М. Н. АБДУСАЛЯМОВА, М.А. БАДАЛОВА, Ф.А. МАХМУДОВ

СИНТЕЗ И ИССЛЕДОВАНИЕ ТЕРМИЧЕСКИХ СВОЙСТВ Yb_{14-x}Gd_xMnSb₁₁ Институт химии им.В.И.Никитина АН РТ

Соединение Yb₁₄MnSb₁₁ и его твердые растворы относятся к фазам Цинтля и являются перспективными термоэлектрическими материалами[1-3]. Фазы Цинтля это соединения, в которых электроположительный катион отдает свои электроны более электроотрицательным компонентам, которые формируют изолированные анионы, полианионные комплексы, или анионные расширенные структуры, для того чтобы удовлетворять валентности. В данном структурном типе по данным магнитных и рентгеноэлектронных измерений иттербий и марганец находятся в степени окисления +2.

Структура состоит из четырнадцатых Yb^{+2} -катионов, одного $[MnSb_4]^{9}$ -тетраэдра, одного линейного Sb^{7} -полианиона и четырех Sb^{3-} анионов: $Yb_{14}MnSb_{11}=14xYb^{+2}$ +1x $[MnSb_4]^{9-}$ + 1 Sb^{7-} +4 Sb^{3-}

Благодаря строению это соединение соединяет в себе хорошую электропроводимость и низкую теплопроводность, что является одним из условий применения термоэлектрических материалов [4].Эффективность термоэлектрического устройства в основном определяется коэффициентом добротности: $zT = TS^2/\chi\rho$, где T- абсолютная температура, S- коэффициент Зеебека, χ - теплопроводность, ρ - электрическое сопротивление. Коэффициент Зеебека можно изменять давлением , в том числе химическим давлением, например лантаном [5]. Целью данной статьи является получение твердых растворов, допинированных гадолиниемYb₁₄MnSb₁₁.

Монокристаллы были получены флакс-методом, используя в качестве высокотемпературного растворителя - олово. Микрозондовые исследования проводили на

установке CameraJXA-8100 (фирмы JEOL, Japan), где анализатором служил спектрометр, работающий при напряжении 20 кэВ и токе 30 нА. Для каждого элемента имелся стандарт в виде YbPO₄,GdPO₄, SnO₂, Sb, Mn-гранат. Состав основной фазы каждого образца определяли как среднее значение с соответствующей погрешностью, измеренное в 15-30 точках выбранных в разных направлениях.

Рентгенострктурный анализ. Дифрактограммы записывались с растертыми в порошок 20-30 мг образца на дифрактометре Philips PW1830, с монохроматическим излучением CuK_{α} в области углов 20° <20< 70°, с шагом сканирования 0.02° и временем выдержки 4 или 10 сек для улучшения записи спектров.Некоторые диффрактограмы приведены на рис.1 и 2.

Рис. 1. Дифрактограмма Yb_{13,9}Gd_{0,1}MnSb₁₁

Рис.2. Дифрактограмма Yb_{13,7}Gd_{0,3}MnSb₁₁.

Полученные параметры решетки приведены в таблице 1.

Таблица1

Параметры решетки ооразцов Yb _{14-x} Gd _x MnSb ₁₁							
Gd, x	a, Á	c, Á	V, Á ³	Плотно	ость, г/см ³		
				Экспер.	Рентген.		
0,1	16,618(8)	22,000(11)	6075,47	8,30	8,38		
0,3	16,624(8)	22,028(11)	6087,60	8,32	8,35		
0,5	16,638(8)	22,055(11)	6105,33	8,36	8,30		
0,7	16,639(8)	22,056(11)	6106,34	8,35	8,29		
0,9*	16,636(8)	22,030(11)	6096,95	8,37	8,37		

Термический анализ проводили с образцами весом 2-3 мг и измерения повторяли для надежности 3-5 раз с каждым образцом в установке с давлением инертного газа 7 атм. Экспериментальные результаты приведены в таблице 2.

