$	426,61	$2\mathbf{K}_{\beta} + \gamma_{42} + \gamma_{21}$
141,2	$4K_{\beta}$	229,67	$2K_{\alpha} + K_{\beta} + \gamma_{43} + \gamma_{21}$	364,45	$2\mathbf{K}_{\alpha} + \gamma_{31}$ $2\mathbf{K}_{\alpha} + \gamma_{\alpha} + \gamma_{\alpha}$		$2\mathbf{K}_{\beta} + \gamma_{43} + \gamma_{31}$ $2\mathbf{K}_{\alpha} + \gamma_{\alpha} + \gamma_{\alpha} + \gamma_{\alpha}$
141,21	$K_{\alpha} + \gamma_{21}$	231,06	$2K_{\alpha} + K_{\beta} + \gamma_{43} + \gamma_{10}$	365 84	$\frac{2\mathbf{K}_{\alpha} + \gamma_{32} + \gamma_{21}}{2\mathbf{K}_{\alpha} + \gamma_{32} + \gamma_{10}}$		$\frac{2K_{\beta} + \frac{1}{143} + \frac{1}{132} + \frac{1}{121}}{2K_{\beta} + \frac{1}{143} + \frac{1}{132} + \frac{1}{121}}$
142,6	$2K_{\alpha} + \gamma_{10}$	231,21	$2K_{\beta} + \gamma_{20}$	505,01	$3K_{\alpha} + \gamma_{42}$	428	$2K_{B} + \gamma_{43} + \gamma_{32} + \gamma_{10}$
145,56	$3K_{\alpha} + \gamma_{43}$	234 17	$\frac{2\mathbf{K}_{\beta} + \gamma_{21} + \gamma_{10}}{\mathbf{K}_{\alpha} + 2\mathbf{K}_{\beta} + \gamma_{42} + \gamma_{21}}$	368,8	$3K_{\alpha} + \gamma_{43} + \gamma_{32}$		$\gamma_{41} + \gamma_{10}$
145,71	$K_{\alpha} + K_{\beta} + \gamma_{21}$	234,17	$\frac{\mathbf{K}_{\alpha} + 2\mathbf{K}_{\beta} + \gamma_{43} + \gamma_{21}}{\mathbf{K}_{\alpha} + 2\mathbf{K}_{\beta} + \gamma_{42} + \gamma_{42}}$	269.05	$K_{\alpha} + K_{\beta} + \gamma_{31}$		$\gamma_{42} + \gamma_{20}$
147,1	$\frac{K_{\alpha} + K_{\beta} + \gamma_{10}}{2K_{\alpha} + K_{\beta} + \gamma_{10}}$	238.67	$3K_{B} + \gamma_{43} + \gamma_{21}$	308,95	$K_{\alpha}+K_{\beta}+\gamma_{32}+\gamma_{21}$		$\gamma_{43} + \gamma_{30}$
150,00	$\frac{2K_{\alpha} + K_{\beta} + \gamma_{43}}{2K_{\alpha} + \gamma_{43}}$	240,06	$3K_{\beta} + \gamma_{43} + \gamma_{10}$	370,34	$K_{\alpha}+K_{\beta}+\gamma_{32}+\gamma_{10}$	437,01	$\gamma_{42} + \gamma_{21} + \gamma_{10}$
150,21	$\frac{2\mathbf{K}_{\beta} + \gamma_{21}}{2\mathbf{K}_{\alpha} + \gamma_{\alpha}}$	244 57	$K_{\alpha} + \gamma_{43} + \gamma_{20}$	373,3	$2K_{\alpha} + K_{\beta} + \gamma_{42}$		$\gamma_{43} + \gamma_{31} + \gamma_{10}$
151,0	$\frac{2\mathbf{K}_{\beta}+\gamma_{10}}{5\mathbf{K}_{\alpha}}$	244,57	$K_{\alpha}+\gamma_{43}+\gamma_{21}+\gamma_{10}$		$\frac{2K_{\alpha} + K_{\beta} + \gamma_{43} + \gamma_{32}}{2K_{\alpha} + \omega}$		$\gamma_{43} + \gamma_{32} + \gamma_{20}$ $\gamma_{42} + \gamma_{22} + \gamma_{21} + \gamma_{10}$
154,56	$K_{\alpha} + 2K_{\beta} + \gamma_{43}$	249.07	$K_\beta+\gamma_{43}+\gamma_{20}$	373,45	$2\mathbf{K}_{\beta} + \gamma_{31}$ $2\mathbf{K}_{\beta} + \gamma_{\beta} + \gamma_{\beta}$		$\frac{143 + 132 + 121 + 110}{2K_{\alpha} + \gamma_{30}}$
