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Abstract

In this thesis the absolute mass scale and statistical properties of neutrinos are inves-
tigated in the context of the single and double §-decay processes. To our knowledge
the first relativistic calculation of the f-decay of tritium is presented. By taking the
advantage of the elementary particle treatment of > H and 2 He the form for the 3-decay
endpoint spectrum of tritium is obtained, considering the effects of higher order terms
of hadron current and nuclear recoil. This approach is used also to study the role of
interactions beyond the Standard Model (effective scalar and tensor interactions) in
the S-decay of tritium. Till now the unknown energy distribution of emitted electrons
for the first unique forbidden SB-decay of '*" Re is calculated. It is found that the p-wave
emission of electron dominates over the s-wave in this process. It is shown that the
Kurie plot near the endpoint of the first unique forbidden S-decay of '*” Re and of the
second unique forbidden B-decay of '3In is within a good accuracy linear in the limit
of massless neutrinos like the Kurie plot of the super-allowed 3-decay of 3H. Next, it
is assumed that the Pauli exclusion principle is violated for neutrinos, and thus, neu-
trinos obey at least partly the Bose-Einstein statistics. It is shown that this violation
strongly changes the two-neutrino double S-decay rates and modifies the energy distri-
butions of the emitted electrons. The case of pure bosonic neutrinos is excluded by the
present data. Further, a discussion is given on possible realization of the Single State
Dominance hypothesis in the case of the two-neutrino double S-decay of " Nd. The
obtained theoretical results within this thesis are important for the tritium experiment
KATRIN, which is under construction, and for the planed rhenium experiment MARE
as well as for the next generation of double S-decay experiments like SuperNEMO,
EXO, SNO-+, etc.

keywords: neutrino mass, double -decay, tritium S-decay, forbidden -decays, Kurie

plot, bosonic neutrinos, weak interactions



Abstrakt

V danej praci st skimané absolitna skala hmotnosti a Statistické vlastnosti neutrin
v kontexte oby¢ajného a dvojiého [ rozpadu. Pokial vieme po prvy krat je prezen-
tovany relativisticky vypocet 8 rozpadu tricia. Vyuzitim pristupu popisu jadra *H a
3He ako elementarnej castice je ziskany tvar konca spektra v 3 rozpade tricia bertc
do tuvahy efekty ¢lenov vyssich rddov hadréonovych pridov a jadra so spatnym réazom.
Tento pristup je pouzity k Stidiu tlohy interakcii za Standardn}?m Modelom (efek-
tivne skalarne a tenzorové interkacie) v triciovom [ rozpade. A7z doposial nezname
energetické rozdelenie elektronov emitovanych v prvom zakdzanom 3 rozpade %" Re je
vypocitané. Zistilo sa, ze emisia elektronu v p vine dominuje nad s vilnami v danom
procese. Je ukdzané, ze Kurieho graf v blizkosti konca spektra pvého zakazaného [
rozpadu " Re a druhého zakizaného rozpadu *°In je s dobrou presnostou priamka v
pripade bezhmotnych neutrin, rovnako ako Kurieho graf pre povoleny /3 rozpad 3H.
f)alej je predpokladané narusenie Pauliho vylucovacieho principu pre neutrina, ¢im by
sa aspon c¢iastocne riadili Bose-Einsteinovou statistikou. Je ukdzané, zZe toto narusenie
silne meni rozpadové Sirky dvojneutrinového dvojitého 3 rozpadu a modifikuje energet-
ické rozdelenie emitovanych elektronov. Stucasné data vyluc¢uju pripad ¢isto bozonovych
neutrin. Mozn4 realizicia hypotézy dominancie jedného stavu v dvojneutrinovom dvo-
jitom f3 rozpade jadra "’ Nd je diskutovana. Ziskané teoretické vysledky v ramci tejto
prace su dolezité pre triciovy experiment KATRIN, ktory je vo faze konstrukcie a pre
planovany experiment MARE, ako aj pre experimenty buducich generacii dvojitého
rozpadu ako SuperNEMO, EXO, SNO+, atd.

kl'acové slova: hmotnost neutrina, dvojity 3 rozpad, triciovy S rozpad, zakizané 3

rozpady, Kurieho graf, bozonové neutrina, slabé interakcie
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Chapter 1
Introduction

Recently, it has been established that neutrinos played an important role in the early
Universe in several ways. First, the number of neutrino species does influence the
primordial nucleosynthesis that eventually affects the composition of elements in the
Universe [1, 2]. Second, during the evolution of the Universe, massive neutrinos affect
the formation of large-scale structures in the form of hot dark matter. It appears
that only about 4% of the energy/matter in the Universe consists of ordinary matter
(baryons). The remaining 95% is composed of invisible "dark matter" (~ 25 %) and
unknown "dark energy" (~ 70 %). The neutrinos that decoupled from the priomordial
plasma, known also as relic neutrinos, are still the second most abundant particles in the
Universe right next to the photons. The aim of this thesis is to investigate fundamental

properties of neutrinos, one of the most intriguing particles in the Universe.

The early period of neutrino history

The history of neutrinos dates back to the 4-th December 1930 with a proposal of
Wolfgang Pauli in an open letter to participants of physics conference held at Tiibingen.
In order to resolve the problem of energy conservation as well as of spin statistics in
nuclear S-decay, he suggested the existence of weakly interacting light neutral fermion.
It was Enrico Fermi who proposed the name "neutrino".

Another crucial step was the theory of [-decay formulated by Enrico Fermi, in
1934, in analogy with quantum electrodynamics. Also he pointed out in 1934 that the
shape of the electron energy spectrum of the S-decay , near the endpoint, is sensitive
to the neutrino mass [3]. Namely, the endpoint is shifted to lower energies and the
shape is tilted. The first measurement was performed by Hanna and Pontecorvo [4]
with tritium filled proportional chamber. Their bound ~ 1 keV was limited by the

detector resolution.



It was Eugene Wigner who suggested to Maria Goeppert-Mayer in 1935 [5], only
one year after Fermi published his theory describing the S-decay, a rare process - the
two-neutrino double [-decay, which involves the emission of two electrons and two
antineutrinos.

In 1987 the first actual laboratory observation of the two-neutrino double S-decay
was done for 82 Se by M. Moe and collaborators [6], who used a time projection chamber.
So far the 2v3/3-decay has been recorded for nuclei: *8Ca, Ge, 82Se, %Zr, 1Mo,
16, 128Te, 130T ¢, 136 Xe, BONG, 280 |7, 8]. In addition, the 2v(33-decay of °°Mo
and YNd to the 0% excited state of the daughter nucleus has been observed.

In 1937, Majorana published the symmetry theory between the electrons and posi-
trons [9]. In this theory, he proposed a possible existence of completely neutral particles
that are their own antiparticles. They are known as the Majorana particles.

In 1939, Wolfgang Furry [10] discussed the possibility of Majorana neutrinos in
neutrinoless double [-decay, a process which involves the emission of two electrons
and no antineurinos. It was proved by Schechter and Valle that, if Ov83-decay takes
place, regardless of the mechanism causing it, the neutrinos are Majorana particles
with non-zero mass [11].

The neutrinoless double -decay has not yet been confirmed.

After the Fermi formulated the theory of [S-decay, George Gamow and Edward
Teller extended the theory by introducing the axial-vector currents in order to explain
the change of one unit of the nuclear spin in some nuclear [-decays. However, the
extension was made in such a way that the parity was still conserved.

It was then realized that other couplings, e.g. scalar, pseudoscalar and tensor, could
participate in weak interactions. The ultimate combination of couplings remained an
unsolved question for about two decades, mostly due to misleading interpretation of
impressive experiments.

After the discovery of parity violation in kaon decays by Lee and Yang in 1956
[12], the combination of Lorentz invariant interactions in the Lagrangian of the weak
interactions had become even more complicated. This apparently confusing situation
was simplified with the form of the V' — A theory formulated in 1958 by Feynman
and Gell-Mann [13], Sudarshan and Marshak [14]. The V' — A structure of the weak
interactions can be realized by using the two-component theory of massless neutrinos.
This theory incorporates the left-handed neutrinos and right-handed antineutrinos.

The observations of the muon decay led Bruno Pontecorvo to propose the univer-
sality of the Fermi theory of weak interactions of electrons and of muons. The concept
of lepton number was introduced by Konopinski. The lepton number L = 1 for the

following particles: e™, u=, 77, Ve, vy, V-, while L = —1 for their antiparticles. The lep-



Table 1.1: Flavor lepton numbers given for three generations of leptons.

Lepton number e~ v, pu= v, 7 U;
L. 11 0 0 0 0
L, o o0 1 1 0
L, 0O 0 0 0 1

ton number L is conserved in the V — A theory as well as in a Standard Model theory

of weak interactions.

Neutrinos in the concept of Standard Model

An important milestone in the theory of weak interactions is the formulation of the
Standard Model by Glashow, Weinberg and Salam [15] in 1967. The theory is based
on a SU(2) ® U(1) gauge model. The unique theoretical predictions of the neutral
currents and Z boson were confirmed at CERN [16] in 1973. The model involves also
the Higghs mechanism, i.e. particles get their masses via the spontaneous symmetry
breaking mechanism. After experimental discoveries of several particles it is found

that the buiding blocks of SM are arranged in three generations, e.g. for neutrinos

(), ), (),

The number of these generations was fixed by LEP experiments at CERN within

particularly

the Z boson invisible decay width [17]. The concept of the flavor lepton number, shown
in Table 1.1, was established. The subscript L denotes the left-handed components of
these leptons | (= e, p, 7) and corresponding antineutrinos 7;. They form doublets,
which enter to the weak interactions within the Lagrangian of SM. On the other hand,
the right-handed components form singlets (eg, pr, 7r) and do not participate in the
weak interactions.

It is worthmentioning that there is no symmetry incorporated in the SM that would
imply the flavor lepton number conservation.

No experiments performed so far have shown deviation from the predictions of the

SM, except the neutrino oscillation experiments.



Neutrino mixing and oscillations

The idea of neutrino oscillations was first proposed by Bruno Pontecorvo [18] in 1957
in analogy with the K oscillations phenomenon. At that time, the possible oscillation
was v <> U for Majorana neutrinos. Later on, neutrino mixing was proposed by Maki,
Nakagawa and Sakata [19] in 1962 with the assumption of two generations of neutrinos,
Ve and v, that are mixed states of two mass eigenstates 1, and v,. In 1967 in paper
[20] Pontecorvo considered all possible trannsitions between v, and v, and applied the
idea of neutrino oscillations to the solar neutrinos. In 1969 Gribov and Pontecorvo
[21] considered the two-neutrino oscillations in case of two massive Majorana neutri-
nos. Starting from 1975 many papers were published by Bilenky and Pontecorvo (see
[22])who developed phenomenological theory of the neutrino oscillations, considering
all possible neutrino mass terms (Dirac, Majorana, Dirac and Majorana).

The atmospheric, solar and accelerator neutrino oscillation experiments (Kam-
LAND, K2K, SNO, etc.) are explained in a framework of three neutrino mixing model.

In more detail,

0

Ve C12C13 S12C13 S13€ V1
_ i§ )
i = —S812C23 — C12823513€" C12C23 — S12823513€" 523C13 Vo )
1) 1)
Vr 512823 — C12C23513€" —C12523 — S12C23513€" C23C13 V3

the three flavor states (ve,v,,v,) are linear combination of the three mass eigen-
states (v, 12, v3). The Pontecorvo-Maki-Nakagawa-Sakata mixing matrix Upyys (Uy;
l = e pu,T1; i = 1,2,3) is given here in the standard notation for Dirac neutrinos.
sij = sin0;; and ¢;; = cos ;. 6;; is the mixing angle and 0 is the CP-violating phase. If
neutrinos are Majorana particles the mixing matrix is multiplied by a diagonal phase
matrix P = diag(e'®, e'*2, e¥), which contains two additional CP-violating Majorana
phases «a and as.

The results from the neutrino oscillation experiments can provide information only
on the differences in the square masses Am?j =m? — m? of neutrinos, not on their
masses, and on the values of mixing angles ¢;;. The neutrino oscillation parameters,

which will be used to discuss the absolute scale of neutrino masses are listed bellow:

e 15: The reactor neutrino oscillation experiment KamLAND [23] has determined

tan® 65 = 0.45271003.

e 013: The accelerator neutrino oscillation experiment T2K has obtained the bound
0.04 < sin?260;3 < 0.34 [24] and reactor neutrino oscillation experiment DOUBLE
CHOOZ has determined sin?(26;3) = 0.085 & 0.029 (stat) =+ 0.042 (syst) (68%
CL) [25].



e Am?,: The global fit value of the mass squared difference entering the solar

- Tati - 2 2 _ 2 2 2
neutrino oscillation experiments Amg,y = Ami, = m; — mi is Amg,y =

(7.6570:13) x 1075 eV? [26].

e Am3, (Am3,) : The mass squared difference entering the atmospheric neutrino
ooscillation experiments Am?y,, = |Am3,| = |m3 — m?| (in case of normal
hierarchy and Am?;,, = |AmZ,| = |m3 —m2| in case of inverted hierarchy). The
long baseline accelerator neutrino oscillation experiment MINOS has determined
AmPry = (243 +£0.13) x 1073 V2 [27].

We note that the absolute scale of neutrino masses is not known until now. Based

on the above for the neutrino masses we have following scenarios:

e Normal spectrum: m; < msy < mg, then the mass squared differences are given

as

2 ) 2 2 9 2
Amgyy = my —mj, AmGry = m3 — ms. (1.1)

The absolute scale of the neutrino masses is determined by the mass of the lighest

neutrino my,

my =mg, Mg =\/Ami,y+mi, ~ms= \/AmiTM + Ami,y +md (1.2)

e Inverted spectrum: ms < m; < mo, then the mass squared differences are

given as

2 . 2 2 2 . 2 2
Amigyy = my —my, Amiry = my —ms3. (1.3)

The absolute scale of the neutrino masses is determined by the mass of the lighest

neutrino my,

my = \/Am%p + M3, mg = \/Am?ATM + Amiyy +md,  mz=mgy (1.4)



Determination of the absolute scale of neutrino masses

Information on absolute scale of neutrino masses can be obtained by three different

methods:

1. The limit on the sum of neutrino masses,

3
Meosmo = Zmiu (15)
=1

is obtained from the astrophysical and cosmological observations [28]. For the

purpose of illustration we present a global average m osmo = 0.71 eV

2. Search for neutrinoless double [-decay, where the effective Majorana neutrino

mass,

3
_ 2. 2 2 2 2 9
mpgg = E (Upmns)zimi = ClaCize™* my + c357q€

=1

Zia2 4 s%3m3, (1.6)

is extracted from the observed half-life of the process [29, 30] .

3. Direct determination of the neutrino mass by kinematics of the ordinary (-decay.

The effective mass of the electron neutrino

Z Ugmi = \/0120%3”11 + clystym3 + stsmj (1.7)

is obtained from precise investigation of the electron spectrum near its endpoint
[31, 32].

Although methods 1 and 2 are very sensitive to neutrino masses, their results are
model-dependent. On the other hand, direct neutrino mass determination from the
kinematics of [-decays is essentially based on energy and momentum conservation
only and thus model independent.

The above combinations of masses can be written as follows:

I) For the normal hierarchy (m; < my < m3):

e Restriction from cosmology and astrophysics:

Meosmo = Mo + \/Am%UN + mg + \/AmiTM + Am%UN + m% (18)



e Ovpfp-decay:

2 9 %o | .2 2 2ias A2 9 | .2 2 9 9
Mg = CiaCi3Mo€™ " + S15C 3€ Amgyy +mg + si; \/AmATM + Amgyy +mg

(1.9)

e Ordinary [-decay:

_ 2 2,9 2 2 2 2 2 2 2 2
mg = \/’312’3137”0 + s19cts (Amgyy +mg) + si3(Amigy, + Amgyy +mg)

(1.10)

By assuming normal hierarchy the mass m; is negligibly small and we have

my K A/ AmZyn,  Mma =/ Amiyy, M~/ AmAir,,. (1.11)

Within these bounds an upper limit can be put on the effective Majorana neutrino

mass

Imgs| ~ |C%35%2\/ Amyy + sis \/ AmZgye | <4107 eV. (1.12)

IT) For the inverted hierarchy (ms < m; < my):

e Restriction from cosmology and astrophysics:

Mecosmo = \/ AmZry +mg + \/ Amiypa + Amyy + mg + mg (1.13)

e Ovp[-decay:

o 2 2 2o 2 2 2 2 2ias 2 2 2
mpg = Ci2C13¢ 4/ AmZra +mp + s19C13€ \/AmATM + Amgyy +mg

+573m0 (1.14)

e Ordinary [-decay:

2.2, 2 2 2 9 9 9 9 2 9
mg = \/513mo + s19ct3(AmZpay +mg) + clactz(AmGpy, — Amgyy +mp)

(1.15)
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Figure 1.1: The normal and inverted hierarchy of neutrino masses are illustrated.
We note that m; < ms < mg3 in normal spectrum and ms < m; < mo in inverted
spectrum. Differences between masses are determined by Am?,,, and Am?%;, from

neutrino oscillation experiments. The absolute scale of neutrino masses is not known.