Таблица 2

Температуры плавления Yb _{14-x} Gd _x MnSb ₁₁						
Образец	Температура	Состояние замороженного расплава				
-	плавления.					
	T°C					
№ 6 Yb _{13.9} Gd _{0.1} MnSb ₁₁	1750-1780	Серый трещинно-образный				
№ 7 Yb _{13.7} Gd _{0.3} MnSb ₁₁	1720-1790	Серый однородный				
№ 8 Yb _{13.5} Gd _{0.5} MnSb ₁₁	1720-1757	Серый крупнозернистый				
№ 9 Yb _{13.3} Gd _{0.7} MnSb ₁₁	1757-1796	Серый однородный homogeneous				
№ 10 Yb _{13.1} Gd _{0.9} MnSb ₁₁	1780-1800	Такой же				

Измерения термического расширения проводили на цилиндрических образцах диаметром 4мм, длиной 10-13мм в интервале 25-750°C на высокотемпературном дилатометре. Функция ΔL/L₀- f(T) прямолинейна для всех материалов, что указывает на коэффициента термического расширения постоянство α В данной области температур.Коэффициенты термического расширения, приведенные в таблице 3, найдены по тангенсу угла наклона прямых. Как видно из таблицы, с заменой иттербия гадолинием происходит увеличение коэффициента термического расширения до состава x=0,5, затем α уменьшается.

Таблица 3

Коэффициенты термического расширения и температуры Дебая					
Состав	Коэффициент	Температура Дебая, Ө _D			
	термического расширения,				
	α.10 ⁶ ,град. ⁻¹				
$Yb_{13,9}Gd_{0,1}MnSb_{11}$	21.8	129			
Yb _{13,7} Gd _{0,3} MnSb ₁₁	17.4	144			
Yb _{13,5} Gd _{0,5} MnSb ₁₁	16.0	150			
Yb _{13,3} Gd _{0,7} MnSb ₁₁	20.0	135			
Yb _{13,1} Gd _{0,9} MnSb ₁₁	22.0	128			

TC 11

Температуру Дебая рассчитывали по формуле: $\Theta_D = \frac{19.37}{\sqrt{A} v^{2/3} \alpha}$,

где Ā- среднеквадратичный атомный вес; V- молекулярный объем; α- коэффициент термического расширения.

Результаты расчета, приведенные в таблице, показывают, что температура Дебая несколько снижается с заменой иттербия гадолинием до состава x=0,5.

Работа проведена при финансовой поддержке Международного научно-технического иентра (МНТЦ), проект Т-2067.

ЛИТЕРАТУРА

1. ChanJuia Y., Olmstead Marilyn M. and Kauzlarich Susan M. Structure and ferromagnetism of the rare earth Zintl compounds: Yb₁₄ MnSb₁₁ and Yb₁₄ MnBi₁₁.-Chem.Mater.1998, V10, P3583.

2. Fisher I.R., Wiener T.A., Bud'ko S.L., Canfieled P.C., Chan J.Y., S.M.Kauzlarich. Thermodynamic and transport properties of single crystals Yb₁₄ MnSb₁₁-Phys. Rev. 1999, V B.59, P.13829, Yu C., Zhu J., Yang S.H., Shen J.J. and Zhao X.B. Preparation and thermoelectric properties of polycrystalline nonstoichiometric Yb14 MnSb11-Phys. Status Solid RRL, 2010,V4,P212

3. А.В.Шевельков. Химические аспекты создания термоэлектрических материалов-Успехи химии, 2008, т.77,№1,с.3

4. Sales B.C., Khalifah P., Enck T.P., Nagler E.J., Sykora R.E., Lin R., Mandrus D. Kondo lattice behavior in the ordered dilute magnetic semiconductor

5. Yb_{14-x}La_x MnSb₁₁-Phys.Rev., 2005, VB72, P.205-207.