158,5	$4K_{\alpha} + K_{\beta}$	= .5,67	$K_{\beta} + \gamma_{43} + \gamma_{21} + \gamma_{10}$	374 84	$\frac{2\mathbf{K}_{\beta} + \gamma_{32} + \gamma_{21}}{2\mathbf{K}_{\alpha} + \gamma_{\alpha2} + \gamma_{\alpha2}}$		$2K_{\alpha} + \gamma_{31} + \gamma_{10}$
159,06	$3K_{\beta} + \gamma_{43}$	253,01	$3K_{\alpha} + \gamma_{20}$	<u></u>	$K_{\alpha} + 2K_{\beta} + \gamma_{42}$	445,45	$2K_{\alpha} + \gamma_{32} + \gamma_{20}$
160 61	γ_{20}	254.04	$5K_{\alpha} + \gamma_{21} + \gamma_{10}$	377,8	$K_{\alpha} + 2K_{\beta} + \gamma_{43} + \gamma_{32}$		$2K_{\alpha}+\gamma_{32}+\gamma_{21}+\gamma_{10}$
100,01	$\gamma_{21} + \gamma_{10}$	254,04	$\frac{K_{\alpha} + \gamma_{32}}{2K_{\alpha} + K_{\alpha} + \gamma_{32}}$	202.2	$3K_{\beta} + \gamma_{42}$		$K_{\alpha} + K_{\beta} + \gamma_{30}$
163	$3K_{\alpha} + 2K_{\beta}$	257,51	$2K_{\alpha} + K_{\beta} + \gamma_{20}$ $2K_{\alpha} + K_{\beta} + \gamma_{21} + \gamma_{10}$	382,3	$3K_\beta + \gamma_{43} + \gamma_{32}$	449,95	$K_{\alpha} + K_{\beta} + \gamma_{31} + \gamma_{10}$
163,57	$\frac{K_{\alpha} + \gamma_{43} + \gamma_{21}}{K}$	258,54	$K_{\beta} + \gamma_{32}$		γ ₃₀		$\mathbf{K}_{\alpha} + \mathbf{K}_{\beta} + \gamma_{32} + \gamma_{20}$ $\mathbf{K}_{\alpha} + \mathbf{K}_{\alpha} + \gamma_{\alpha} + \gamma_{\alpha} + \gamma_{\alpha}$
164,96	$\frac{K_{\alpha} + \gamma_{43} + \gamma_{10}}{2K + 2K}$	262.01	$K_{\alpha} + 2K_{\beta} + \gamma_{20}$	383,85	$\gamma_{31} + \gamma_{10}$		$\frac{1}{2}K_{\alpha} + \frac{1}{1}K_{\beta} + \frac{1}{1}K_{\beta} + \frac{1}{1}K_{\alpha} + \frac{1}{1}K_{\alpha}$
168.07	$K_{\alpha} + 3K_{\beta}$	202,01	$K_{\alpha}+2K_{\beta}+\gamma_{21}+\gamma_{10}$		$\gamma_{32} + \gamma_{20}$		$2K_{\beta} + \gamma_{31} + \gamma_{10}$
169.46	$\frac{K_{\beta} + \gamma_{43} + \gamma_{21}}{K_{\alpha} + \gamma_{4\alpha} + \gamma_{1\alpha}}$	266.51	$3K_{\beta} + \gamma_{20}$		$\frac{\gamma_{32} + \gamma_{21} + \gamma_{10}}{K + \gamma_{10}}$	454,45	$2K_{\beta} + \gamma_{32} + \gamma_{20}$
172	$K_{\alpha} + 4K_{\beta}$		$3K_{\beta} + \gamma_{21} + \gamma_{10}$		$K_{\alpha} + \gamma_{42} + \gamma_{21}$		$2K_\beta+\gamma_{32}+\gamma_{21}+\gamma_{10}$
172,01	$\frac{11\alpha + 112\beta}{3K_{\alpha} + \gamma_{21}}$	275,37	$2\mathbf{K}_{\alpha} + \gamma_{43} + \gamma_{20}$	386,81	$K_{\alpha} + \gamma_{43} + \gamma_{31}$		$K_{\alpha}+\gamma_{41}+\gamma_{10}$
173,4	$3K_{\alpha} + \gamma_{10}$		$2\mathbf{K}_{\alpha} + \gamma_{43} + \gamma_{21} + \gamma_{10}$		$K_{\alpha} + \gamma_{43} + \gamma_{32} + \gamma_{21}$		$K_{\alpha} + \gamma_{42} + \gamma_{20}$