By assuming inverted hierarchy the mass mg is negligibly small and we have

my >~ mo =~ \/ AmZyy, ms </ AmZp- (1.16)

For the limit of the effective Majorana neutrino mass we find

|mgg| ~ \/ AmZpacts (1 —sin? 2 015 sin? o) 2, (1.17)

where oo = as — ay. The phase difference a5 is the only unknown parameter here.

NI

From [33| we obtain the following restriction

1.5-1072% eV < |mgs| < 5.0- 1072 eV. (1.18)
IIT) For the quasi-generate hierarchy (mg = m; ~ mg ~ mg3):

e Cosmology and ordinary [-decay:

Meosmo = 3My  and  mg = 3my. (1.19)
e Ovp[-decay:

10
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Figure 1.2: The neutrino mass limits as a function of the mass of the lightest neutrino
mg determined by cosmology. Corresponding mass mg = 0.23eV is exctracted from
astrophysical observations, which place a limit on a sum of neutrino masses M psmo =

0.71eV for both scenarios, normal and inverted spectrum.

The effective Majorana netrino mass is relatively large in this case and for both

scenarios of the neutrino mass spectrum is given by

mo|l — 2¢3,ch5] < mgg < my. (1.20)

For the sake of illustration the normal and inverted hierarchy are shown in Fig.
(1.1)
The above results for the cosmological limits as a function of the mass of the ligh-
est neutrino are illustrated in Fig. (1.2) for both scenarios the normal and inverted
spectrum. From global fit value mysm, = 0.71eV from astrophysical and cosmological
observations a corresponding mass of the lightest neutrino mg = 0.23 eV is determined
for both scenarios. The lowest value for the sum of the neutrino masses, which can
be reached in future cosmological measurements [28, 34, 35| is about 0.05 — 0.1eV.
The corresponding values of the my are in the region, where the normal and inverted
spectrum predictions for m,gm, differ significantly from each other.

The allowed range of the values for the effective Majorana neutrino mass |mgg| as
a function of the mass of the lightest neutrino my is illustrated in Fig. (1.3) for normal
and inverted spectrum. In case of inverted spectrum the allowed region for the |mggs|
is presented between two parallel lines in the upper part of Fig. (1.3). The allowed
region for |mgs| ~ few meV in case of the normal spectrum corresponds to the my

smaller than 10meV .

11
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Figure 1.3: The allowed range for |mgg| values is showed as a function of the mass of

the lightest neutrino mg for both scenarios the normal and inverted spectrum. The

current experimental limits and the expected future results are shown [36] ( Nuclear

matrix elements in quasiparticle random

range correlations and g4 = 1.25 are assumed [37, 38|).

phase approximation with CD-Bonn short-

It is worthmentioning that

in the scenario of inverted spectrum there exist a lower bound, which means that

OvfB-decay should be definitely observed,

The strongest limits on the half-life
Moscow [39], NEMO3 [40], CUORICINO

1/2(76Gre
1/2(1001\/[0
1/2(130Te
1/2(136Xe

)
)
)
)

if the experiments reach the required level.

of the OvBp-decay were set in Heidelberg-
[41] and KamLAND-Zen [42] experiments:

v

1.9 x 10% y
1.0 x 10* y
3.0 x 10 y
5.7 x 10* y

AVARNAVS

v

(1.21)

From these experiments [39, 41, 42| by using of nuclear matrix elements of Ref. [37]

calculated with Brueckner two-nucleon short-range correlations the following stringent

bounds on effective Majorana mass were obtained

|m55| < (020
< (0.33

< (0.17 —

—0.32) eV ("Ge),
—0.46) eV (**Te),

0.30) eV (**9Xe). (1.22)

However, there exist a claim of the observation of the Ovj33-decay of Ge made

by some participants of the Heidelberg-Moscow collaboration [43].

Their estimated
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Figure 1.4: Limits of the effective mass of electron neutrino as a function of the mass
of the lightest neutrino mg exctracted from the tritium S-decay. From the Mainz and
Troitsk experiments a current upper limit mg = 2.2 eV a mass of the lightest neutrino

mgo = 2.2 eV is deduced for both normal and inverted spectrum.

value of the effective Majorana mass (assuming a specific value for the NME) is
|mgs| ~ 0.4eV. This result will be checked by an independent experiment GERDA with
germanium [44] and the Heidelberg-Moscow sensitivity will be reached in about one
year of measuring time. In future experiments, CUORE [45], EXO [46], SuperNEMO
[47], SNO-+ [48], KamLAND-Zen [42] and others, a sensitivity |mgg| ~ afewl0 2eV is
planned to be reached, what is the region of the inverted hierarchy of neutrino masses.
In the case of the normal mass hierarchy |mgg| is too small in order to be probed in
the OvfB-decay experiments of the next generation.

The determination of the effective mass of electron neutrino from ordinary g-decay
is based on the very precise investigation of the electron energy spectrum near its
endpoint. The relative number of events occurring in an interval of energy AT near
the endpoint is proportional to (AT/Q)3. Therefore isotopes with low @Q-value are
favorable, e.g. tritium (~ 18.6 keV') and rhenium (~ 2.47 keV).

The recent best upper limit mgz < 2.2eV is obtained by the Mainz [49] and Troitsk
[50] experiments measuring the electron energy spectrum near its endpoint in tritium
f-decay. A next-generation tritium [-decay experiment is the KArlsruhe TRItium
Neutrino experiment (KATRIN) [31]|, which is planned to start data commissioning
in 2013. This experiment is projected for measurement of the neutrino mass with
a sensitivity of 0.2 eV, which can probe the quasi-degenerate hierarchy of neutrino

masses.
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The results for the limits of the effective mass of electron neutrino as a function
of the mass of the lighest neutrino are illustrated in Fig. (1.4) for both scenarios the
normal and inverted hierarchy.

Complementary to the kinematical measurements of tritium [S-decay appears the
calorimetric measurement of the rhenium §-decay in MARE experiment [32], where all
electron energy released in reaction is recorded. The achieved sensitivity of mg < 15 eV
was limited by statistics [51]. The success of rhenium experiments has encouraged
the micro-calorimeter community to proceed with a competitive precision search for a
neutrino mass. The ambitious project is planned in two steps, MARE I and MARE II.
MARE II is to challenge the KATRIN goal of 0.2 eV in future.

14



Chapter 2

Aims of the thesis

The aim of this thesis is to investigate the absolute scale of the neutrino masses and the
statistics of neutrinos. The attention is paid to the determination of the neutrino mass
from single §-decays of tritium, rhenium and indium, i.e. S-emitters with low ()-values.
The effect of the neutrino mass on the shape of the electron energy spectrum near
the kinematical endpoint is analyzed via the Kurie function. Further, the statistics of
neutrinos is discussed in the context of the two-neutrino double S-decay. A possibility of
neutrinos obeying at least partly Bose-Einstein statistics is addressed. The associated
nuclear matrix elements are determined within the Single State Dominance (SSD) and
Higher States Dominance (HSD) hypotheses. A possibility of realization of the SSD
hypothesis for the 2v33-decay of '’ Nd is studied as well.

e A relativistic description of the tritium S-decay:

— For the -decay of tritium the theoretical electron energy spectrum will be
derived within the Elementary Particle Treatment approach of Kim and
Primakoff. The effects of higher order terms of hadron currents and nuclear

recoil will be considered.

— The role of weak interactions beyond the Standard Model (the effective

scalar and tensor) in the tritium S-decay will be investigated.
e Unique forbidden (-decays of rhenium and indium:

— The theoretically unknown electron energy spectrum of the first unique for-
bidden B-decay of ¥ Re will be presented.

— The dominance of the particular differential decay rate associated with the
emission of p-wave electrons in the rhenium [-decay, which was found out

in the MIBETA experiment, will be investigated.
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— The second unique forbidden B-decay of '5In to the first nuclear excited
state of 11°Sn (with the lowest known Q-value) will be described theoreti-

cally.
e Single State Dominance hypothesis:

— For the two-neutrino double -decay of ' Nd with the 1~ ground state
of the intermediate nucleus '°Pm possible realization of the Single State

Dominance hypothesis will be analyzed.

— The energy distributions of emitted electrons in the 2v33-decay of YYNd
within the SSD (HSD) hypothesis will be calculated.

e Statistics of neutrinos:

— The statistics of neutrinos will be studied within the two-neutrino double /-
decay. For pure bosonic and partly bosonic neutrinos the normalized energy

distributions of emitted electrons will be derived.

— For pure bosonic or fermionic neutrinos the half-lives of 2v33-decay to the
ground (0") and first excited (27) states of the final nucleus will be calcu-
lated.
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Chapter 3
Neutrino mass and S-decay of tritium

In a view of an enormous progress in the tritium g-decay experiments, which aim to
determine the absolute scale of neutrino masses by precise investigation of the electron
energy spectrum near its endpoint, there is a request for a highly accurate theoreti-
cal description of this spectrum near the endpoint. The subject of interest has been
molecular effects in tritium S-decay [52], radiative corrections [53], Lorentz invariance
violations [54], interactions beyond the Standard Model [55], relativistic form for the
p-decay endpoint spectrum [56, 57| etc.

In connection with this, the theoretical description of tritium -decay is presented in
this chapter. First, a conventional approach to tritium S-decay is showed. Then, main
focus is set on the relativistic description of this process in the Elementary Particle
Treatment approach. The effect of recoil on the shape of the endpoint spectrum is
discussed. In addition to the standard V' — A interaction, the effective scalar and
tensor, beyond the Standard Model interactions are taken into account. Their role in

the tritium [S-decay is discussed.

3.1 A conventional description of the $-decay of tri-
tium

A conventional theoretical description of the tritium (-decay is presented here. The
effect of nuclear recoil is neglected in this formalism. For the sake of simplicity we
neglect the neutrino mixing. The considered weak [S-decay Hamiltonian takes the
form,
Gy
HP(z) = —Lé
@)="%

Here, Gg = G cosOc. The G stands for the Fermi coupling constant of the weak

()9 (1 = 75)1e(2)"(2) + hic.. (3.1)
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interaction and the cosfq is the cosine of Cabbibo angle that is due to the mixing of
up and down quarks. The field operators for the electron and neutrino are denoted as
e(z) and v,(z), respectively. The field is defined as

0= |2 a5 2 (00 (). (32)

Here, u?(p) is a Dirac spinor.Normalization of the spinor is u(p)u(p) = 1. This
normalization is used within the thesis, with only exception being made in sections 3.2
and 3.3 due to reasons mentioned therein. cf(p) is the creation operator of particle
and d(p) is the anihilation operator of antiparticle. The free charged hadron current

conserving the strangeness is given by

Ju(®) = P(x)Vu(gv — gays)n(z). (3.3)

Here, p(z) and n(z) are the field operators of proton and neutron, respectively.

The renormalization constants of vector and axial-vector currents are g,y = 1.0 and
ga = 1.269, respectively.

The single S-decay occurs in the first order perturbation theory in the weak inter-

action. The corresponding S-matrix element is given by

s = —i/daz T [”Hﬁ(az)e—iI(Hh(z)+HhW(z))dz] , (3.4)

Here, H"(x) and H"7(x) is the Hamiltonian of strong interactions and the latter is
the Hamiltonian of electromagnetic interactions of hadron fields involved. The strong
and electromagnetic interactions are taken into account exactly in this way.

The initial and final states can be written in the Dirac notation as

li> = |A>
If > = le(pe), 7(ky), A" >
= c(pe)d(k,)|A" > (3:5)

Here, |A > and |A’ > denote mother and daugther nucleus. The creation operators
of electron and antineutrino are denoted as c'(p.) and d'(k,), respectively. p, and k,
are the electron and antineutrino four-momenta, respectively. For the S-matrix element

of the process we get

< f|S(1)|i >= —i/dx out <e(pe),ﬁ(k;l,),A'|’Hg_r_(x)|A>m, (3.6)
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with

HY (z) = % [E(2) 7y, (1 — 5)ve()] J*(2) + hc.. (3.7)

Here, J,(x) is the weak charged nuclear hadron current in the Heisenberg represen-

tation and we have used

out < AHP (2)|A >in=< A|T(HP ()e ] H@+H T @)dry) 4 (3.8)

For the sake of simplicity we will omit the indices "in" and "out" in the following
text.

In the tritium (-decay the spin and parity of initial and final nuclei are equal.
Therefore, it is classified as the super-allowed transition and the dominant contribution

to the decay rate is determined by the s-wave states of emitted leptons

Q

\If(f De ) FO(Z + 1, Ee)u(pe)
k) o~ u(—ky). (3.9)

# stands for spatial coordinate vector of the lepton. e”? ~ 1, since the s-wave states
of leptons are considered. The Fermi function Fy(Z + 1, E.) takes into account the
electromagnetic interaction between the outgoing electron and the daughter nucleus.

Finally, the matrix element of the process is given as

W o - _:Gs
<A = iR L E) il

X /daz elPetBrizo — A/ J(z)|A >

= —i2r6(Ef+E.+ E, — Ei)G—\/%\/FO(Z +1,E,)

= Ys)u(—ky)

1 1
X U(pe)Va(l — —k,) < A'1J0,2)|A > .
S T a1~ (k) < A1, )
(3.10)
We use the non-relativistic impulse approximation for the hadron current,
Ju(0,2) = 7900 + 9aGuk (G k10 (F — T). (3.11)

Here, the sum over m runs over all nucleons. The operator 7;} is the isospin raising

operator that turns the m-th neutron into a proton and o, is the Pauli spin operator
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of m-th neutron. The metric tensor is defined as g = diag(1, —1, —1,—1). The matrix

element of the process takes the form,

< fISW)i> = —i27r5(Ef+Ee—|—E,,—Ei)G—\/%\/FO(Z—kl,Ee)

« e (L= 5 )u(h,)

1

X | GaoMp + gAgak(MGT) ] .

(3.12)
The Fermi and Gamow-Teller matrix elements are given as
Mp = Y <*He(1/20)m/|> rFPH(1/2")m >
Mer = Y <*He(1/25)m/| > rré[PH(1/2")m >
(3.13)

The subject of our interest is the non-polarized S-decay of tritium. Therefore, the
sum over the z-projections (m,m’) of spins of mother and daughter nuclei is performed.

By performing the traces, the square of the matrix element is given as

. Gs\’ .
S < sz = () Bz LB+ )

X [gaoMF + gAgak(MGTﬂ [QBOM; + gAgﬁl(Mé:T)]

( ) 8Fy(Z +1,E.)
x (IMpl* + g3 | Marl?) - (3.14)

spins

Here, the squares of Fermi and Gamow-Teller reduced nuclear matrix elements are

given by

[Mp? = <P He(1/2)| Y7/ |PH(L/2Y) >

|Mear|® = |<® He(1/29)|| Y " 7ronl[PH(1/27) > (3.15)

The Fermi matrix element can be evaluated by assuming the exact isospin symmetry

and considering that the 3H and 3He form an ispospin doublet. Isospin is given as
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T = 1/2, with the T, = +1/2 assigned to the *He and the T, = —1/2 to the *H. For
the Fermi matrix element we get Mp = 1.
The absolute square of the Gamow-Teller matrix element can be estimated by using

the Tkeda sum rule. For the ground state of tritium it is given as

3N=2) = > | <3Hew|t 0 Hyo > P+ | < 3|7 0’ Hy > |
- 3. (3.16)

In 3H the 1s neutron level is already occupied by two neutrons. Therefore, the tran-
sition p — n would need to be scattered into a higher orbit, e.g. 2s in the continuum.
This is forbidden for the Gamow-Teller operator since it has no radial dependence.
Thus only transition 3H —3 He but not *H — 3n can contribute to the Tkeda sum
rule. In addition, there are no excited states of *He. As a consequence we have
|Mgr|* = 3.

Usually, the Q-values of nuclear [-decays are small in comparison with nuclear
masses. Therefore, recoil energy is replaced with rest mass of final nucleus. Thus
only leptons, electron and neutrino, are considered in the phase space. The differential

decay rate of the process takes the form

dr’? =Y | < fIS)i > |* 276(E. + B, + My — M;)

spins

(3.17)

The integration over the neutrino variables is performed in order to obtain the
electron energy distribution. For the sake of convenience the phase space is given in

spherical coordinates.

1
aré = WG%FO(Z +1,E.) (|Mg|* + 67 | Mar[?)
X0(E, + E, + My — M;) p2dp.dSY,, k2dk,dSY, . (3.18)

Next step is to integrate over the neutrino variables and electron angles df,, . Fi-
nally, the electron energy spectrum of tritium g decay is obtained. In more detail, the

number of electrons N(E,) emitted in narrow energy interval (E,,E, + dE.) is given as

GZ
. - B 2 2 2
N(Ee)_dEe = o5 (IMe|* + g% [ Mer|’)

XFO(Z + 17 Ee>peEe (EO - Ee) \/(EO - Ee>2 o m%
(3.19)
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Figure 3.1: The endpoint electron energy spectrum is presented for various neutrino

masses: m, =0, 1 eV.

Here, p., FE. and Ey = M; — M/ denote, respectively, the electron momentum,
energy and maximal energy in case of zero neutrino mass. M; and My stand for the
rest masses of initial and final nuclei, respectively. For the non-zero neutrino mass the
maximal electron energy shifts to E"** = FE; — m,. The Fermi function Fy(Z, E.)
takes into account the Coulomb interaction between the final nucleus and the emitted
electrons. The electron energy spectrum near the endpoint is illustrated in Fig. 3.1.
The effect of the neutrino mass is obvious. The spectrum is shifted and distorted near

the endpoint. The connection between the decay rate and the half-life is given as

1 Pﬁ 1 E;naz
T, =—=— dE, N(E.). 3.20
T =15 =13 /. (E) (3.20)

me

In addition, the Kurie function is defined by

T8 /dE,
K(E A
(B ) \/peEeFo<Z+1,Ee)

1
= 535G (IMel* + g |Morl?) (o — B)v/(Bo — BP —m3
(3.21)

The main aim of defining the Kurie function is its dependence on neutrino mass.

For the case of zero neutrino mass it is a straight line crossing the electron energy
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Figure 3.2: The Kurie function for allowed transitions is shown for two values of neu-

trino mass: m, =0, 1 eV.

axis at the endpoint. For non-zero neutrino mass the linearity is lost, most apparently
near the endpoint. The plot of the Kurie function for two different neutrino masses is
illustrated in Fig. 3.2. The linearity might be lost also in case of forbidden transitions

when the nuclear matrix elements become dependent on electron energy.

3.2 A relativistic treatment of tritium [S-decay

The relativistic description for the electron energy spectrum near the endpoint is pre-
sented in this section. The fact that the nuclei >4 and 3He are, respectively, the
nuclear analogs of the neutron and the proton is taken into account. They form an
isospin SU(2) doublet. The considered approach known as Elementary Particle Treat-
ment which was developed by Kim and Primakoff [58] is revisited for the S-decay of
tritium.

The process,

*H —* He+ e + 7., (3.22)

is performed in analogy with the S-decay of free neutron,

n—pt+e +7.. (3.23)

23



The kinematics of the two processes differ mostly due to different Q-values and the
Coulomb corrections. The effects of higher order terms of hadron current and nuclear
recoil are taken into account in this formalism.

The invariant S-decay amplitude is given by

M = %U(Pe)%z(l - /75)u<_P1/>

V2
Gu(q)

XU(Py) | Gv(g* )" +i—5 0 45 — Ga(®)V* s — Gr(a®)q™ys | u(P).

(3.24)

Here, P, = (M;,0), Py = (Ey,pf), P. = (Ee,p.) and P, = (E,,p,) are four-
momenta of *H, 3He, electron and antineutrino in the laboratory frame, respectively.
qo = (P—P;)q = (P.+P,), is the momentum transferred to the hadron vertex. In this
section, an exception in the normalization of spinors is made with respect to the rest

of the thesis. Namely, the sum over polarizations of spinors is Y u(P)u(P) = P+ M.

spins
The infinitesimal phase space volume is then given as dp/(2E(27)3). In this notation,

both phase space and square of spin-summed amplitude are Lorentz invariant. The
Lorentz invariance is important in the EPT approach of the reaction.
The form factors Gy (¢?), G (q?), Ga(¢?), Gp(g*) are real functions of the squared

momentum ¢2. They are parameterized as follows

(3.25)

The two form-factor cut-offs My and M4 are in general different and their values
are expected to be of the order of 1 GeV like it is in the case of nucleon form-factors.
As it will be discussed later the ¢g?-dependence of these form-factors is not crucial for
tritium [S-decay.

The conserved vector current hypothesis (CVC) implies gy = 1.0. gy = —6.106
is calculated from the values of magnetic moments of 3H and 3He using the CVC
hypothesis as well [59]. The axial coupling constant g4 can be determined from the
measured half-life of tritium. The induced pseudoscalar coupling is given by the par-

tially conserved axial-vector current hypothesis (PCAC)

=— gA(qZ), (3.26)



m, is the mass of pion.

For the square of spin-summed, Lorentz-invariant amplitude we get

1
5 2 M = 16G3| GYPyy + GaGyPay +G5Pas +

spins

P
+GAGpPap + GZPpp 4+ GyGy 2;}?
PAM 2 PMM
FGaGu oM, | G AM?
(3.27)
with
7DVV = PefPui+PeiPuf _MiMfPem (328)
7DAA = PefPui+PeiPuf+MiMfPeuu (329)
PAV = Q(Pefpui_PeiPVf); (330)
Pap = M;(m2P,; +m2P;) — My(m2P,; + m2P,;), (3.31)
1
Ppp = 5(pif — M;My) (Poy(m? +m) + 2mm?) (3.32)
Pvvu = M; [Peu(-Pif — MJ%) + P.s(P,; —2P,5) + PeiPl/f]
+ Mj [Po(Piy — M) + Pei(Pyy — 2P,i) + Py Pi] (3.33)
PAM — Q(MZ —|— Mf)(Pewa - PeiPl/f)7 (334)
1
Pum = 5Py (Pev(mg +mip) 4 2mZmy) — M;MymZm, + 2P.; Pef(Pey, +m3)

1
+ 2P,;iP,¢(P., +m?) — 5 MM Pe, (3m? + 3mj, +4F.,) . (3.35)

Here, Py, = (P - P)) denotes the scalar product of two four-momenta. Indices i, f, e
and v stand for initial nucleus, final nucleus, electron and antineutrino, respectively.
By neglecting the contribution from higher order currents (terms proportional to

G, p) it is found

1
5 > IM]P=16G3 [(Gv + Ga)* (P Pp)(P, - P)
spins

+(Gy — Ga)*(P. - P)(P, - Py)
(—=GY + GA)M;M;(P. - P,)] . (3.36)

The advantage of the presented formalism is that the squared Lorentz invariant

amplitude is calculated exactly unlike in ref. [57], where an assumption about its
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dominant constituent was considered. For GGy = G4 = 1 the squared amplitude is
proportional to (P, - Py)(P, - P;), i.e., the structure is similar as, e.g., in the case of the
muon decay.

For the tritium S-decay at rest the differential decay rate is

1 1 )
' = Q—MF(Z, E.) <§ > M| )

spins
(27)*

« d?’pe dgpu dgpf
(2m)?

2E, 2E, 2E;

sW(P,—P;—P.—P)

(3.37)

The factor 1/2 in front of the squared amplitude is for the average over the spin of
the initial state.

The subject of interest is the energy distribution of the outgoing electrons. Hence,
the integration over antineutrino and final nucleus momenta has to be performed in

(3.37). It requires calculation of the following integrals,

Eps dPp,

K = / E—ff B §(Q - P — P, (3.38)
Eps dPp,

(Loyp)f = Tff Z 8"N(Q = Py — P,)(P.y), (3.39)
By dp,

(Nw)?? = Tp;f Ep §N(Q = Py — P) (P (P)°, (3.40)

with Q = P, — P, and k,l = v, f. The detailed calculation of the integrals is given
in the Appendix A.
The differential decay rate is found to be of the form,

dr 1 M? M
— — GAF(Z,E,)p,—t_ om,, —L
dFE, or3 B ( ’ )p (m12)2 \/y (y_'_ " Mz)

X [gvRvv + gagvRav + gaRaa+ + gagpRap

+ gpRpp + gvguRvar + gagnuRan + Gy Rain]
(3.41)

where (my2)? = M? +m2 — 2M;E, and y = E™* — FE.. The maximal electron

energy,

mar __
ET =

o, (M7 +m? — (My+m,)?), (3.42)
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gives value by about 3.4 eV’ lower than the conventional consideration E7"** =
Ey—m,. The energy of 3.4 eV is carried out by the recoiling nuclei. In the calculation
we neglected ¢? dependence of the form-factors as for the 3-decay of tritium the value
of ¢? is rather small. Their consideration would lead only to small correction factors,
which are not sensitive to neutrino mass. It is not of use to present here the explicit
form of all R; (I =VV, VA, AA, AP, PP, VM, AM, MM) factors. Instead of that
the conclusion about their structure and importance is made.

The analysis showed that each term of R; is proportional to
(y+my,(My+m,)/M;) or (y+m,M;/M;). Hence, a common (y +m,My/M;) can be
put in front of the bracket in (3.41) by neglecting a small term m,, /M;. The importance
of different R; contributions can be studied in the limit M; = My, E, = m. and by
making Taylor expansion in m,, m. (m, < m, < M;). The leading terms of different

R; (without the common factor) are

VV: m.M;, AA: 3m.M;, AV : 2m?,

1m? 3 m?
VM: ——¢ MM : ——<  AM: 2m?
2 M’ 16 M’ e
m? 1 m?
AP: 2m6MZ’—2, PP §meMlm

(3.43)

From their comparison the conclusion that in fact the contributions coming from
higher order terms of hadron current to the decay rate can be neglected is obtained.

The electron energy distribution is given as follows,

dr 1 M? M
= —GAF(Z,E.)p,—+— om,, 1
dFE., o3 B ( ’ )p (m12)2 \/y <y+ " Mz)

Mf) M (EE — mg)

X [(gv +ga)y (y +m,

M; 3(mag)t
gy + ga)(y + my Mf]\zmy) (M,ET;%; m2)
x(y + My Mf]\zmy) (M7 ;L;?Ee)
ot = oy (oo ) ) GO 2D
Hovm <y I %f)] | (3.44)

The first term in the brackets in (3.44), which is quadratic in y, plays a subleading
role. By keeping only the dominant contributions and by introducing a mass scale

parameter M instead of the M; and My, we get
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1
53 GoF (2, EJpeEc(gy +393)

Xy (y+2m,) (y+my). (3.45)

The relativistic form of the Kurie function is defined by

Kw)=B (Vo t2m)y+m) . (3.46)

with

GB
B = A/ 2 1 3¢2. 3.47
/—2 3 gy 9ga ( )

The unknown coupling constant g4 of the hadron current is fixed to the half-life of
3H |60, 61] with result g4 = 1.247. This value coincides well with that of the axial-
vector coupling of the free nucleon. Then the 3-strength is B = 3.43 x 107¢ GeV 2.
The numerical factors, 1 and 3, in front of constants gy and g4 in eq. 3.47, respectively,
correspond to the values of Fermi and Gamow-Teller matrix elements obtained in the
conventional nuclear physics description of the process. Further, if y is replaced with
(Ey— E.—m,,), the relativistic Kurie function in eq. (3.46) is reduced to the commonly
known Kurie function given in eq. (3.21).

The plot of the relativistic Kurie function versus y = E™* — FE, near the endpoint
is illustrated in Fig. 3.3. Special attention is given to the effect of a small neutrino
mass (m, = 0.2, 0.4, 0.6 and 0.8 eV'). For the zero neutrino mass the relativistic Kurie
function is linear. Deviation from linearity depends on the magnitude of neutrino mass
m,. Though, there is no difference with the previously known dependences, it is worth
to note that in this case the relativistic form of the -decay Kurie function is used,
which also takes the nuclear recoil into account.

In summary, it is found that the relativistic effects are small corrections to the
results known in the conventional approach due to a small )-value of the process. We
found out that the recoil of the nucleus (~ 3.4 eV') does not yield a significant change of
the endpoint spectra if sub €V mass of neutrino is measured. It is found that there is no
significant modification of the shape of the electron spectra close to the endpoint due
to the nuclear recoil within the considered Elementary Particle Treatment of S-decay

of tritium.
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Figure 3.3: Endpoints of the relativistic Kurie plot [see Eqs. (3.46) and (3.47)] of the
tritium beta decay for various values of the neutrino mass: m, =0, 0.2, 0.4, 0.6, and
0.8 eV.

3.3 Weak interactions beyond the Standard Model

The role of the weak inetractions beyond the Standard Model, e.g. effective scalar and
tensor interactions, is discussed here. It is worth to note that these exotic interactions
appear naturally in theories beyond SM, e.g. within the R-parity breaking SUSY
models. The constraints on the coupling constants of scalar and tensor interactions
are given by the measurements of recoil spectrum in nuclear S-decays performed by
the WITCH experiment at ISOLDE [62]. The theoretical framework used here is the
Elementary Particle Treatment (EPT) of the tritium -decay. The considered approach
allows to perform the relativistic calculation for the electron energy spectrum close to
the endpoint with the nuclear recoil taken into account.

The phenomenological Hamiltonian [63] of weak processes takes the form

Hg = (Hya+ Hs+ Hr), (3.48)

with
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Hya — % gy + )] [y

— [evvs(ga + davs)ve) (v sn] + hec.

Hs = % [e(gs + g57s)ve) [pn] + h.c.
— @ 1 5 / o AL
Hr = leor, (97 + g775)ve| [Do™'n| + h.c.. (3.49)

/3 2

Hy 4, Hg and Hrp are effective vector-axial, scalar and tensor Hamiltonians, re-
spectively. The effective pseudoscalar Hamiltonian can be neglected due to the small
energy release in the decay. gy, g4 4/, gs and gr are vector, axial-vector, scalar and
tensor coupling constants, respectively. Considering the time reversal invariance of the
Hamiltonian the coupling constants g; » are real parameters [62]. The standard V' — A
f-decay Hamiltonian is restored from eq. (3.48) by the set of parameters given as
gy = —gv = —1, ¢y = —ga = 1.269 and g5 = gs = g7 = gr = 0. In addition to the
standard V' — A interaction we add scalar or tensor interaction, respectively:

i) g5 = —gs # 0 and g7 = gr = 0;

ii)gs = g5 = 0 and g7 = —gr # 0.

It is worth to mention that there exist constraints on scalar and tensor coupling con-
stants, gs/gv = 0.0013 and gr/ga = 0.0036 [62], obtained from the WITCH experiment
at [ISOLDE.

For the sake of simplicity the neutrino mixing is neglected here. Within the con-

sidered EPT approach of tritium (-decay the differential decay rate takes the form

1B, = (@nyenar, CoF (2 Epe[Cy-a + Csrl (3.50)

Here, the Cy_4 term in the differential decay rate is associated with the standard
V' — A interaction. The term Cs (Cr) is due to the interference between standard V — A

interaction and additional scalar (tensor) interaction. They take the following form

Cvoa = (94— g0)MiMy(Pe.Ly) + (gv — ga)*(Pe.Pi)(Py-PP)K
+(gv + 94)° PP Ny
Cs = gvgs meM;(P;.P,)K + gvgsmeMy(P; - L,)
Cr = —3gr(9a — gv)meM;i(Py.P,)K — 3g7(94 + gv)me My (P; - Ly),
(3.51)

with the phase space integrals given as
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3, 73
K = Md Py 5(4)<Q_pf —-P)

E; E,
d’py d°p,
(Lvy) = E—ff z 0(Q — Py = P,)(Pyy)’
- *py d®p, .
Wy = [ G @ P - PYRP(E) (3.52)

We recall that P, = (M;,0), Py = (Ef,pf), P. = (Ee,pe) and P, = (E,,p,)
are four-momenta of the 3H, 3He, electron and neutrino in the laboratory frame,
respectively. The () = P+ P, = P,— P, is the four-momentum of the system consisting
of neutrino and recoiling nucleus. The next step is the integration over recoil and
neutrino momentum. Details of calculation are given in Appendix A. The energy

distribution of emitted electrons is given as

( ) V—
dEe A,S
€ V —A7T

12

1
53 G5E0(Z, Ecpev/y(y + 2my) (y + m)
X (Ee(g%, +39%) + meQQ\/gs)

1
55 C5F(Z, Eepe/y(y + 2mu)(y + )

% (E(gy +39%) — mebgagr) -

12

(3.53)

The terms with coupling constants gs (gr) in set of eqs. (3.53) are due to interfer-
ence between the standard V' — A and scalar (tensor) interaction. The subject of our
interest is the impact of these additive terms on the shape of the spectrum. Let us

analyze the terms in parentheses with coupling constants. We have

2

p?
E.(g% +39%) + me2gvgs = me(gy + 393) + 5 (9v + 39%) + me2gvgs
(3.54)
and
2 2 2 2 p2 2 2
E.(gy 4+ 394) — mebgagr = me(gy +392) + i m (9v +3g2a) — mebgagr

(3.55)

The first (constant) term on the right hand side of eqs. (3.54) and (3.55), m. (g% +

3g%), is the dominant one. The second term, kinetic energy of electron, has a maximum
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value of about 18.6 keV within S-decay of tritium. Considering the constraints on scalar
(95 = 1.3 x 1073) and tensor (gr = 2.3 x 1073) coupling constants obtained from the
WITCH experiment [62], a comparison of numerical values of expressions (3.54) and
(3.55) is made.