176,36	$4K_{\alpha} + \gamma_{43}$	276,4	γ_{42} $\gamma_{42} + \gamma_{22}$	388.2	$K_{\alpha}+\gamma_{42}+\gamma_{10}$	167 01	$\mathbf{K}_{\alpha} + \gamma_{43} + \gamma_{30}$
176,5	5K _β		$K_{\alpha} + K_{\beta} + \gamma_{43} + \gamma_{20}$		$K_{\alpha} + \gamma_{43} + \gamma_{32} + \gamma_{10}$	407,01	$\mathbf{K}_{\alpha} + \gamma_{42} + \gamma_{21} + \gamma_{10}$ $\mathbf{K}_{\alpha} + \gamma_{42} + \gamma_{21} + \gamma_{10}$
176,51	$2K_{\alpha} + K_{\beta} + \gamma_{21}$	279,87	$K_{\alpha} + K_{\beta} + \gamma_{43} + \gamma_{21} + \gamma_{10}$		$K_{\beta} + \gamma_{41}$		$K_{\alpha} + \gamma_{43} + \gamma_{31} + \gamma_{10}$ $K_{\alpha} + \gamma_{43} + \gamma_{32} + \gamma_{20}$
177,9	$2K_{\alpha} + K_{\beta} + \gamma_{10}$	701 27	$2K_{\beta} + \gamma_{43} + \gamma_{20}$	391,31	$K_{\beta} + \gamma_{42} + \gamma_{21}$		$K_{\alpha} + \gamma_{43} + \gamma_{32} + \gamma_{21} + \gamma_{10}$
180,86	$3K_{\alpha} + K_{\beta} + \gamma_{43}$	204,37	$2K_\beta+\gamma_{43}+\gamma_{21}+\gamma_{10}$		$\mathbf{K}_{\beta} + \gamma_{43} + \gamma_{31}$ $\mathbf{K}_{\beta} + \gamma_{42} + \gamma_{22} + \gamma_{43}$		$K_\beta + \gamma_{41} + \gamma_{10}$
181,01	$\frac{K_{\alpha} + 2K_{\beta} + \gamma_{21}}{K_{\alpha} + 2K_{\beta} + \gamma_{21}}$	284,84	$2K_{\alpha} + \gamma_{32}$		$\frac{1}{K_{R}} + \frac{1}{1}$		$K_\beta+\gamma_{42}+\gamma_{20}$
182,4	$\frac{K_{\alpha} + 2K_{\beta} + \gamma_{10}}{2K_{\beta} + 2K_{\beta}}$	289,34	$K_{\alpha} + K_{\beta} + \gamma_{32}$	392,7	$K_{B} + \gamma_{43} + \gamma_{32}$		$K_{\beta}+\gamma_{43}+\gamma_{30}$
185 51	$\frac{\angle \mathbf{n}_{\alpha} + \angle \mathbf{n}_{\beta} + \gamma_{43}}{3\mathbf{k}_{-} + \mathbf{v}}$	293,84	$2K_{\beta} + \gamma_{32}$	205.25	$3K_{\alpha} + \gamma_{31}$	472,31	$\mathbf{K}_{\beta} + \gamma_{42} + \gamma_{21} + \gamma_{10}$
186.9	$\frac{3K_{\beta} + \gamma_{21}}{3K_{\alpha} + \gamma_{\alpha}}$	302,85	Y31	393,25	$3K_{\alpha} + \gamma_{32} + \gamma_{21}$		$\mathbf{K}_{\beta} + \gamma_{43} + \gamma_{31} + \gamma_{10}$ $\mathbf{K}_{\alpha} + \gamma_{\alpha \beta} + \gamma_{\alpha \beta} + \gamma_{\alpha \beta}$
189.86	$\frac{31x_{\beta} + \gamma_{10}}{K_{\alpha} + 3K_{\beta} + \gamma_{10}}$	304.24	$\gamma_{32} + \gamma_{21}$	396,64	$3K_{\alpha} + \gamma_{32} + \gamma_{10}$		$K_{\beta} + \gamma_{43} + \gamma_{32} + \gamma_{20}$ $K_{\rho} + \gamma_{42} + \gamma_{22} + \gamma_{21} + \gamma_{22}$
191,41	$K_{\alpha} + \gamma_{20}$	304,24	$\frac{\gamma_{32} + \gamma_{10}}{K + \gamma_{10}}$	399.75	$2K_{\alpha}+K_{\beta}+\overline{\gamma_{31}}$		
,	••α • 120	307,2	$\mathbf{n}_{\alpha} + \gamma_{42}$,,,,,	$2K_{\alpha}+K_{\beta}+\gamma_{32}+\gamma_{21}$		