(i PN
ooy +39a) = e
me2gvgs = 1.33 keV
me6gagr = 8.9 keV.
(3.56)
We get
maz )2
De
(Qm) (9v +393) > me29vgs
P oy g . -
Tme(ngr ga) > mebgagr (3.57)
and eventually we have
Ec(gy +393) > me2gvgs
Ee<9\2/—|—3g124) > me6gng.
(3.58)

We note that the kinetic energy term p?/2m, in egs. (3.57) becomes smaller than
the contribution m.2gy gs (m.6gygr) from the interference of scalar (tensor) interaction
with V' — A for p?/2m,. < 0.23 keV (p?/2m. < 1.5 keV )

By analysis of the structure of (3.53) a conclusion is made that the effect of scalar
and tensor interactions is significantly weaker than the well known V' — A interaction
on the spectrum of emitted electrons in the (-decay of tritium and can be therefore

neglected.

Conclusions

In this chapter, the relativistic calculation of the -decay of tritium in a hadron model
was presented. The elementary particle treatment of tritium [-decay follows from
the analogy between 3H (*He) and the neutron (proton) having the same spin-isospin

properties. It allowed us unlike in Ref. [57] to determine the squared S-decay amplitude
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more accurately. The effects of higher order terms of hadron current and nuclear recoil
are taken into account in this formalism. The relativistic Kurie function was derived
and presented in a simple form suitable for the determination of neutrino masses from
the shape of the endpoint spectrum. By comparing the relativistic and previously used
Kurie functions a good agreement between them was established.

The relativistic form for the endpoint spectrum of tritium [-decay was derived
within EPT approach by taking into account beyond the SM, effective scalar and
tensor, interactions. It was found that these interactions, weaker than the V-A SM
interaction, with the SM interaction cannot produce effects near the endpoint of the
tritium [S-decay spectrum which are of different character from those produced by the
purely kinematic effect of the neutrino mass expected within the SM. These findings

were published in Refs. [V, VIII] given in the List of publications.
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Chapter 4

Neutrino mass and forbidden unique

p-decays of rhenium and indium

The aim of this chapter is to derive the form of the endpoint spectrum of emitted
electrons for the SB-decay of '8"Re, which is needed to extract the effective electron
neutrino mass mg or to place a limit on this quantity from future MARE I and II
experiments. The unique first forbidden [-decay of rhenium is particularly promising
due to its low transition energy of ~ 2.47 kel and the large isotopic abundance of
187Re (62.8%), which allows the use of absorbers made with natural Rhenium.

Recent measurement with Penning traps [64] has established that the S-decay of
151n(9/2+) to the first excited state of 5Sn(3/2+) is a transition with the smallest
Q value (~ 155eV) among [-decays. The theoretical spectral shape of emitted elect-
rons associated with the second unique forbidden S-decay transition 157n(9/2+) —115
Sn(3/2+) is presented.

The Kurie function of these transitions is discussed in the context of neutrino mass

and the Kurie function of superallowed ($-decay of tritium.

4.1 Theoretical treatment of the first unique forbid-

den ($-decay of rhenium

We present the first unique forbidden S-decay of the rhenium here. The subject of our

interest is the process

187R€<5/2+) 187 05(1/2*) +e +7. (4-1)

The energy release of this reaction is the smallest known among all the ground

state to ground state [S-decaying nuclei . The spin-parity change between mother and

34



daughter nuclear ground states, ®"Re(5/2%) =7 Os(1/27), is AJ™ = 27, i.e. this
transition is classified as the first unique forbidden. The change of nuclear spin and
parity is carried out by the emitted leptons involved in the reaction. Therefore, for
the sake of convenience, the lepton wave functions are expressed in terms of spherical

waves,

V(E,, %) = Ug(E,,7) + Up(E.,Z) + Vp(E., ©)... . (4.2)

Here, the indices S, P, D, .. stand for the angular momentum values [ = 0,1, 2, .., i.e.
we adopted the atomic physics notation. The parity of the particular spherical wave
is given by 7 = (—1)!. Considering the first order of G in the perturbation theory of

weak interaction, for the amplitude of the process we get

MRe - _Z\G/—g /df < ‘]faMf|‘]a(Oaf)|JlaMz > \IIE(:Z")/YOJ(:[ - 75)\I/V(f)
(4.3)

Here, the J*(0, %) (see eq. 3.11 for the explicit form) is the nuclear charge changing
weak hadron current. The main contribution to the amplitude arises from the s and p
waves of the emitted leptons. The change of the angular momentum of 2 units can be
achieved either by

i) the emission of the electron in the s; s2-state and antineutrino in the psz/-state
simultaneously, or

ii) the emission of the electron in the p3/e-state and antineutrino in the sy /;-state
simultaneously.

Due to the centrifugal repulsion and small energy release in the above mentioned
reaction (4.1) is the contribution from higher spherical waves of the leptons negligible.
Both of the above mentioned channels for lepton states contribute coherently to the

amplitude of the reaction (4.1). Thus, the amplitude is given as

Mp, = _i%/d:?< Jp, My|J*(0, Z)| i, M; >

x| B @01 = 1) 8P (@) + T (@)a(1 = 95) 0 (F)]
(4.4)
The experimental observable is the energy of electron that is emitted in the rhenium

f-decay (4.1). In order to obtain the electron energy spectrum we have to perform

several procedures that are common for $-decay treatment.
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Figure 4.1: The electron energy spectrum of %7 Re beta decay normalized to the ex-
perimental value of half-life 773’ = 4.35 x 10'* y [65].

Thus, we neglect the recoil effect here for the sake of smallness of energy release
in the rhenium decay. As far as the neutrino is not observed we have to perform the
integration over the neutrino momentum. Subject of our interest is the non-polarized
[-decay of rhenium, i.e. we sum over the spin polarizations of constituents involved
and finally we integrate over the electron momentum direction. After these steps we
end up with the differential decay rate with respect to the electron energy E., that is
measured experimentally indeed. The theoretical shape of electron energy spectrum of
the B-decay of '8 Re is

ar 1
N(E) = —==55G3BRp.E.(E - Ee)\/ (Eo — Eo)? — m?
1
x = <F1(Z, E)p? + Fo(Z,E.)(Ey — E,)* — mg)). (4.5)

with

g 4
T<0sally g 2oum) @ Vil hallRej; > [ (4.6)

Gp = GpVyq, where G is the Fermi constant and V,,4 is the element of the Cabbibo-
Kobayashi-Maskawa (CKM) matrix. p., F. and E; are the momentum, energy, and

maximal endpoint energy (in the case of zero neutrino mass) of the electron, respec-
tively. R is the nuclear radius. The Fermi functions Fy(Z, E) and Fi(Z, E) in (4.5)
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are present due to a distortion of the s;/, and the ps; electron wave states in the
Coulomb field of final nucleus, respectively. We note that due to the fact of the first
unique forbidden transition there is only one nuclear matrix element involved. The
value of nuclear matrix element in (4.6) (B = 3.573 x 107%) can be determined from
the measured value of half-life 777" = 4.35 x 10'% of the S-decay of '*'Re [65].

However, it is the shape of the electron energy spectrum, especially near the end-
point, that is so important for the neutrino mass estimation. The area beneath this
spectrum negligibly depends on neutrino mass.

It is worth to mention that derived theoretical shape of the electron energy spectrum
of 18" Re B-decay (4.5) has not been presented with relativistic electron wave function
previously. The shape of the electron energy spectrum is shown in Fig. 4.1. It was
already found out by the experiment [66] that the electrons are preferably emitted in

the p3/o-wave state. In forthcoming, we present the reasons that clarify the electron

p-wave dominance in case of rhenium (-decay.

4.2 The dominance of electron p-wave in the first unique

forbidden ($-decay of rhenium

The differential decay rate of 3-decay of ¥" Re (4.5) with respect to the electron energy

is found to be a sum of two contributions.

dr dTse drps
dE. _ dE. 4B, (4.7)

where dI'*1/2 and dI'P3/2 are the individual parts of differential decay rate associated

to electrons to be in the s;/; and p3/, wave states, respectively. It is noteworth that
the interference between electron s- and p- wave states does not appear in the decay
rate due to the fact that these are two distinguishable physical states. The explicit

form of these particular parts of differential decay rate is given as

drsz B i
- B e BB B (-2 -m)”
(4.8)
and
dl'P3/2 B
dE _ @ G% R2 pg Fl(ZgEe) Ee (EO—EQ)\/<EO_E6)2—m%
(4.9)
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Figure 4.2: The particular decay rates associated with electron s;/, and p3/, wave

states normalized to unity versus electron kinetic energy in rhenium [-decay.

The notation used here is the same as in the previous section. The particular
differential decay rates (4.8, 4.9) normalized to unity are shown in Fig. 4.2 as a function
of electron kinetic energy. We see that the partial decay rate associated with electron in
p3/2-state is rather smooth function and becomes dominant especially near the endpoint
that is crucial for neutrino mass estimation.

One can naturally asks what is the relative strenght of the individual parts of the

decay rate entering to the rhenium [-decay rate. For this purpose it is convenient to
define

T2 /dE,

R(Ee) - drp3/2/dEe’

(4.10)

the ratio of the individual parts of differential decay rate (4.8, 4.9) as a function of
the electron energy. The ratio 4.10 allows to see the relative strength as a function of
energy for the whole energy region of few keV interesting for case of rhenium (-decay.
The function (4.10) is shown in the Fig. 4.3 against the electron kinetic energy. As
far as we might see the electron s;/, wave contribution to the decay rate is negligible
with respect to the ps,, wave contribution. In addition, for the ratio of decay rates

associated with p3/» and s;/5 electron waves we get

5172

['P3/2

= 1.011 x 1074, (4.11)
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Figure 4.3: The ratio of the particular differential decay rates associated with electron

in s1/; and p3/, wave states versus electron kinetic energy for the rhenium j3-decay.

with

EO FSl/Q
T2 = dEe (d )

0 dI'P3/2
[Pz = dE,
oo ()

This result means that the electron p-wave is dominant in the S-decay of rhenium,

(4.12)

fact that can be seen from the energy behavior of the ratio defined in eq. 4.10 also.
In order to understand the dominant behavior of the particular differential decay
rate dI'’3/2 /dE, associated with the electron emission in p3/, wave state we start our
analysis with the plane wave limit for the sake of simplicity. In more detail, we "switch
off" the electromagnetic interaction between the emitted electron and the final nucleus.
This limit also establish the symmetry between the two emitted leptons with the rest

mass being the only difference. By use of the property of the Fermi functions

lim Fu(Z,E.) — 1 (4.13)

aZ—0

we obtain for the electron energy spectrum in plane wave approximation (PWA)
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dar ) 1
— G2BRX.E.(E, — Ee)\/(EO —E)?—m?
(dEe PWA 2737 ’
1
X 3 (p2+k), (4.14)

with the square of neutrino momentum obtained from the energy conservation of

the process (4.1), given as

k= (Eo — E.)* —mj. (4.15)

The differential decay rate is expressed with respect to the electron kinetic energy
that is observed experimentally indeed. The integration over the neutrino momentum
and direction of electron momentum was already performed in (4.14).

The individual parts of the decay rate (4.8, 4.9) in the limit of no Coulomb inter-

action take the following form
( dr’ ) B (dFSlm) N (dFPS/Q)
dE, PWA dE, PWA dE, PWA
dst)
= CS<E6> k12/
( dEe ) pya

dI‘P3/2)
- C.S'(Ee) pgu
( dEe PWA

(4.16)

where the common function is defined as

1
CS(Ee) = %G%BR2])6E6(EO — Ee)\/<E0 — Ee)2 — m%
(4.17)
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Figure 4.6: Relativistic Fermi functions for £ = 0 and k£ = 1 as functions of electron

energy E, in energy interval relevant for the S-decay of %7 Re.

We see that both individual differential decay rates contain common function given
in eq. 4.17. The particular differential decay rates associated with electrons in s;/, and
Pp3/2 states in plane wave approximation (4.16) are obtained by multiplying the function
(4.17) with square of neutrino (k2) and electron (p?) momenta, respectively. Tt is clear
that behavior of particular differential decay rates in plane wave approximation obey
the behavior of lepton momenta. Therefore it is worth to turn more attention to lepton
momenta as a function of electron energy.

The Q-value (~ 2.5 keV') is the maximal kinetic energy of electron (and neutrino
simultaneously) that might be achieved in the decay. The @-value in the rhenium decay
is rather small with respect to the electron rest mass but still large with respect to the
recent upper limit on neutrino rest mass(~ 2.2 eV). As a consequence: i) the maximal
neutrino momentum (energy) is ~ 2.5 keV. ii) the maximal electron momentum is
~ 50 keV. However, it is worthmentioning that neutrino and electron do not achieve
the maximal momenta (kinetic energies) simultaneously. From energy conservation
follows that if electron reaches maximum kinetic energy, neutrino is at rest and vice
versa. For the sake of completeness the electron and neutrino momenta versus the
electron kinetic energy are illustrated in Figs. 4.4 and 4.5, respectively. It is obvious
that electron momentum dominates over neutrino momentum for almost the whole
energy region with only exception in the low energy region.

We see that the kinematics is enhancing the electron p-wave contribution to the

decay rate.
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However, the electromagnetic interaction between the emitted electron and final
nucleus takes place, eventually. Therefore, we have to investigate the behavior of
relativistic Fermi functions Fy(Z, E.) (k = 0,1) at least in the few keV region that
is interesting for the case of rhenium [-decay. The explicit analytical form of these
functions is given in (B.14). We would rather point out the behavior of the relativistic
Fermi functions versus electron energy that is illustrated in Fig. 4.6. It is clear that the
Fermi function Fi(Z, E,) associated with ps/, electron waves dominates over the Fermi
function Fy(Z, E,) associated with sy, electron waves for the energy region sufficient
for the rhenium [S-decay.

In summary, we found out that electrons in rhenium S-decay are emitted preferably
in ps/p-wave states. This can be understood as a direct consequence of small Q-value
in rhenium [-decay. The fact that ()-value is small with respect to the electron rest
mass and yet still large with respect to neutrino rest mass limit allow us to see the
electron p-wave dominance in the reaction. There are two reasons for the enhancement,
of electron p-wave. These are: i) the kinematics of the reaction and ii) relativistic
Fermi functions behavior in low energy region. These two effects sum up coherently

into the decay rate.

4.3 The Kurie function

The Kurie function (3.21) has been introduced in order to resolve the issue of neutrino
mass non-zeroness. For the allowed [-transitions the nuclear matrix elements are in-
dependent of the energy carried out by emitted electrons. Therefore, they contribute
only as a scaling factor to the differential decay rate and henceforth do not change
the shape of the electron energy spectrum. On the contrary, for forbidden transitions
the nuclear matrix elements are dependent on energy [67]. In spite of this the Kurie
function (3.21) deviates from linearity even for zero neutrino mass. Nevertheless, as
becomes clear in forthcoming, we define the Kurie function for the rhenium g-decay in

a standard way

K(Eamo) = [ (115)

The behavior of the Kurie function (4.18) defined is shown in Fig. 4.7 against the
electron kinetic energy for the zero neutrino mass in case of rhenium [-decay. As a
surprise, one may see that it is a straight line, within a good accuracy, crossing the

energy axis at the endpoint.
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Figure 4.7: The Kurie function versus electron kinetic energy for rhenium g-decay in

case of zero neutrino mass.