Tabla 6: La probabilidad de detección (o no detección) de los fotones indicados determina una lista de 168 energías resultantes

Las incógnitas en estas ecuaciones son las eficiencias total y de pico para las energías dadas en las Tablas 2 y 3, y la actividad de la fuente medida. Aunque esta cuestión esté fuera del alcance del presente artículo, un sistema de ecuaciones de tasa de conteo utilizado para la determinación de las incógnitas podría ser (23):

$N_t = n_t$	N(79,61) + N(81) = n(81)	N(302,85) = n(302,85)	
N(30,8) = n(30,8)	N(160,61) = n(160,61)	N(356,01) + N(357,4) = n(356,4)	(22)
N(35,3) = n(35,3)	N(223,24) = n(223,24)	N(383,85) = n(383,85)	(23)
N(53,16) = n(53,16)	N(276,4) = n(276,4)	N(437,01) = n(437,01)	

donde la letra n denota valores experimentales de la tasa de conteo y N la ecuación teórica (Apéndice A).

8. RECAPITULACIÓN DEL MÉTODO DMM Y CONCLUSIÓN

El procedimiento para derivar las expresiones para tasas de conteo de picos teóricos consiste de los siguientes pasos: 1- formar la matriz simbólica X, aplicándola para la identificación de todos los caminos de desintegración, 2- formar la matriz de probabilidad Y, usando datos conocidos del esquema de desintegración, 3- reemplazar el elemento matriz x_{ij} por un vectorfila que contiene 4 (o 3) elementos (probabilidades de detectar fotones K_{α} , K_{β} y γ , y de no detectar fotones), 4- formar el vector-fila z_{ij} que contiene las energías correspondientes depositadas en el detector, 5- proceder la multiplicación directa de matrices x_{ij} a lo largo de todas las rutas de decaimiento, 6- proceder la suma directa de matrices z_{ij} a lo largo de todas las rutas de decaimiento, 7- agrupar y sumar las probabilidades de detección para la misma energía (formando las ecuaciones de tasa de conteo de pico teóricas).

El método descrito fue desarrollado para radionucleidos EC (captura electrónica), seguido por dos fotones X que pueden ser detectados por un espectrómetro de germanio. Es fácil adaptar este método para los radionucleidos EC que emiten tres (o más) fotones X. En ese caso, las listas x_{ij} (expresiones 15 y 17) y también z_{ij} (expresiones 16 y 18) se amplían para uno o más términos.

La hoja de cálculo Excel representando el árbol de consecuencias resultantes en el detector puede obtenerse en formato electrónico del autor en <u>alfredo@ird.gov.br</u>. Una orientación para su construcción es dada en el apéndice C. Alternativamente se puede usar un programa en FORTRAN que también puede obtenerse del autor.

9. REFERENCIAS

1. Ferreira Filho, A. L., da Silva, R., da Cruz, P. A. L., da Silva, C. J., Poledna, R., Araújo, M. T. F., Arcanjo, C. F., Delgado, J.U., Lopes, R.T. "Application of the sum-peak method to activity standardizations of 152Eu sources in LNMRI (BR)" *Applied Radiation and Isotopes*, In Press, Corrected Proof (2017). Doi:10.1016/j.apradiso.2017.09.041

2. Novković, D., Kandić, A., Durašević, M., Vukanac, I., Milošević, Z., Nadderd, L., "Coincidence summing of X- and γ-rays in γ-ray spectrometry", *Nuclear Instruments and Methods in Physics Research*, Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 578, 207–217 (2007). doi:10.1016/j.nima.2007.05.199

3. Novković, D., Kandić, A., Durašević, M., Vukanac, I., Milošević, Z., Nadderd, L., "The direct measurement of 133Ba activity by the sum-peak method", *Nuclear Instruments* & *Methods in Physics Research*, **A 608**, 116-120 (2009).

4. Novković, D., Kandić, A., Vukanac, I., Durašević, M., Milošević, Z., "The direct measurement of 57Co activity by the sum-peak method", *Applied Radiation and Isotopes*, **70**, 2154–2156, (2012) doi:10.1016/j.apradiso.2012.02.088

5. Novković, D., Durašević, M., Kandić, A., Vukanac, I., Šešlak, B., Milošević, Z., "Coincidence summing corrections for point and volume 152Eu sources", *Applied Radiation and Isotopes*, **107**, 138–144 (2016). doi:10.1016/j.apradiso.2015.10.015

6. Chechev V. P., Kuzmenko N. K., "Table of Radionuclides", *DDEP/LNHB 133Ba Recommended Data* (Khlopin Radium Institute / KRI), http://www.nucleide.org/DDEP_WG/Nuclides/Ba-133_tables.pdf (2015).

7. Nadderd, L. J., Jordanov, D. J., Davidović, M. D.,. "A new matrix method for calculating coincidence summing effects for gamma spectroscopy". *Nuclear Instruments and Methods in Physics Research*, **662**, 1, 21–25 (2012). doi:10.1016/j.nima.2011.10.002

8. Semkov T. M., Mehmood G., Parekh P. P. y Virgil M., "Coincidence summing in gamma-ray spectroscopy", *Nuclear Instruments and Methods*, **A 290**, p. 437 (1990).

9. Korun M. y Martinčić R., Nuclear Instruments and Methods, A 325, p. 478 (1993).

10. Nadderd, L. J., Davidović, M. D., Davidović D. M. Jordanov, D. J., Milošević M. J. Jordanov D. J. Stankovića S. J., Prvanovićc S. L. "A possible improvement of the determination of 133Ba activity and detection efficiency by the sum-peak method, by inclusion of the previously neglected transitions", *Nuclear Instruments and Methods in Physics Research* **698**, 60-65 (2013), https://doi.org/10.1016/j.nima.2012.09.044

APÉNDICE A ECUACIONES DE TASA DE CONTEO

La ecuación para la tasa de conteo **total** se obtuvo de la siguiente manera. Si Q denota la probabilidad de no detección de cualquier fotón en todas las 14 rutas de desintegración, entonces P = 1 - Q denota la probabilidad de detección de cualquier fotón en cualquier parte del espectro. Por lo tanto, la ecuación de tasa de conteo total es,

 $N_t = R (1 - Q),$

donde R es la actividad de la fuente. Las posiciones de los 14 elementos de la lista *lP* que denotan la probabilidad de no detección para las rutas de desintegración son las mismas que la posición de 0 en la lista *lE*. Por lo tanto, podemos reconocerlos y recopilarlos (A.1).