In order to understand this result we present here our analysis of the behavior of the
Kurie function (4.18). The explicit analytical form of the relativistic Fermi functions
Fy(Z, E.), taking into account the Coulomb interaction between the emitted electrons

and final nucleus, lead us to the following approximation

2
peFl(Zu Ee) 2 (Ee - me)

< 1+2—=|. 4.19

F(](Z, Ee) me + ( )

We note that the maximal electron kinetic energy (Q-value ~2.5 keV) with respect

to the electron rest mass is of the order of ~ 1% and therefore the ratio (4.19) can be

approximated as a constant wihin a good accuracy. Neglecting the electron s/, wave

contribution to the decay rate we define for the rhenium S-decay

_ GsVB E.)
5 \/ ; Fo Al (4.20)

Here, the B stands for the nuclear matrix element defined in (4.6). Considering

aforementioned we assume the factor in (4.20) to be a constant. We might turn back to
the linearity of Kurie function for the rhenium (-decay at this point. However, before
we proceed further, we would like to point out the explicit form of the experimental
observables, e.g. electron energy spectrum and Kurie function, in case of three neutrino
mixing here. For the sake of simplicity we assume the normal mass hierarchy of neutrino

masses (mgz > my > my). For the electron energy spectrum we then get
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Figure 4.8: Endpoints of the Kurie function of the rhenium S-decay for various values
of the effective neutrino mass: mg =0, 0.2, 0.4, 0.6 and 0.8 eV.

dl’ & ZG%Vqu 2 2 2
N(B) = 2= ; Uk P28 B B (o — B\ (B = Eo)? = m
1
x 3 [Fi\(Z,Ee)p2 + Fo(Z, E.)((Ey — Ee)? —mi)] 0(Ey — Ee — my,).
(4.21)
The nuclear matrix element is the same as in (4.6).
The Kurie function for forbidden S-decay of rhenium takes the form
K(y) = By mi |[UalVyly+2m)
HUeo*v/(y + my — ma)(y + my +ma)b(y +my —ms)
1/2
Ui/ Ty 1 = ma) (y 1+ )0y +m1 = my)|
(4.22)

with y = (Ey — E. —my) > 0 as the independent variable instead of electron energy
E. and 0 is the common step function.

For the recent rhenium [-decay experiments is the energy resolution far beyond
the limit to see the effect of small differences of the neutrino masses m; — m;. It is
well possible to estimate the mass of neutrino below the energy resolution of detectors

my < 0F. For the Kurie function we obtain the following form
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1/2
K(y) = Br. (<y+m5> y<y+2m5>) , (4.23)

where mg is the effective mass of electron neutrino.

The Kurie function (4.23) is illustrated in Fig. 4.8 for various neutrino masses
versus y near the endpoint. We see that for zero neutrino mass the Kurie plot is linear
function.

We come to the conclusion, that the Kurie function of rhenium [-decay reveals
the same functional dependence on neutrino mass, near the endpoint, as those for the
allowed p-transitions. These findings are important for the planned experiment MARE

IT that aims to reach sub eV sensitivity.

4.4 Second unique forbidden S-decay of indium

In this section the theoretical spectral shape of emitted electrons in the second unique
forbidden [-decay,

1orn(9/27) = "5n(3/27) +e” + 7, (4.24)

is presented. Recent measurements performed with Penning traps showed that the
Q-value of this reaction is the smallest known ~ 155 eV [64].

The spin-parity change between the ground state of 11°In(9/2%) and the first nuclear
excited state of 155n(3/2%) is AJ™ = 37. Hence, the S-decay of "5In to the first
excited state of °Sn is classified as the second unique forbidden transition. The
emitted electrons and antineutrinos are expected to be, respectively, in ds/- and sy /o-
states, ps3/o- and p3/o-states and s;/o- and ds/o-states.

The (3-decay rate is a sum of contributions associated with the ds/, p3/2 and s1/9

wave electrons (see B). We get

3 G2
Z ek‘Q 6 BlnpeE (EO - Ee)ku

©|H»—t

X = (peFs(Z, Ee) + Ap’k.F\(Z, E,) + ko (Z, E.)) 6(Ey — E. — my,).
(4.25)

Here, k, = \/(Ey — E.)? —m2 is the neutrino momentum. Fy(Z, E.) (k—1,2,3) is

the relativistic Fermi function. By, takes the form
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Figure 4.9: The single electron differential decay rate normalized to the total decay

rate versus electron energy E, for 3 transition '57n(9/27) — 158n(3/27).
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2

B, = g_A
10

<1 Sn<3/2+>||\/% S™ 12 {ou(n) @ Ya(n) Yo P In(9/27) >

(4.26)

It contains single squared nuclear matrix element due to the uniqueness of the decay.
Its value can be determined from the measured half-life of 15In(9/2%) — 1155n(3/27)
transition. g, is the axial-vector coupling constant. r, is a coordinate of the n-th
nucleon.

In Fig. 4.9 the single electron differential decay rate normalized to the total decay
rate is shown as function of electron energy. This quantity is free of the nuclear matrix
element of the process.

By performing numerical analysis of partial decay rates associated with emission
of the ds/2, ps3/2 and s/, electrons (terms associated with Fy(Z, E.), Fi(Z, E.) and
Fy(Z,E.) in Eq. (4.25), respectively) we conclude that about ~ 10° times more dso-
state electrons are emitted when compared with other -state electrons. The reason for it
is a small @-value resulting to a fact that maximal electron momentum (~ 12.6 keV)
is much larger than the maximal momentum of neutrino (~ 155 eV’). In addition,
Fy(Z,E.) > Fi(Z,E.) > Fy(Z,E.) for E, — m, < Q. Thus, one can safely neglect
small contributions to the total decay rate given by an emission of the ps/»- and sy /-
state electrons.

For a normal hierarchy of neutrino masses with ms > msy > m; the Kurie function
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of the unique second forbidden S-decay of '5In is given by

dr'/dE,
K<y) B \/peEeFO<Z7 Ee)
= By | Ul Vyly +2m1)

HUeo*V/ (y + my — mo)(y + my + ma)0(y + my — mo)

1/2
HUes |V (y +my — my)(y +mi +mg)0(y +mi —mg)| ,  (4.27)

with

o GB\/BIn lngé(Z’ Ee)

B, )
! o \| 9 Fy(Z, E.)

(4.28)

and y = (Ey— E.—my) > 0. With a good accuracy the factor By, can be considered
to be a constant.

For the degenerate neutrino mass region (m; ~ my =~ mgz =~ mgy with mg =
Sy |Ueil*ms) we get

K(y) =~ B <(y +mo) v y(y + 2mo)> v : (4.29)

where y = (Ey — E. — mg). We see that the Kurie function for unique second
forbidden S-decay of '!*In is linear near the endpoint for mo = 0. However, the
linearity of the Kurie plot is lost if myq is not equal to zero.

In summary, for the second unique forbidden -decay of '°In to the first excited
state of 1155n, the theoretical spectral shape is presented. The decay rate of this process
is a sum of particular decay rates associated with emissions of ds/o-, p3/2- and sy jo-state
electrons with a clear dominance of the ds/o-state contribution. The Kurie function,
defined by Eq. (4.27), coincides up to a factor to the Kurie function of superallowed
[-decay of tritium.

Conclusions

The theoretical spectral shape of emitted electrons for the first unique forbidden S-
decay of ¥"Re to the ground state of '87Os was presented. The decay rate of the
process was found to be a sum of particular decay rates associated with emissions of
s1/2 and p3/; electrons, which depend in a different way on the neutrino mass. The p-

wave emission dominates over the s-wave. Kurie function for the rhenium S-decay was
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derived. It was shown that the Kurie plot near the endpoint is within a good accuracy
linear in the limit of massless neutrinos like the Kurie plot of the superallowed (§-decay
of tritium.

The theoretical spectral shape for the second unique forbidden -decay of '°In to
the first excited state of ''°Sn was presented. Our investigation showed that in this
transition electrons are predominantly emitted in ds/, partial waves. In addition, it was
found that the Kurie function associated with this transition near the end point within
a good accuracy reflects a behavior the Kurie function of superallowed [-transitions.

Based on these findings we conclude that behavior of the Kurie function of an
arbitrary n-th unique forbidden -decay with sufficiently small Q)-value is to a good ac-
curacy the same as the behavior of Kurie function of superallowed g-decay transitions.

These findings were published in Refs. [I-IV,VI,VII] given in the List of publications.
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Chapter 5

Double f-decay within Single State

Dominance hypothesis

The main interest in the double § decay is connected with the neutrinoless mode as
a probe for physics beyond the Standard Model of electroweak interactions. On the
other hand, the detection of double S-decay with emission of two neutrinos, which is
an allowed process in the SM, provides the possibility for experimental determination
of the corresponding nuclear matrix elements.

A subject of interest is the Single State Dominance (SSD) hypothesis proposed by
Abad et al. [68], which suggests that the amplitude of 2v(3-transition, where the
ground state of intermediate nucleus is 17 state, is determined by two step transition,
which connects initial and final states through this 1" ground state of intermediate
nucleus. A discussion is given on possible realization of the SSD hypothesis in the case
of the two-neutrino double 3-decay of ' Nd with 1~ ground state of the intermediate
nucleus °°Pm,

The characteristics of the 2v36-decay of ONd, e.g. half-life and energy distribu-

tions of emitted electrons, are derived within SSD hypothesis.

5.1 Theoretical description of the double S-decay

We present here the derivation of decay rate of the double g decay. The subject of our

interest is the two-neutrino double [-decay,

(A, Z) = (A, Z+42)+2e + 2. (5.1)

This reaction is governed by th Hamiltonian of weak interaction given as
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(A,Z-2)

Figure 5.1: The Feynman diagram of the two-neutrino double -decay process.

Gs _, | 4 ,
H (x) = —2e(x)y" (1 = 75)ve()ja(@) + hoc.. (5.2)
V2
Here, Gg = Grcosfc is the weak interaction coupling constant. G and f¢ are
Fermi constant and Cabbibo angle, respectively. e(z) and v.(x) represent the electron

and neutrino field. The free hadron current takes the form

Ja(®) = p(2)7algy — gavs)n(z). (5.3)

Here p(x), n(z) are the proton, neutron fields respectively and gy = 1 and g4 =
1.269 are renormalization constants of vector and axial-vector hadron current, respec-
tively.

Double [-decay is a second order process in theory of weak interaction given by
Hamiltonian (5.2). Therefore, the relevant contribution to the S-matrix element is

given as

A2 . :
@ _ ¢ 2@) /dx1dl’2T [Hﬁ(:m)"HB(:1:2)6*@I(Hh(zHHM(Z))dZ : (5.4)

H"(z) a H"7 (x) stand for the Hamiltonian of strong interaction and electromagnetic
interaction of hadrons, respectively. The strong and electromagnetic interaction is
considered here exactly.

The Feynman diagram for this nuclear process is illustrated in Fig. 5.1. For the

initial and final states we may write
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li> = |A>
lf > = l|e(per), e(pe2), V(k1),D(kya), A" >
= M (per)c (pea)d (ki)' (Ki2)| A" > . (5.5)

Here, |A > and |A’ > denote initial (A, Z) and final (A, Z + 2) nucleus. p.; and
Pea correspond to the electron four-momenta and k,; and k., stand for the neutrino
four-momenta, respectively. For the electron and antineutrino operators, ¢ and d', the

anticommutation relations are given by

CT(pel)CT(pEZ) = _CT(pEZ)CT(pel)
d'(k)d (ko) = —d (kyo)d (ko). (5.6)

For the matrix element of the two neutrino double S-decay we have

2
< F18@}; 5= | 2” X

[ i o <elp).elpis), 7lbn) D), ANT [1], 00 (52)] 1450
(5.7)

with

8 (oG8
Hh.r.(x)_\/é

Here, J,(x) is the weak hadron current in Heisenberg representation. We have also

e(@)* (1 = 7)) Ju(z) + hec-. (5.8)

used the relation

out < A/|T(H£r.(l‘1)H5_r_(l‘2))|A >in
=< A|T(HP () HP (5)e~ /" @+H @)dey) 4 (5.9)

For the sake of simplicity we will omit the indices "in" and "out". In order to
perform the integration over the time we have to rewrite the T-product with help of

the step function defined as



The T-product can be expressed as

T(H}], (x1)H}), (22)) =
O (w10 — 220)H, , (21) H),, (2) + (220 — 210) Hy, . (02) HY,, (1) (5.10)

It is worth mentioning that both terms of the expressed T-product contribute
equally to the double -decay matrix element (5.7). We shall take the advantage of
the completeness of states (>, |n >< n| = 1) of the intermediate nucleus (A, Z + 1).
Moreover, the nuclear states of parent, daughter and intermediate nuclei are eigensta-
tes of the nuclear Hamiltonian H. Considering the time dependent form of the hadron

current operator in Heisenberg representation given as

Ju(z) = e (0, 7)e w0 (5.11)

with the above mentioned considerations we get

e(per), e(pez), Pk ), P(kia), A'[H,, (w1) H},, (22)| A >=
( ) (Ee1+Evi1)z10 (Ee2+Eu2)I20 %

\i’(flapel)%(l - 75)‘130(51, k‘u1) ‘I’(fz,PeQ)%(l - 75)‘190(52, kuZ) X
D elBrmEnmo giEn=Boro < A'|JH0, 2 )|n >< n|J"(0,75)|A >

—(Pe1 > De2) — (ku1 > ku2) + (De1 € Pe2) (ku1 < ku2). (5.12)

E;, E; and E, are the initial, final and intermediate nuclear state energies, respec-
tively. The sum ) runs over all discrete states of the intermediate nucleus assuming

their completeness. By use of adiabatic switch off of interaction at infinity (zq — $00)

0 0 .
. . . —1
e"“Tdr = lim @~ I — lim
—c0 00 e—=0q — @5

e—=0 |
/ e dr = lim | e @97 r = lim —— (5.13)
0 e=0 Jq e—=0aq — 1€

we may perform the integration over the time variables. We end up with
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@)2

V2

< f|S®)i >=i 270(Eo1 + By + B,y + Epp + Ef — E;) (

D En—E + B+ By
(5.14)

/dﬁdfﬂ’(fl,pel)%(l — 95) (L1, k1) W (T, pe2) (1 — v5) (T2, ko)
< A'|JH(0,71)|n >< n|J¥(0,22)|A >
_(pel ~ p62> - (kul <~ ku2) + (pel <~ pe2)(k1/1 ~ ku2)-

For the sake of simplicity we introduce the following approximations as far as they

will not reduce the value of further results.
i) We consider only the s1/5 and py/, electron waves and s;/, neutrino wave (see

a(Z +2) T
— 5 o7 R

App. B).
~ F(Z+2E,) (1+ )

(2T, k) ~ u(—k,).
Z is the lepton coordinate vector and R is the nuclear radius.

ii) The non-relativistic approximation of hadron current is given as
(5.16)

Ju(0,7) = ZTrJﬁ[Quo + 949k (T k)0 (T — Zpn),

where the sum is running over all nucleons.
first excited state 2] of daughter nucleus. Due to the previous assumptions on lepton

iii) The subject of our interest are only the transitions to the ground state 0" and
wave functions these transitions can be realized only via the 0%, 17, 0~ and 1~ states
of the intermediate nucleus.

By use of the relation
F-a7-b=a-b+7- ( (5.17)

for the transitions 0t — 0 and 07 — 2 we get
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G 2
< f|S(2)|Z >=9 (762) 27T5(E61 + FEo+Eq+ FE+ Ef — Ez)

X\ Fo(Z +2,E)\/Fo(Z + 2, Ee)

1 1 1 1

\/QEel \/2E62 \/QEVI \/2El/2
XU(Pe1) V(1 — v5)u(—ku1) W(pe2) Vo (1 — v5)u(—Fku2)

[0 MO (I4) + gt g M ()
_<pel <~ pe2) - (kul < ku2) + (pel ~ pe2)<kul <~ ku2)7

(5.18)
with
< JHO(TNIT™ n >< I™,n|O(T™)|0] >
Moy =y SO 0(T7)
En - E@ + EeQ + EI/2
JT=0t,0- n
< JF 0TI n >< T, n|Oy(T7)|0] >
ACRIEED DD DES —
Jr=1+1- n En - EZ + EeZ + EV2
(5.19)
The transition operators are given as
O0") = Y mh O17) =ga) 7h (Fm)y
B o’ 4 Tm Om
o0 = o) T ().
B aZ’ 1., . .
Or(17) = (T) zm:T;E (T, — gaZm X )}, - (5.20)

Here O(0") and Ok(17) are the operators of Fermi and Gamow-Teller transitions.
O(07) and Ok (17) are operators involved in the first forbidden f-decays. Z’ stands for
the proton number of final nucleus (2’ = Z + 2).