 $N_{t} = R \left(1 - q_{53}q_{30} - q_{52}q_{20} - q_{51}q_{10} - q_{52}q_{21}q_{10} - q_{53}q_{31}q_{10} - q_{53}q_{32}q_{20} - q_{53}q_{32}q_{21}q_{10} - q_{54}q_{41}q_{10} - q_{54}q_{42}q_{20} - q_{54}q_{42}q_{21}q_{10} - q_{54}q_{43}q_{30} - q_{54}q_{43}q_{31}q_{10} - q_{54}q_{43}q_{32}q_{20} - q_{54}q_{43}q_{32}q_{21}q_{10}\right)$ (A.1)

Las ecuaciones de tasa de conteo para los picos de las energías (keV): 30,8; 35,3; 53,16; 79,61; 81; 160,61; 223,24; 276,4; 302,85; 356,01; 383,85; 437,01 son (A.2)

$$\begin{split} \mathsf{N}(30,8) &= \mathsf{R}(a_{53}q_{30} + a_{53}q_{31}q_{10} + a_{53}q_{32}q_{20} + a_{53}q_{32}q_{21}q_{10} + a_{54}q_{41}q_{10} + a_{54}q_{42}q_{20} + a_{54}q_{42}q_{21}q_{10} + a_{54}q_{43}q_{30} + a_{54}q_{43}q_{31}q_{10} + a_{54}q_{43}q_{32}q_{20} + a_{54}q_{43}q_{32}q_{21}q_{10} + q_{53}a_{30} + q_{53}a_{31}q_{10} + q_{53}a_{32}q_{20} + q_{53}a_{32}q_{21}q_{10} + q_{53}q_{31}a_{10} + q_{53}q_{32}a_{20} + a_{54}q_{43}q_{32}q_{21}q_{10} + q_{54}q_{43}q_{32}q_{21}q_{10} + q_{54}q_{43}q_{30} + q_{54}a_{43}q_{30} + q_{54}a_{43}q_{31}q_{10} + q_{54}a_{43}q_{32}q_{20} + a_{54}q_{43}q_{32}q_{21}q_{10} + q_{54}q_{43}q_{32}q_{20} + q_{54}a_{43}q_{32}q_{21}q_{10} + q_{54}q_{43}q_{30} + q_{54}a_{43}q_{31}q_{10} + q_{54}q_{43}q_{32}q_{20} + q_{54}a_{43}q_{32}q_{21}q_{10} + q_{54}q_{43}a_{30} + q_{54}q_{43}a_{31}q_{10} + q_{54}q_{43}a_{32}q_{20} + q_{54}q_{43}a_{32}q_{21}q_{10} + q_{54}q_{43}a_{31}q_{10} + q_{54}q_{43}a_{32}q_{20} + q_{54}q_{43}a_{32}q_{21}q_{10} + q_{54}q_{43}a_{32}q_{21}a_{10} + q_{54}q_{43}a_{31}q_{10} + q_{54}q_{43}a_{32}q_{20} + q_{54}q_{43}a_{32}q_{21}q_{10} + q_{54}q_{43}a_{32}q_{21}a_{10} + q_{54}q_{43}a_{32}q_{20} + q_{52}a_{21}q_{10} + q_{54}q_{43}q_{32}a_{20} + q_{54}q_{43}q$$

$$\begin{split} \mathsf{N}(35,3) &= \mathsf{R}(b_{53}q_{30} + b_{53}q_{10}q_{31} + b_{53}q_{20}q_{32} + b_{53}q_{10}q_{21}q_{32} + b_{54}q_{10}q_{41} + b_{54}q_{20}q_{42} + b_{54}q_{10}q_{21}q_{42} + b_{64}q_{30}q_{43} + b_{54}q_{10}q_{31}q_{43} + b_{54}q_{20}q_{32}q_{43} + b_{54}q_{10}q_{21}q_{32}q_{43} + b_{30}q_{53} + b_{31}q_{10}q_{53} + b_{32}q_{20}q_{53} + b_{32}q_{10}q_{21}q_{53} + b_{10}q_{31}q_{53} + b_{20}q_{32}q_{53} + b_{21}q_{10}q_{22}q_{53} + b_{10}q_{21}q_{32}q_{53} + b_{41}q_{10}q_{54} + b_{42}q_{20}q_{54} + b_{42}q_{10}q_{21}q_{54} + b_{43}q_{30}q_{54} + b_{43}q_{10}q_{31}q_{54} + b_{32}q_{20}q_{32}q_{54} + b_{43}q_{10}q_{21}q_{32}q_{54} + b_{10}q_{41}q_{54} + b_{20}q_{42}q_{54} + b_{21}q_{10}q_{42}q_{54} + b_{30}q_{43}q_{54} + b_{31}q_{10}q_{43}q_{54} + b_{32}q_{20}q_{43}q_{54} + b_{32}q_{10}q_{21}q_{42}q_{54} + b_{30}q_{43}q_{54} + b_{31}q_{10}q_{43}q_{54} + b_{51}q_{10} + b_{10}q_{51} + b_{52}q_{20} + b_{20}q_{52} + b_{52}q_{10}q_{21} + b_{21}q_{10}q_{52} + b_{10}q_{21}q_{32}q_{43}q_{54} + b_{10}q_{21}q_{32}q_{43}q_{54} + b_{51}q_{10} + b_{10}q_{51} + b_{52}q_{20} + b_{20}q_{52} + b_{52}q_{10}q_{21} + b_{21}q_{10}q_{52} + b_{10}q_{21}q_{52} + b_{52}q_{10}q_{21} + b_{21}q_{10}q_{52} + b_{10}q_{21}q_{52} + b_{52}q_{10}q_{21} + b_{21}q_{10}q_{52} + b_{10}q_{21}q_{52} + b_{10}q_{21}q_{52} + b_{52}q_{10}q_{52} + b_{52}q_{10}q_{21} + b_{21}q_{10}q_{52} + b_{10}q_{21}q_{52} + b_{10}q_{21}q_{52} + b_{10}q_{21}q_{52} + b_{10}q_{21}q_{52} + b_{52}q_{10}q_{21} + b_{21}q_{10}q_{52} + b_{10}q_{21}q_{52} + b_{10}q$$

 $N(53,16) = R(q_{30}q_{54}\gamma_{43} + q_{10}q_{31}q_{54}\gamma_{43} + q_{20}q_{32}q_{54}\gamma_{43} + q_{10}q_{21}q_{32}q_{54}\gamma_{43})$

 $N(79,61) = R(q_{10}q_{32}q_{53}\gamma_{21} + q_{10}q_{42}q_{54}\gamma_{21} + q_{10}q_{32}q_{43}q_{54}\gamma_{21} + q_{10}q_{52}\gamma_{21})$

 $N(81) = R(q_{31}q_{53}\gamma_{10} + q_{21}q_{32}q_{53}\gamma_{10} + q_{41}q_{54}\gamma_{10} + q_{21}q_{42}q_{54}\gamma_{10} + q_{31}q_{43}q_{54}\gamma_{10} + q_{21}q_{32}q_{43}q_{54}\gamma_{10} + q_{51}\gamma_{10} + q_{21}q_{52}\gamma_{10})$

 $N(160,61) = R(q_{32}q_{53}\gamma_{20} + q_{42}q_{54}\gamma_{20} + q_{32}q_{43}q_{54}\gamma_{20} + q_{32}q_{53}\gamma_{10}\gamma_{21} + q_{42}q_{54}\gamma_{10}\gamma_{21} + q_{32}q_{43}q_{54}\gamma_{10}\gamma_{21} + q_{52}\gamma_{20} + q_{52}\gamma_{10}\gamma_{21})$

 $\mathbf{N}(223,24) = \mathbf{R}(q_{20}q_{53}\gamma_{32} + q_{10}q_{21}q_{53}\gamma_{32} + q_{20}q_{43}q_{54}\gamma_{32} + q_{10}q_{21}q_{43}q_{54}\gamma_{32})$

 $N(276,4) = R(q_{20}q_{54}\gamma_{42} + q_{10}q_{21}q_{54}\gamma_{42} + q_{20}q_{54}\gamma_{32}\gamma_{43} + q_{10}q_{21}q_{54}\gamma_{32}\gamma_{43})$

 $N(302,85) = R(q_{10}q_{53}\gamma_{31} + q_{10}q_{43}q_{54}\gamma_{31} + q_{10}q_{53}\gamma_{21}\gamma_{32} + q_{10}q_{43}q_{54}\gamma_{21}\gamma_{32})$

 $N(356,01) = R(q_{10}q_{54}\gamma_{41} + q_{10}q_{54}\gamma_{21}\gamma_{42} + q_{10}q_{54}\gamma_{31}\gamma_{43} + q_{10}q_{54}\gamma_{21}\gamma_{32}\gamma_{43})$

 $N(383,85) = R(q_{53}\gamma_{30} + q_{43}q_{54}\gamma_{30} + q_{53}\gamma_{10}\gamma_{31} + q_{43}q_{54}\gamma_{10}\gamma_{31} + q_{53}\gamma_{20}\gamma_{32} + q_{43}q_{54}\gamma_{20}\gamma_{32} + q_{53}\gamma_{10}\gamma_{21}\gamma_{32} + q_{43}q_{54}\gamma_{10}\gamma_{21}\gamma_{32})$

 $N(437,01) = R(q_{54}\gamma_{10}\gamma_{41} + q_{54}\gamma_{20}\gamma_{42} + q_{54}\gamma_{10}\gamma_{21}\gamma_{42} + q_{54}\gamma_{30}\gamma_{43} + q_{54}\gamma_{10}\gamma_{31}\gamma_{43} + q_{54}\gamma_{20}\gamma_{32}\gamma_{43} + q_{54}\gamma_{10}\gamma_{21}\gamma_{32}\gamma_{43})$

(A.2)

APÉNDICE B LAS PROBABILIDADES DE DETECCIÓN

Además de la desconocida actividad de la fuente, las ecuaciones de tasa de conteo (Apéndice A) contienen las probabilidades de detección (o no detección) de los fotones de dadas energías, probabilidades que se pueden definir mediante parámetros atómicos y nucleares conocidos (Tabla 1-3) y por las eficiencias total e de pico que, como la actividad, son las incógnitas de las ecuaciones, que pueden ser determinadas a partir del espectro a analizar.