We shall take the advantage of the Fierz transformation (for details see Appendix

C) in order to recouple the electron and neutrino spinors together

U(pe1)Vu(1 — v5)u(—ku1) w(pe2) V(1 — v5)u(—ky2) =

— () (1 +95)u(—pea) W)L = 5)u(—hie)
+%U(pe1)0aﬁ(1 + Vs )u(—pe2) lki1)1w0apVu(l — 75)u(—ku2). (5.21)

For the double -decay amplitude we then have
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< fI8P)i >=210(Eu + Euy + Ey + Eyp + Ef — E;) x

—i [ G\’ 1 1 1 1
— (=2 VF(Z', E.)\/Fo(Z', E. x
2 < \/ﬁ) \/ 0< 7 1)\/ 0< 2) \/2Eel \/2E62 \/2El/1 \/2E1/2

[(/C(O) + LO)u(per) (1 + 75 )u(—=pe2) w(kn) (1 = 75)u(—ky2)

(KO — £0)

_#60761)00%(1 + v5)u(=pe2) w(k1)v00asY0(1 — v5)u(—Fku2)

H(KD + L)) (1 + 75 )u(—=pea) @lko)V 7 (1 = 75)u(—ky2)

_%ﬂ(pel)aag(l + 75)”(—}?2) ﬂ(kul)')/laaﬁ’yk(l . ’)/5)U(—/{:V2) ’

(5.22)
with
KO = > N < JHOIM)T" n>< T, 00T} > K,
JT=0+0- n
O = N N < JHOWINITT n>< TT,n|0(T)|0f > Ly,
JT=0t,0- n
K= Y D < IOWIITT e >< T nlO(T ) of > K,
Jr=1t1- n
£y = 3 S < HHOWTNT o >< T n|O(T0F > L.
jw:1+,1— n
(5.23)
The energy denominators are given as
K, — 1 n 1
En_Ei+Eel+EV1 En_Ei+E62+Eu2
1 1
L, = + : (5.24)
En_Ei+Eel+Eu2 En_Ei+E€2+EV1
For the differential decay rate the relation,
dr” = Y | < fIS|i > [22n6(E; — Ef — Eey — By — Eyy — Ep)
spins
Ay dp.y dk,y dk,
Pe1  GPe2 1 2 (5.25)

(2m)% (2m)? (2m)? (2m)*"
holds. We recall the relationship between the total decay rate and half-life for the

sake of completeness.
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In2

Ty,

% = (5.26)

5.2 Double 5-decay to the 0 ground state

We present here the half-life of the double S-decay to the 0 ground state of daughter

nucleus. Based on the calculations presented in previous section (5.1)we may write

me

(T, (0+))

for the half-life. The integral is given as

1 E;—Ef—me
I2y(0+) = _9/ dEelFO(Z/aEel)pelEel X
me

Me

Ei—E;—FEe1 ) E;—Ef—FEe1—Eea o ) )
/ dEeZFO(Z aEeZ)peQEeQ/ dEVlEulEu2|M V(O+)| .
0

Me

(5.28)

Here, the neutrino energy, following the energy conservation law, is given as F,, =
E;—E;—FEq—FEen—E, . p. = |pe| stands for the electron momentum. For the matrix

element of nuclear transition we have

(MO0 = [MP(0F) + MO (092 + 3|M(07) — M (01)] +
M%) + MO~ M 07) — M (07) +
2Re{ (M (07) + M;” <o+>><MK’<o )+ M (0%))} -
2Re{ (M (0%) — M7 (0%)) (M (07) — M (07)},
(5.29)

with

MP (0% = ML (0%) + MY (0%)
Y S <0HoWIITT > < TTLalloT 0} > K,

JT™=0t,0- n

M (OF) = M) + My (0)
D < 0HIOWITINTT =< T ]| O(T)0f > K. (5.30)

Jr=1+1- n
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When replacing K, with L, in M2 (0), MY (01) we get M (01), MV (0+).

The presented form of half-life in (5.27) includes the forbidden S-transitions through
the intermediate nucleus. Also, he exact energy dependence of the energy denomina-
tors have been kept so far. The [-transitions MI(?;)(OJF) and Ml((lv_L)(OJr) enter to the
double f-decay matrix element of Fermi (MI(?;)(OJF)) and Gamow-Teller (Mg?(D*))
throughout the 0~ and 1~ states of intermediate nucleus. We neglect the double Fermi
matrix element due to the fact, that initial and final nuclei belong to the different
isospin multiplets [69]. The matrix elements M I(g_L)(O*) and M 1(<1,_L)(0+) associated with
the forbidden transitions are suppressed by a factor ((aZ’)/2)? with respect to the
allowed transitions connecting the intermediate nucleus states with ground states of
initial and final nuclei. This suppression has its origin in p; /5 electron wave function
that has to be included in order to change parity between the state of intermediate
nucleus and ground state of mother and daughter nucleus (07). The suppression for
typical double [-decaying nuclei is roughly ~ 1/40.

There exist an approximation that replaces the energy of leptons with a mean value

associated with the energy release of the decay.

Eei + EV] ~ A.
(5.31)

Here, i, 5 = 1, 2. This approximation is called the energy denominators closure and
its advantage is the denominator indenpendence of lepton energies. Taking into account
this advantage we can write the half-life (see 5.27) as a product of the phase space
integral and nuclear matrix element. By the use of the above mentioned approximation

we get

[M2(04)[2 = [M@(0F) + MW (0F)[?

2
+ 0 g g g +
_ N\ <07 ||O(IT T ™ ;n><T ™ nl|O(T )]0, >
- 223W=0+,0—,1+,1—< 1) Zn En—E;+A

(5.32)

The energy denominators closure is usually involved in case when considering Higher
States Dominance (HSD) hypothesis, i.e. when the main contribution to the double
[b-decay matrix element comes from higher lying states of intermediate nucleus with
spin and parity 1*. Considering only the sy, electron wave states and neglecting the

double Fermi matrix element due to isospin symmetry we have
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[M(0F)]* = gl Mgz (07)[?

<01 X Tmoml[1F,n >< 1%l 32, 70w 107 >

= 4gi | E,—E +A

n

The half-life is then given as

Me

= 3o (Gam2)* ghlme MER(0F)[PT2(0),

(T2,(0%)) "

with the phase space integral given as

1 E,’—Ef—me

JZV(O+) = —/ dEelFO(Z/a Eel)pelEel X

11
me

me

Ei—Ef—FEe Ei—Ef—FEec1—Ee2
/ dEeQFO(Z,a EeQ)pEZEeZ / dEulEglEl%Q-
0

me

5.3 Double -decay to the 2] excited state

2

(5.33)

(5.34)

(5.35)

The aim of this section is to present the half-life of the double [-decay to the first

excited state (2]) of daughter nucleus. Based on the calculations presented in previous

sections (5.1,5.2), for the half-life we may write

Me

— G 2\4 IZV 2+

(T2,(2%))

with the integral defined as

1 Ei—Ef—me

[21/<2+) - 9 dEelFO<Z/7 Eel)pelEel X
me

me

Ei—Ef—FEe Ei—Ef—FEec1—Ee2
/ dEe2FO<Z/7 Ee2>pe2Ee2 / dEulEf1E32\M2y(2+)\2-
0

me

The matrix element of the transition 0t — 2% is given as

v 1 1
|MZ (202 = |MP(27) — MY (2H),
with

o8

(5.36)

(5.37)

(5.38)



1 1+ 1~
M (2%) = Mg )(2%) + My (2) =
1 s s s s
7 2 2 <HIOENT e < Tl OFINO] > K (539
Jr=1+1- n
Replacing K,, with L, from M’ (2+) matrix element we get M (21).
By introducing the replacement of energy of leptons with the half of the energy

release of the decay we have

4(Eel - Ee2)2(El/1 - Eu2)2
myg

4(Eel - E62)2(EV1 - Eu2)2

M (20 = (MO 27)?

my
<27 [|OITMIIT™ n >< 7, n||OIT")||07 >

iy Y Lnos s

j’f 1t1— n

(5.40)

As previously we consider only the s;/5 electron wave function. So we get

|M?(21)]? = 4(Eet — Ee2)* (Bt — Eu2)*gal MET(27)?
= 4<Eel - Ee2)2(Ez/1 - Eu2)2gf/%1 X
hon||1T,n >< 1% n|| > 7hon||07 >

210>
ﬁ; (E,— E; + A)°

2

(5.41)

The half-life then takes the form

me

= 7105 (Game)'galm? Mz (27)) T (27), (5.42)

(T7h(29)

with the phase space integral defined as

oy n 1 FE, Ef Me ,
‘] (2 ) = &5 dEelFO(ZaEel)pelEel X

15
me

Me

E;—Ey
/ dEeQFO(Z/a EeQ)pEZEeZ(Eel - E62)2 X

me

E Ef el EeQ
/ dE, E% E% (B, — E,»)°. (5.43)
0
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5.4 Nuclear electron capture and S-decay

The aim of this section is to present brief exposition of nuclear single f-decay and
electron capture on nuclei in order to show the connection between nuclear matrix
elements and the log ft values. The advantage of the results gained herein will become
more obvious in theoretical treatment of the double g-decay within SSD hypothesis.
We will omit some details of the theoretical description of the single S-decay because
the theoretical treatment of single S-decay is presented in Sec. (3.1) for the tritium

decay.

Nuclear p-decay

We present here the derivation of the single S-decay half-life. The subject of our interest
is the nuclear S-decay with the change of spin and parity AJ™ = 1%, 1~ between initial
and final nuclei. Therefore we consider the electron s/, and p;/, wave functions only.
The non-relativistic hadron current approximation is also taken into account. For the

transitions J]" — Oj{ the f-decay amplitude is given as

G
< fISV)i> = —iLor§(E,+E,+E; — E;
IS 7 ( f )

(5.44)

with

MY =< 01|04 > (5.45)

7' is the proton number of final nucleus and operators O(1%) are the same as in
(5.20). For the half-life we eventually get

[T52<Jz‘m - O}L)} =

me 1 1i
m (G6m3)2 (2J_|_1Bé )) fﬁ(Z/7El_Ef) (Wlﬂf::tl)

(5.46)

The phase space integral is here included in the Fermi integral function
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Table 5.1: The matrix element values of transitions 'Tc(1/,) — "Ru(0/,) and
BOPm(1,,) — °Sm(0],) are presented here with the use of eq. (5.49). Z’is the

proton number of final nucleus [70].

Transition E;—Ef [MeV] Z' Ty [s] |<0T|JO1%)|1% >
100e(1+) = 100 Ry (0F) 3.713 44 1538 0.695
150 P (17) = 1908m(0+) 3.965 64 9648 0.0159
1 E;—Ey
f3(Z' B, — Ey) = —/ dE.Fy(Z', E)p.E.(E; — E; — E,)?, (5.47)
m Me

that depends on the proton number Z’ and the energy release of the reaction. The

[-strength is given throughout the value of matrix element as

BY" = |<ofllo@iis > (77 =1*17). (543)

The above presented calculations are helpful tool for the experimental estimation
of the single $-decay matrix element. Collecting previous results we finally may write

for the matrix element

+ ™ + _ 3D
|< 0FIlOITMIIE >| = \/fg(Z/,Ei—Ef)Tl/Q' (5.49)

Inserting the known @-value and half-life T}/, into the eq. (5.49) we extract the

bare value of the nuclear matrix element. The D = (27°In2)/(G%m;) is a constant
factor.

The two nuclear transitions
107c(17) — "Ry (07) and " Pm(17) — 9Sm(0T)

are the subject of particular interest. By use of the relation (5.49) we evaluate the
matrix elements of these transitions.

The matrix element values are presented in Tab. (5.1). It is clearly seen that the
forbidden B-transition 5 Pm(17) — 59Sm(0T) is supressed nearly by a factor of ~ 44
against the allowed S-transition '°T¢(17) — %Ry (0T). This is just a consequence of

the p /o electron containing the factor aZ’/2.
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Table 5.2: logft values for transitions 'Tc(17) — 0Mo(07), OPm(17) —

BONA(0F) are shown herein. (T - estimated value.)

transition log ft
1007e(1F) — 190Mo(0F)  4.59
BOpm(17) — ¥ONd(0r)  7.87T

Electron capture on nucleus

We present here the theoretical description of the electron capture from atomic shell

by nucleus

e, +(A,Z) = (A Z+1)+v.. (5.50)

We consider only the electrons from K; and L;; shells. The contribution from other
shells can be neglected due to the small overlap of the electron wave function with the
bulk of the nucleus. For the sake of simplicity we adopt the bound atomic electron

wave functions from [71] in the form

\IIKI('T) = NKle ! ‘6 U, NI2(1 - 7T—a£’
— 27| —iepz - z Z5R2
Uy, (¥) = Np,e 2elle7 Ovo'y-ﬁue, N;, = J6mas (5.51)
with
® 1 h
uf = ( X ) G = —— =528 x10* fm. (5.52)
0 o me

gp is the energy of bound electron. We get the half-life of electron capture as follows

Me

273 1n 2
1

2.J; + 1

-1
[Ts (1F = 0] = (Gamy)?

X

+
B(EIC)fECfKI,LU(Zv E; — Ef)
(5.53)

The phase space integration is included in the function
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(Ez — Ef + €b)2

2
me

1
fEC*KI,LII<Z7 Ei - Ef) = 27T2 (ﬁN?(I,LII) §<Z)

e

(5.54)

The proton number of initial nucleus enters into the normalization factor Nf(h Lis
and factor £(Z) = 1,£(Z) = (2/(aZ))? for K7, Li; electrons, respectively. The (-

strength is given as

By = |<0flo@m1fE =7 (TT=1717). (5.55)

The half-life value of the electron capture of *T'c(1}, ) — " Mo(0] ) was already
experimentally measured. By evaluation of the function (5.54) we get for the bare

value of the matrix element of the transition

3D
< 0HJOM)|1t >| = = 0.82. 5.56
[<orlioaniiT >| \/fEC(43, —0.343 MeV) 243.8h (5.56)

The corresponding log ft value is presented in Tab. 5.2. We note that measured
value of the electron capture is logft = 4.45%03® [72], i.e. our estimation is not far
from the measured value indeed.

The electron capture of "Pm(1,,) — " Nd(0%) has not been observed experi-
mentally yet. In order to estimate the log ft value for this reaction we assume that the
value of bare nuclear matrix element for the electron capture is of the same order as the
bare nuclear matrix element value of the single 8 decay of "Pm(1,,) — *°Sm(07).
A justification of such an approach can be seen in comparison of the electron capture
and (-decay matrix elements of 17 c — )0 (0.8) and '°Tc — Ry (0.7), respec-
tively. For the logft value of electron capture by °Pm(17) we get logft = 7.87. The
implication for the half-life value is at the level of Tﬁg ~ 6.10'¢ years. Regrettably we
have to conclude that this value of half-life would not be reached, most likely, in near

future experiments.

5.5 Double [-decay within the Single State Domi-

nance hypothesis

The Single State Dominance (SSD) hypothesis was presented for the first time in [68]
by Abad, et al. The SSD hypothesis states that for the double S-decaying nuclear
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Figure 5.2: The double S-decay transition illustrated as a sum of virtual single S-decay
transitions through the intermediate nucleus. The SSD hypothesis assumes only the

transitions throughout the ground state of intermediate nucleus.

systems with the spin and parity of the ground state of intermediate nucleus 17 is
possible to consider the double S-decay transition as two respective virtual single (-
decay transitions.

i) The first transition connects the ground state of initial nucleus (0*) with the ground
state of intermediate nucleus (1%).

ii) The second one connects the ground state of intermediate nucleus (17) with the
ground state of final nuclues (07).

This assumption is known as the Single State Dominance hypothesis. The virtual
transitions are illustrated in Fig. 5.2.

The main aim of the SSD hypothesis is the nuclear model independent way of
estimating the double $-decay nuclear matrix element. The advantage is the possibility
to extract the matrix elements of the two individual virtual single [-transitions from
the known log ft values |73, 74]. The available experimental data show that there exist
some double S-decaying nuclear systems when the SSD hypothesis is realised. The idea
of ruling out or confirming the SSD hypothesis by precise measurement of double (-
decay differential characteristics was introduced in [74]. The experimental data from

NEMO 3 experiment confirm the realisation of SSD hypothesis in case of %Mo for
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Table 5.3: The evaluated values (77737) of double S-decay half-life of '* Mo and ' Nd

are presented here. The experimentally measured values (77})y) are shown also [75].

Nucleus  E; — By [MeV]  T737 [years] T777 [years|

100 07 4.05 7.16 x 10 7.1 x 108
150 v ¢ 4.39 4.02 x 10 82 x 108

instance. Previous theoretical studies involved the approximation that replaces the
energy of leptons with the mean value in order to examine the SSD hypothesis [76, 77].
It was found in [69] that for some nuclear systems this approximation is inappropriate
and more adequate approach was suggested therein.

The subject of our interest is the double §-decay to the ground state (01) and
to the first excited state (2]) of final nucleus. We investigate herein two isotopes of
particular interest, namely Mo and '*Nd. The intermediate nuclei °°Tc, 150 Pm
have the ground state spin and parities 17 and 17, respectively. The nuclear structure
of % Pm is still an open task from both theoretical and experimental point of view. So
with use of double S-decay differential characteristics we may conclude whether there
exist a low lying 17 state of ' Pm or not.

We take the advantage of results of previous sections (5.1,5.2, 5.3,5.4) and write for

the two-neutrino double 3-decay half-life of 0t — 0%, 2] transitions following

2w—-SSD( 1+ _ e 2\4 12v—SSD( 7+
(T255°01)) = g (Gamd) 1550 ()

| < JFION| > | < 17[Jom)][0f > |*.