B.1. Captura de electrones

Ba-133 se desintegra por captura de electrones y transita al nivel *i*-ésimo del Cs-133. Las probabilidades de detectar fotones K_{α} y K_{β} emitidos en las capturas de electrones de la capa K del átomo padre en las transiciones al nivel *i* del núcleo hija excitado son, respectivamente, (B.1) y (B.2):

$$a_{nj} (\mathbf{E}_{\mathrm{K}\alpha}) = \mathbf{y}_{nj} \,\varepsilon(\mathbf{E}_{\mathrm{K}\alpha}) \,\mathbf{P}_{\mathrm{K}j} \,\mathbf{w}_{\mathrm{K}} \,\mathbf{g}_{1} \qquad (\mathbf{B}.1) \qquad b_{nj} (\mathbf{E}_{\mathrm{K}\beta}) = \mathbf{y}_{nj} \,\varepsilon(\mathbf{E}_{\mathrm{K}\beta}) \,\mathbf{P}_{\mathrm{K}j} \,\mathbf{w}_{\mathrm{K}} \,\mathbf{g}_{2} \qquad (\mathbf{B}.2)$$

donde

- P_{K_j} es la probabilidad de capturar los electrones de la capa K con transición al nivel j,
- $\omega_{\rm K}$ es el rendimiento fluorescente para la capa K,
- $\epsilon(E)$ es la máxima eficiencia de energía E,
- y_{nj} es la probabilidad de captura de electrones, y
- $g_1 y g_2$ son, respectivamente, las fracciones de $K_{\alpha} y K_{\beta} (g1 + g2 = 1)$,

La probabilidad de no detección es (B.3):

$$q_{nj} = y_{nj} \left[1 - \varepsilon_t(E_{K\alpha}) P_{Kj} \omega_K g_1 - \varepsilon_t(E_{K\beta}) P_{Kj} \omega_K g_2 \right], \tag{B.3}$$

donde ε_t (E) es la eficiencia total para la energía E.

B.2. Conversión interna

Las probabilidades de detectar fotones K_{α} y K_{β} creados en la conversión interna en la transición $i \rightarrow j$ son, respectivamente, (B.4) y (B.5):

$$a_{ij} = y_{ij} \varepsilon(\mathbf{E}_{\mathbf{K}\alpha}) \alpha_{\mathbf{K}ij} / (1 + \alpha_{ij}) \omega_{\mathbf{K}} g_1 \qquad (\mathbf{B.4}) \qquad b_{ij} = y_{ij} \varepsilon(\mathbf{E}_{\mathbf{K}\beta}) \alpha_{\mathbf{K}ij} / (1 + \alpha_{ij}) \omega_{\mathbf{K}} g_2 \qquad (\mathbf{B.5})$$

donde

- α_{Kij} y α_{ij} son los coeficientes de conversión interna de la capa K y total, respectivamente,
- y_{ij} es la probabilidad normalizada para la transición $i \rightarrow j$.

La probabilidad de detectar fotones gamma emitidos en la transición $i \rightarrow j$ es (B.6):

$$\gamma_{ij} = \mathbf{y}_{ij} \, \varepsilon(\mathbf{E}_{ij}) \,/ \, (1 + \alpha_{ij}) \tag{B.6}$$

y la probabilidad de no detección en la misma transición $i \rightarrow j$ es (B.7)

$$q_{ij} = y_{ij} \left[1 - \varepsilon_t(E_{K\alpha}) \alpha_{Kij} / (1 + \alpha_{ij}) \omega_K g_1 - \varepsilon_t(E_{K\beta}) \alpha_{Kij} / (1 + \alpha_{ij}) \omega_K g_2 - \varepsilon_t(E_{ij}) / (1 + \alpha_{ij}) \right]$$
(B.7)

APÉNDICE C HOJA DE CÁLCULO EXCEL

Orientación para la construcción de la hoja de cálculo Excel, representando el árbol de consecuencias resultantes en el detector.

En las 4 primeras filas de la hoja de cálculo (1 a 4), dividese 768 columnas (A - ACN) en 3 partes (3 x 256), nombrando todas las celdas de cada parte respectivamente con las letras "*a*", "*b*", y "*q*" (formato de texto), representando K_{α} , K_{β} y la no detección, *q*. Utilizar para las letras los subíndices 54, 53, 52 y 51 respectivamente en cada fila, representando las transiciones por captura electrónica desde el Ba-133 (nivel 5) a los 4 niveles excitados del núcleo hija, el Cs-133.