(5.57)
Here, m = £1 and the phase space integral is given as
1 E,’—Ef—me
IQV_SSD(J;_) = ﬁ/ dEelFO(Z,a Eel)pelEel X
Ei—Ef—Eel ‘ Eirf}f_Eel_Ee2
/ dEeQFO(Z/a EeQ)pEZEeZ / dEVlEzlEL%QDf(iD(‘]}F)
Me 0

(5.58)

The difference between the decay to the ground and excited state is given by inte-

grand,
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Figure 5.3: The single electron energy spectrum of the two neutrino double [-decay
of 1Mo to the ground state of final nuclues ' Ru(0") is illustrated for the SSD and
HSD approach.

1
DRP(If) = yK?HGM+L@ (Jf =0%)
1

= (K~ L) (Jf =2{). (5.59)

The energy denominators Ky, L; are given in eq. (5.24).

We see here the advantage of the SSD approach. The only nuclear matrix element
involved herein consists from two (-strenghts that could be determined from the log ft
values of single [-transitions of the intermediate nucleus. The evaluation of the (-
strenghts, | < 17||O(17)][0;" > [* and | < J/[|O(17)|[1T > |?, for the two isotopes
107 ¢ and °° Pm of particular interest has been already performed in previous section
(see 5.4). Calculated values of half-life of the two-neutrino double B-decay of %Mo
and Y Nd are presented in Tab. 5.3. We see the discrepancy between the theoreti-
cally predicted value of half-life (Tf}gD ) calculated within the SSD assumption and the
measured value Tff;’ for O Nd. This can be naturally taken into account as a proof
of non-realization of SSD for the case of 1°°Nd. Although it is worth mentioning that
relatively high uncertainity of double §-decay matrix element has its origin in poor
estimation of matrix element of the electron capture by ' Pm nucleus. This effect can
lead to a difference between the phenomenologically estimated value of half-life and
the measured one in the end.

It is worth to note that the half-life is only one of the observables in the two neutrino
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Figure 5.4: .The single electron energy spectrum of the two neutrino double [-decay
of 1Mo to the first excited state of final nucleus ' Ru(27) is illustrated for the SSD
and HSD approach.

double [-decay. Therefore, our atention will be focused on the differential characte-
ristics of the process, also. For instance, the single electron energy spectrum. There
exist a Higher States Dominance (HSD) hypothesis introduced in [74]. As a compet-
itive approach versus SSD, the HSD hypothesis assumes the dominant contribution
from higher lying 1T states even in the region of Gamow-Teller resonance. The energy
of leptons entering into the denominators (5.24) can be replaced with their average
value. The advantage of this approach is the separation of the nuclear matrix ele-
ment, with respect to the phase space integration. We present the way how to verify
both approaches (SSD, HSD) with the single electron energy spectrum in two-neutrino
double S-decay.

The single electron energy spectrum normalized to unity is given as

dFQV—N
1 Jr
P N(Ey) = ———v—2 N =S8SD, HSD
sy (B 2 dEa ( )
1
= ————F(Z', Be)per1 Ber X
IQV—N(J;r)

Ei—Ef—FEe Ei—Ef—FEe1—Ee2
/ dEey Fo(Z', Bea)peabes / dEnE} E2 DR (J]).
Me 0

(5.60)

Here, we distinguish two different approaches, namely SSD and HSD hypothesis.
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Figure 5.5: The single electron energy spectrum of the two-neutrino double [-decay
of N to the ground state of final nuclues °Sm(07) is illustrated for the SSD and
HSD approach.

The factor N = SSD is defined in (5.59) and for N = HSD we have

D (Jf) = 1 (Jf =07),
= (Ba — Ew)* (B — En)?* (Jf =27). (5.61)

The single electron energy distribution (5.60) is independent of the value of double
[B-decay nuclear matrix elelement, axial-vector constant g4 and Fermi constant Gg
for the SSD and HSD assumptions. Therefore this phenomenological approach for
the description of two-neutrino double -decay is free of any nuclear model structure
assumptions. This shall be taken into account as an advantage. Recent observations
approve the SSD to be realised in case of Mo double 3-decay [78, 79]. The single
electron energy spectrum normalized to unity (5.60) of %Mo double S-decay to the
ground (0F) and first excited (2) state of final nucleus Ry is illustrated in Fig.
5.3 and 5.4, respectively. The different approach (SSD, HSD hypothesis) is leading
to deviation of the spectrum most apparently at the low electron energies. From
the comparison of measured and evaluated half-live of Y Nd (see Tab. 5.3) one can
conclude that SSD is not realized in this particular nuclear system. With the single
electron energy spectrum we gain much stronger tool for confirming or ruling out the
SSD hypothesis of 1 Nd —1%° Sm process because spectrum is free of any nuclear

matrix elements. Moreover, we may probe the validity of the HSD too. The single

68



—— SSD
——— HSD

o
()]
I
/7
\
\
|
I
/
!
1

~

1 PRI T ]
1 15 2 2.5
E_-m, [MeV]

Figure 5.6: .The single electron energy spectrum of the two-neutrino double [-decay
of P9Nd to the first excited state of final nuclues °Sm(27) is illustrated for the SSD
and HSD approach.

electron energy spectrum of 1" Nd double 3-decay to the ground (07) and first excited
state (21) of daughter nucleus *°Sm is illustrated in Fig. 5.5 and 5.6, respectively.
As in the case of "M o spectrum we see that the pattern is different for the SSD and
HSD approaches.

By Comparing the theoretically predicted and experimentally measured half-life
we conclude that SSD approach is not realised in the two-neutrino double S-decay of
150 N (]

Conclusions

In this chapter, we have presented the theoretical description of the double [S-decay
to the ground (0%) and excited (27) state of final nucleus. The probe of the SSD
hypothesis for the 2v33-decay of '’ Nd with energy distributions of emitted electrons
was presented. A conclusion was made that the SSD hypothesis is expected to be
ruled out by precision measurements of differential characteristics of the 2v55-decay
of ™ Nd in planed SuperNEMO experiment unlike some unknown low-lying 1+ state
of 1°°Pm does exist.

These findings were published in Ref. [IX,XI,XII| given in the List of publications.
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Chapter 6

Statistics of neutrinos and

two-neutrino double (-decay

We discuss here the possibility of Pauli exclusion principle violation for neutrinos, and
thus, posssibility that neutrinos obey at least partly the Bose-Einstein statistics. The
parameter sin? x is introduced that characterizes the bosonic (symmetric) fraction of
the neutrino wave function. Consequences of the violation of the exclusion principle
for the two-neutrino double beta decay are considered. This violation strongly changes
the rates of the decay and modifies the energy distributions of the emitted electrons.

We assume that Pauli exclusion principle is violated for neutrinos and therefore
neutrinos obey (at least partly) the Bose-Einstein statistics. Possible violation of the
exclusion principle was discussed in a series of papers [80] though no satisfactory and
consistent mechanism of the violation has been proposed so far. The assumption of
violation of the Pauli exclusion principle leads to a number of fundamental problems
which include loss of a positive definiteness of energy, violation of the CPT invariance,
and possibly, of the Lorentz invariance as well as of the unitarity of S-matrix. (For a
critical review see ref. [81].) Experimental searches of the effects of the Pauli principle
violation for electrons [82] and nucleons [83] have given negative results, leading to
extremely strong bounds on the magnitude of violation.

It may happen however that due to unique properties of neutrinos (neutrality,
smallness of mass associated to some high mass scales), a violation of the Pauli principle
in the neutrino sector is much stronger than in other particle sectors. Therefore one
may expect that effects of this violation can be first seen in neutrino physics.

A possibility of the Bose statistics for neutrinos has been first considered in ref. [84]
where its effects on the Big Bang Nucleosynthesis (BBN) have been studied. According
to [84] the change of neutrino statistics from pure fermionic to pure bosonic diminishes

the primordial “He abundance by ~ 4%.
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The idea of bosonic neutrinos has been proposed independently in ref. [85] where
cosmological and astrophysical consequences of this hypothesis have been studied. Bo-
sonic neutrinos might form a cosmological Bose condensate which could account for all
(or a part of) the dark matter in the universe.

As far as the astrophysical consequences are concerned, dynamics of the supernova,
collapse would be influenced and spectra of the supernova neutrinos may change [85,
93]. The presence of neutrino condensate would enhance contributions of the Z-bursts
to the flux of the UHE cosmic rays and lead to substantial refraction effects for neutrinos
from remote sources [85].

We assume that the Pauli principle is violated substantially for neutrinos, while the
violation is negligible for other particles. In particular, for electrons we will assume the
usual Fermi-Dirac (FD) statistics. How to reconcile this pattern of the violation with
the fact that in the standard model the left-handed neutrino and electron belong to the
same doublet? The answer may be connected to the fact that neutrinos are the only
known neutral leptons and thus they can have substantially different properties from
those of the charged leptons. In particular, neutrinos can be the Majorana particles
and violate lepton number conservation. The difference between charged leptons and
neutrinos should be related to breaking of the electro-weak (EW) symmetry, and it
can originate from some high mass scale of Nature. One may consider scenario where
violation of the Pauli principle occurs in a hidden sector of theory related to the Planck
scale physics or strings physics. It could be mediated by some singlets of the Standard
model - (heavy) neutral fermions which mix with neutrinos when the EW symmetry
is broken. Since only neutrinos can mix with the singlets, effects of the Pauli principle
violation would show up first in the neutrino sector and then communicate to other
particles. In this way a small or partial violation of the relation between spin and
statistics might occur. A violation of the spin-statistics theorem for other particles can
be suppressed by an additional power of a small parameter relevant for the violation
in the neutrino sector and due to weak coupling of neutrino to other particle sectors.

A violation of the Pauli principle for neutrinos should show up in the elementary
processes where identical neutrinos are involved. A realistic process for this test is the

two-neutrino double beta decay,

(A, Z) = (A, Z+42)+ 20+ 2e". (6.1)

It was shown in [85] that the probability of the decay as well as the energy spectrum
of electrons should be affected. Qualitative conclusions were that the pure bosonic
neutrino is excluded, whereas large fraction of the bosonic component in a neutrino

state is still allowed by the present data. In this connection, a possibility of partly

71



bosonic (mixed-statistics) neutrinos can be considered.

In this chapter we perform a detailed study of the effects of bosonic neutrinos on
the double beta decay. We consider the general case of partly bosonic neutrinos. We
introduce a phenomenological parameter sin? y which describes the fraction of bosonic
neutrinos in such a way that a smooth change of sin? y from 0 to 1 transforms fermionic
neutrinos into bosonic ones. So, in general, neutrinos may possess a kind of mixed or
more general statistics than Bose or Fermi ones [86, 87]. We present an analytic study
of the double beta decay probabilities. The exact expressions for the two-neutrino
double 3-decay rates to ground (07) and excited (2]) states are shown. The results of
numerical calculations of the total rates and energy distributions for the two-neutrino
double B-decays of 1Mo are presented herein. The obtained bounds on sin®y from

the existing data are presented.

6.1 Bosonic neutrinos in two-neutrino double $-decay

First, let us discuss the case of pure bosonic neutrinos, i.e. the neutrinos possess
the spin 1/2 but obey the Bose-Einstein statistics. The subject of our interest here
is the two-neutrino double [-decay. The detailed calculation of this reaction for the
fermionic neutrinos was already given in Chap. 5. We shall take the advantage of this
treatment therein with the assumption on fermionic neutrinos and thus present here
only the differences for the bosonic neutrinos. By introducing bosonic neutrinos we
have to make change in (5.6) by changing the anticommutation relations for fermionic

neutrinos to commutation realtions for bosonic neutrinos, i.e.

CT(pel)CT(pd) = _CT(pe2)CT(pel>
d'(ka)d (ko) = +d (kyo)d (k). (6.2)

Some of the common approximations have been made in the derivation of the two
neutrino double S-decay rate:
i) We take into account only the s;/, wave of the outgoing leptons.
ii) The double -decay Fermi nuclear matrix element is neglected because the initial
and final nuclei belong to the different isospin multiplets.
iii) The non-relativistic hadron current aprroximation (see 5.16) is used therefore only
Gamow-Teller operators (5.20) are considered.

We present the differential decay rate of two neutrino double S-decay to the 0
ground state and 2] excited state of final nucleus for bosonic and fermionic neutrinos,

simultaneously. In this way we gain a very compact formula useful for the comparison
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of bosonic effect of neutrinos on the decay rates. The main purpose of this treatment
will become more clear in forthcoming. Following the steps made in Chap. 5, for the
differential decay rate of two neutrino double § decay to the ground and excited state

of final nucleus we get

dU4(JY) = a2, Fo(Z + 2, B ) Fo(Z + 2, Eea) M7 dS0. (6.3)

Here, ag, = (Gpga)*m?/(6477) and G5 = Gpcosf. (Gr is Fermi constant, 6. is
Cabbibo angle) are constants. Fy(Z + 2, E.) denotes the relativistic Fermi function
and g4 stands for the axial-vector coupling constant. The index f and b stands for

fermionic and bosonic neutrinos, respectively. The phase space is given as

1
Q) = mEelpel Eeopes Epy Ejy 0(Eet + Eco + By + Eys + Ef — E))

XdEel dEeg dE,/l dE,/Q dcosf. (64)

0 denotes the angle between the two emitted electrons. The expression Mf;,lf with

J™ = 0%, 2% arises as a result of product of nuclear matrix elements,

m? 1
Mgt = [kt it - okt
m2 1 — . —
e b f,b)2 f,b f.b12| Pel * Pe2
R L e
1ﬁ61.ﬁ62
MY = w2 |k -l (142 : 6.5
2+ me [Ky = Lov" {1+ 57— (6.5)

With

7b m ™ 3
K = 222 < TfI ol >< 1l S rfodior > &Y
m J

k
7b me ™ )
o= %Z<JfHZTj+aj||1; >< 1;\\Zﬂjak||0j> LY,
m i k
(6.6)

Here, factor s = 1, 3 for the J§ = 0, 27, respectively. The E;, Ef and E,, stand
for the initial (|0; >), final (|./; >) and intermediate (|1;, >) nuclei energies. The

energy denominators for the fermionic neutrinos are the same as in (5.24)

1 1
KI = +
Em_Ei+Eel+Eu1 Em_Ei+Ee2+Eu2
1 1
Ll = (6.7)

m T By Bt Bat By | By — Bt Bt Bt
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For the bosonic neutrinos the energy denominators take the form

Kb 1 1
"o Em_Ei+Eel+EV1 Em_Ei+EeZ+EV2
1 1
L, = (6.8)

"™ En—Ei+EBa+Es En—Ei+Ea+Bax

Essentially the difference between the amplitude of the two-neutrino double 5-decay
for the bosonic neutrinos and for the case of fermionic neutrinos is in the minus sign in
energy denominators indeed (see 6.7,6.8). This can be understood when considering the
pictorial way for amplitude from the Feynman diagram of the two-neutrino double -
decay (see Fig. 5.1). The change of two lepton legs for the identical particles with given
four-momenta in Feynman diagram leads to a relative minus or plus sign according to
the statistical feature of that particles. In more detail, for fermions we have relative
minus sign and for bosons we have relative plus sign. For particular case of our interest,
the two-neutrino double S-decay, we have three permutations in addition to Feynman
diagram shown in Fig. 5.1 associated with interchange of lepton legs in Feynman
diagram.

i) No change for neutrinos and interchange for electrons give a relative minus sign.
ii) Interchange for neutrinos and no change for electrons give a relative plus sign.
iii) Interchange for neutrinos and interchange for electrons give a relative minus sign.

We see the uniqueness of the process as far as two neutrinos as identical particles
are involved in reaction. Therefore the statistical characteristics can be explored with
the two-neutrino double (-decay directly. In order to understand this bosonic effect,
given so far as a relative minus sign in the energy denominators, we have to analyze
the differential decay rates.

Following the final result for the decay rate (6.5) we may see that there exist a
significant difference between the double S-decay to the ground (0%) and excited state
(2) of final nucleus. The combinations of K/:* + £/:> and K/ — £/: enter to the decay
rate in case of decay to the ground state of final nucleus. On the other hand only
the latter term (K> — £79) is involved in case of decay to the excited state of final
nucleus. This feature is independent of statistical behavior of neutrinos, i.e. common
for fermionic and bosonic neutrinos. Therefore, we shall study the energy denomina-
tors in such combinations in more detail. Let us introduce the energy denominators
approximation. This procedure consists of replacing the lepton energy with the mean

value, equal to the half of the energy release of reaction

A = (E;,—Ey)/2
Ei+E,;, ~ A, ij=1,2. (6.9)
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With this approximation for the combinations of K’ and L’ we get

Kb + Lb ~ Ez/2 - Eul
Eo— E.
Kb — L) =~ Z(E _2E+1A)2 (6.10)

for the bosonic neutrinos. It is obvious that the structure of both terms is very
similar. As a consequence of this similiarity is the fact that qualitatively the transitions
to the ground (07) and excited (27) state are of the same order for bosonic neutrinos.
We note that energy differences in the numerators in (6.10) lead to the significant
suppression of the total decay rate of the process at the level of 1-3 orders of magnitude.
The impact is also observable on the electron energy distribution. Corresponding

combinations for the fermionic neutrinos are given as

1

K+ ~ 4——
m + L E,—E +A’

9 (E62 - Eel)(EVZ - Eul)
(B — E;+ A

K — L (6.11)

Unlike the case of bosonic neutrinos the combinations of K/, and L/ have signifi-
cantly different behavior. The term K/ —LJ has an additional factor (Ee—FE¢;)/(Ep—
E; + A) that suppress it even stronger against the term K/ + L/ . By summing the
above mentioned facts yield that double S-decay to the ground and excited state rep-
resents an outstanding tool for study of the bosonic feature of neutrinos.