En las cuatro filas siguientes (5-8), dividese las columnas en 12 partes, nombrando las 4 primeras con las letras "*a*", "*b*", " γ " y "*q*" (γ representando la emisión γ) y repitiendo el esquema en las partes siguientes. Utilizar en las mencionadas letras los subíndices 43, 42, 41 y 40, respectivamente en cada fila, representando las transiciones de niveles hasta el estado fundamental del Cs-133 (nivel 0).

En las 3 filas siguientes (9-11), dividese las columnas en 48 partes nombrando las 4 primeras con las letras "*a*", "*b*", " γ " y "*q*"; y repitiendo el esquema en las partes siguientes. Utilizar en las letras los subíndices 32, 31 y 30, respectivamente en cada fila.

Ilustrando las subdivisiones de la primera tercera parte del total de 768 columnas (256 primeras columnas), la **Figura 4** presenta un esquema con sólo las primeras 11 filas de un total de 14, esquema que se repite dos veces a la derecha cuando se sustituye a_{nj} , de las primeras 4 filas, por b_{nj} y q_{nj} .

En las 2 filas siguientes (12-13) dividese las 768 columnas en 192 partes nombrando siempre las 4 primeras partes con las letras "*a*", "*b*", " γ " y "*q*"; y repitiendo el esquema en las partes siguientes. Utilizar en las mencionadas letras los subíndices 32, 31 y 30, respectivamente en cada fila.

En la fila 14 utilizase todas las 768 celdas nombrando siempre las 4 primeras celdas con las letras "a", "b", " γ " y "q"; y repitiendo el esquema en las siguientes celdas. Utilizar en las letras el subíndice 10.

Una vez establecido este esquema es posible determinar verticalmente, abajo en la columna correspondiente, todos los pares de consecuencias resultantes en el detector para cada una de las 14 rutas de decaimiento.

A modo de ejemplo, en la figura se observa cuatro de las doce resultantes de la ruta $x_{53} x_{30}$ que expresan las probabilidades de detección. La primera resultante se obtiene con la función CONCATENAR (A2; "*"; A11; ";";). Al repetirse el proceso otra vez, sustituyéndose las letras "*a*", "*b*", " γ " y "*q*" de las celdas por los valores numéricos de energía y utilizando la función SUMA, se obtiene las energías correspondientes, por ejemplo (A2 + A11).

	a 54														
	a 33														
	a 52														
	a 51														
a 43 b 43							Ŷ	13			q	43			
	a	42			b	42			γ.	12		q 42			
a 41					b	41			Ŷ	41			q	41	
a 40				b 40			Y 40			q 40					
a 32	b 32	Y 32	q 32	a 32	b 32	Y 32	q 32	a 32	b 32	Y 32	q 32	a 32	b 32	Y 32	q 32
a 31	b 31	Y 31	<i>q</i> 31	a 31	b 31	Y 31	q 31	a 31	b 31	Y 31	q 31	a 31	b 31	Y 31	q 31
a 30	b 30	Y 30	q 30	a 30	b 30	Y 30	q 30	a 30	b 30	Y 30	q 30	a 30	b 30	Y 30	q 30
Ruta x53 x30															
a 53 * a 30	a 53*b 30	a 53 * g 30	a 53 * q 30												
30.8+30.8;	30.8+35.3;	30,8+383,8	30.8+0;												

Figura 4: La tercera parte del diagrama en árbol ilustrando las subdivisiones de las primeras 11 filas (y 256 primeras columnas) de la hoja de cálculo Excel. Las subdivisiones continúan en las tres filas no presentadas en el esquema. En esta tercera parte del árbol, se puede determinar cuatro de las doce resultantes de la ruta $x_{53} x_{30}$ como presentado abajo.

Para obtenerse, para cada ruta, tanto la lista con las probabilidades de detección como la lista con las correspondientes energías (12 pares resultantes para el caso en el ejemplo de esa ruta de sólo dos pasos) se debe utilizar, en una columna cualquiera a la derecha de las 768 anteriores, de nuevo la función CONCATENAR, ahora horizontalmente. Ejemplo para la fila 16 como en la figura: CONCATENAR (A16: ACN16; ";").

Por último es sólo concatenar de nuevo ahora verticalmente tanto todas las listas de probabilidades de detección obtenidas de todas las rutas como las listas de las energías correspondientes, manteniendo en las dos listas así unificadas el orden en que aparecen los 1860 resultados. Es decir, principalmente al ordenar el par de listas en orden creciente de energía, mantener siempre la correspondencia probabilidad versus energía.

Cada energía corresponde a un posible pico en el espectro dando lugar a una ecuación de tasa de conteo donde el número de recuentos del pico será igual al producto de la incógnita R (actividad de la fuente) por la suma de las parcelas que representan las probabilidades, por ruta, de deposición de esa energía en el detector.