The kinematical factors K/* and L/ entering to the decay rates are weighted with
the corresponding nuclear matrix elements.

We introduce the ratio

Ly(J7)
Lr(Jm)°
of the decay probabilities to ground (J™ = 0/ ) and excited (J™ = 2{) state for pure

To(Jﬂ) =

(6.12)

bosonic I'y(J™) and pure fermionic I';(J™) neutrinos. In general case for the ratio ro(J7)
one needs to evaluate the corresponding nuclear matrix elements for a given transition
within an appropriate nuclear model. The situation is quite simplified for those nuclear
systems where the transition via only the ground state of the intermediate nuclei m = 1
dominates [68, 74, 88]. For such nuclear systems the Single State Dominance (SSD)
hypothesis is considered. Then we may factor out the nuclear matrix elements and

take the advantage that they vanish in the ratio r(J7™).
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6.2 Single State Dominance hypothesis

The Single State Dominance hypothesis states that for those nuclear systems with the
ground state of intermediate nucleus 1" the two-neutrino double 3-decay is realized by
two virtual transitions:

i) first one is connecting the ground state of initial nucleus with the ground state (1)
of intermediate nucleus,

ii) the second one is connecting the ground state (1) of intermediate nucleus with the
ground state of final nucleus.

Assuming the SSD hypothesis we get

1
MEE = My 01 P | OTRE LY 4 LA
1 b b b b b b ﬁel 'ﬁe2
-5 KPPKPY 2L L] + 5K L") Tk
b2 V2 (efb b2 1 Per - Pe
Myl = mg [My o (27)7 (K77 = L17)" {1+ : (6.13)
3 EelEe2

The sum of the complete set of nuclear states of intermediate nucleus is replaced
only with transition throughout the 11 ground state of intermediate nucleus, i.e. m = 1.

The nuclear matrix element is given as

Mo (F) = 2= < FIE rfallty >< I S wfenllof > (614)
j k

The main advantage of the SSD hypothesis is the nuclear model independet way of

estimating the value of the nuclear matrix element M, (J™). The individual matrix

elements of the two virtual transitions are determined from the log ft values for the

electron capture on intermediate nucleus and the single S-decay to the ground (excited

21) state of final nucleus, simultaneously. Details of the extraction of the nuclear

matrix element from the log ft values of electron capture and single S-decay are given
in Sec. (5.4).

The total decay rate within the SSD approximation is given as

Lro(J7) = My (J7)Zesp (7). (6.15)

The integral over the phase space takes the form
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2(1, E‘i,Ef,me
,b T 2v b
I§SD(J ) T / dEelgﬁw (Eeh Ee, By, Eu2)FO<Zf7 Eel)plEel X
Elefe Eel Ei*Ef*EeI*Ee2
/ A Fo( 7y, Box)psFos / B, B2,
Me 0
(6.16)
with
1
Gyt (Ber, Bea, Byr, Bpy) = ml {g(K{*”K{ML{va{”’+K{”’L{”’)
2
G0N, By, Bt  Ey) = m? (K{’b _ L{’b> . (6.17)
The two-neutrino double S-decay half-life is given as
In2
T5h ™) = —=—. 6.18
1/2( ) Fﬁb(c]ﬂ—) ( )

6.3 Higher States Dominance hypothesis

The Higher States Dominance hypothesis suggests that the dominant contribution to
the double -decay nuclear matrix element has its origin in higher lying 1T states of
intermediate nucleus. Within this assumption there exist a commonly used approxi-
mation called energy closure that replaces the lepton energies in the denominators with

an average value equal half of the reaction energy release

Em_Ez‘FEek‘FEuj%Em_Ez‘I“A (k‘,j:]_,z) (619)

The main aim of this approach is to separate the nuclear and lepton parts in the de-
cay rate of two-neutrino double S-decay. With the use of HSD hypothesis for fermionic

neutrinos we get

f ~ (1) 2 ﬁel : ﬁe2
M. = Mgone (1- 5.
2 2 — —
Foo_ M(g) 9+)|2 (Eel — Ee2) (Eu1 - Euz) 1 lpel " De2

(6.20)

and for the case of bosonic neutrinos we have
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2 3(Eyo — E)? + (Eea — Er)?
Mhe = GOOP | = -
9(Eu2 - Eu1)2 - (EeQ - Eel)2 ﬁel : ﬁeQ
144m2 EeEey |’

b (2) r69+112 (Eel - E€2)2 1 ﬁel : ﬁeQ
= M, +2")| " —————— |1+ = . 6.21
My = (MGEOPEIEE (14 35 (6:21)

The nuclear Gamow-Teller matrix elements are given by
Mg = 2 s~ <IN ol > <l Serfondor >

er NG (E,, — E; + A)r ‘

m

and r = 1,2,3. The total decay rates for fermionic and bosonic neutrinos are

expressed as

Tp(07) = |Mgp(0")[*Zhgp(0),

Tr(2%) = |ME2HPThsp27) (6.23)
and

Dy(J7) = [MGHIT™) 2T p (T7). (6.24)

The phase space integrals are given by

2a
,b T 2v
IIJ;SD (J ) =

E,’—Ef—me
/ dEel fj;b(Eel7 Ee27 El/17 Eu2)FO(Zf7 Eel>p1Eel X

Mme

11
me

Ei—Ef—FEe Ei—Ef—FEec1—Ee2
/ dEes Fo(Zf, Ee2)p2Ee2/ dE,, E32E31.
0

Me

(6.25)

The energy conservation yields

Ep=E; —Ef — Eq — Euy— E,.. (6.26)

The integrand functions are given as
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3(E1/2 - EV1)2 + (EeQ - Eel)2
b T +
WEeaEeaEuaEu = J7=0 >
1B, s, Fin, o) o (J"=0%)
E., — E.5)?

2
4mz

(6.27)
6.4 The two-neutrino double S-decay with partly bo-

sonic neutrinos

Here, we write down more general case of statistics. Let us write the mixture of

fermionic and bosonic neutrino state as

V) = a*|0) = s f]0) + s5bT[0) = c5|f) + s5]b). (6.28)

Here | f) and |b) stand for pure fermionic and bosonic neutrino states, respectively. f
() and b (b") are respectively fermionic and bosonic annihilation (creation) operators.
The normalization condition of mixed neutrino state |v) requires ¢+ s2 = 1 (¢; = cos ¢
and ss = sind). In order to derive the decay rate of the two-neutrino double S-decay
we need to introduce the commutation/anticommutation relations with the following

properties
fo = 9B, [ = b,
for = ety fth=e"bft. (6.29)

Here ¢ is an arbitrary phase. The two-neutrino state we then define as

v (k1) v(ki2)) = @i az |0). (6.30)

The amplitude of the reaction A — A’ + 27U + 2¢e can be schematically written as

Ay = / d*zid*za(e(per), €(pez), Dk ), U(kyo), A|T [HP (21)HP (22)] | A).
(6.31)
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The Hamiltonian of weak interaction is assumed to have the standard form, e.g.

see eq. (5.2). With the commutation relations we find

Agg = Ay [c5 + c3s; (1 — cos@)] + Ay [s5 + ¢35 (1 + cos )] . (6.32)

Ay and A, are fermionic and bosonic parts of the amplitude, respectively. We may

factorize the amplitude as

Agp = cos® Y Ay +sin’ x A, (6.33)
by using the notation

cos’x = ¢+ c3ss(1—coso)

sin®y = s3+ciss (1 +cosg). (6.34)

By performing the integration over the phase space of neutrinos intereference be-
tween the fermionic Ay and bosonic A, part of amplitude Ayg disappears. We may
understand this effect by basic considerations. The wave function of identical fermions
is antisymmetric with respect of interchange of two particles, while for bosons the wave
function is symmetric. Assuming the impossibility to distinguish between the two iden-
tical particles the intereference term consisting of symmetric and antisymmetric part

turns out to be zero. The total decay rate is therefore given as

[yt = cos® x I'y+ sin? y T'y. (6.35)

Here, I'y and I, are total decay rates in cases of pure fermionic and pure bosonic
neutrinos, respectively. We note that decay rates I'y;, are proportional to the corre-
sponding amplitudes |A;|?. The specific form of the individual decay rates was given
in section 6.1 under some special conditions. These are, i.e. the transitions to the 0"
and 27 nuclear final states have been considered, SSD and HSD hypotheses have been

taken into account. For the total decay rate of reaction we have
Diot(J™) = cos* xT';(J7) + sin xT(J™). (6.36)
The differential decay rate normalized to unity is given as

P dTsot(J™)  cos® x dwy(J™) + sin® x ro(J™)dwy(J™)
T Ti(J7) cost x + sin y ro(J7)

, (6.37)
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with

dr'y(J7) =
W, dwb(J ):

dl'y(J7™)

de(Jﬂ) Fb(JW) .

(6.38)

Here, ratio ro(J™) is given in (6.12). The explicit form of the differential decay
rates for pure fermionic (dI'y(J™)) and pure bosonic(dl',(J™)) neutrinos is given by
relation (6.3). In general, the normalized distributions (6.38) depend on the nuclear
matrix elements. Nevertheless, with the approach of SSD hypothesis the normalized

differential decay rate (6.37) is free of nuclear matrix elements [74, 88|.

6.5 Effect of bosonic neutrinos in two-neutrino double

B-decay of 1Mo

In this section, we present the characteristics of two-neutrino double $S-decay of Mo
with the assumption of partially mixed bosonic neutrino. Subject of choice is the
isotope %Mo due to the high number of events collected in experiment (see [89, 91]).

The collaboration of NEMO-3 experiment has detected 10° events of 1Mo (0T —
0%) decays to the ground state [89]. Measured parameters are: the sum of the electron
energies, the energy of single electron and the angular distribution / angular correlation
of electrons. Assumption that the double S-decay is governed mainly throughout the
17" intermediate nucleus ground state is known as the SSD hypothesis and give a good
approximation for 1Mo nucleus. This fact is also confirmed by the measurements
of NEMO-3 experiment [78, 79]. The advantage of SSD approach is the experimental
estimation of nuclear matrix elements from the log ft values of electron capture and
single S-decay of intermediate nucleus (1°°T'c). See section 5.4 for details of obtaining
these nuclear matrix elements from known log ft values for 17T c. With the use of SSD
hypothesis we present herein the half-life of two-neutrino double 8-decay of 1Mo for

pure fermionic and pure bosonic neutrinos, respectively.

T1f/2(0;.s_) = 6.8 x 10'® years
TP,(0F,) = 8.9x 10" years. (6.39)

The ratio of bosonic total decay rate over fermionic one is equal to

ro(0;,) = 0.076. (6.40)
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Figure 6.1: The differential decay rates normalized to unity versus the sum of the
kinetic energies of the outgoing electrons 7' for the two-neutrino double [-decay of
10070 to the ground state (07) of final nucleus. The electron spectra are presented for
the pure fermionic and pure bosonic neutrinos. The distributions have been calculated

with the assumption of the SSD hypothesis and the HSD hypothesis, respectively.

This ratio gives the weight of the bosonic component of differential decay rate
entering to the normalized differential decay rate (6.37). For rather small value of rg a
significant modifaction of distribution shall be expected when sin? y becomes close to
1.

However, higher lying states can in principle give some not negligible contribution
indeed and therefore produce a systematic error in our analysis. In order to estimate
the effect of higher lying states one can assume an extreme case of HSD hypothesis.
Within this assumption the main contribution to the two-neutrino double 5 decay
matrix element comes from higher lying 17 states of intermediate nucleus even from
the Gamow-Teller resonance region. Within this approach the energy denominator
closure is introduced. It replaces the lepton energies with an average value equal to the
half of the reaction energy release (A = (E; — Ef)/2). It is worth to mention that there
are different matrix elements associated with fermionic and bosonic neutrinos, see eq.
(6.20) and (6.21). Tha advantage of the above mentioned procedure is the separation
of nuclear matrix elements and phase space of outgoing leptons. Therefore, in study of
normalized distributions the nuclear matrix elements can be factorized out and leave
the distributions free of any nuclear model dependent assumptions. Unfortunately for

the half-life or the ratio r¢(J™) an appropriate nuclear model has to be taken into
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Figure 6.2: The differential decay rates normalized to unity versus the single electron
kinetic energy for the two-neutrino double S-decay of ®°Mo to the ground state (0T)
of final nucleus. E, and m, stand for the electron energy and electron rest mass,

respectively. The conventions used herein are the same as in Fig. 6.1.

account, e.g. Quasiparticle Random Phase Approximation (QRPA) or Nuclear Shell
Model (NSM).

The differential decay rates versus the sum of the kinetic energies of two electrons
within the SSD and HSD approaches are illustrated in Fig. 6.1. Regardless to the
statistical feature of neutrinos (i.e., either fermionic or bosonic) the SSD approach
yields slightly wider spectra of the sum of energies of two outgoing electrons with
respect to the HSD hypothesis. However, the spectra for bosonic neutrinos are shifted
to lower energies for SSD as well as for HSD approximation. The main result is the
shift independence of the approach (i.e., SSD or HSD). Therefore, it can be considered
as a firm effect of bosonic neutrinos.

The single electron energy spectra for bosonic and fermionic neutrinos within the
SSD and HSD approximations are shown in Fig. 6.2. The electron energy spectrum
becomes softer in the case of bosonic neutrino as one can see.

The spectra of the sum of energies of two outgoing electrons for the case of admix-
ture of fermionic and bosonic neutrinos are illustrated in Fig. 6.3. The shift of spectra
to the smaller energies with increasing parameter sin? y is well understood within con-
siderations previously mentioned. Remarkable change of the spectra is observed when
sin’ x is close to unity due to the small value of 7.

The single electron energy spectra for various values of the mixing parameter sin? y
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Figure 6.3: The differential decay rates normalized to the unity versus the sum of the
kinetic energies of two outgoing electrons T for the two-neutrino double (-decay of
10070 to the ground state (07) of final nucleus. The results are obtained in the SSD
approach. The spectra are presented for various values of mixing parameter sin® x of

bosonic component.

are illustrated in Fig. 6.4. The electron energy Fy;, = 0.3 MeV turns out to be a
crucial point in the spectra. The energy distribution tends to increase with sin? y
below E;, < 0.3 MeV, while for the energy region Ey;, = 0.3 — 1.4 MeV it decreases.

It was already mentioned in Sec. 6.1 that the presence of bosonic part of neutrinos
affects the rates of the two-neutrino double S-decay to the ground (01) and first excited
state (2]) of final nucleus in opposite way. Moreover, the ratio of decay rates to the
first excited state 2] and to the ground state 0T does not depend on logft values of
single § decay and electron capture on intermediate nuclues that are of poor accuracy
eventually. Within the SSD approximation for the two-neutrino double £ decay half-life

we obtain

Tip(2F) = 1.7 x 10* years (fermionic vs)

= 2.4 x 10* years (bosonic vs). (6.41)

For the ratio of fermionic over bosonic half-life we get

ro(2f) =17.1. (6.42)
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Figure 6.4: The differential decay rates normalized to unity versus the single electron
kinetic energy for the two-neutrino double 3-decay of 1Mo to the ground state (01) of
final nucleus. The results are obtained in the SSD approach. The spectra are presented
for various values of mixing parameter sin? y of bosonic component. The conventions

used herein are the same as in Figs.6.2, 6.3.

The decay rate for bosonic neutrinos is larger as one can expect from the consider-
ations mentioned in Sec. 6.1.

Recently, best known bound on value of the half-life of the two-neutrino double
B-decay to the first excited state (27) of final nucleus is T7/2(27) > 1.6 x 10* [90]
from the NEMO-3 experiment. One may expect that in near future the sensitivity of
measurement will increase up to 10?2 years and thus will approach the value for the
case of pure bosonic neutrinos. It is worth to mention that due to the large value of rg
even a small contribution from bosonic neutrinos can produce a remarkable distortion
of the energy distributions with respect to the standard (pure fermionic neutrinos)
spectra.

The electron energy distributions for the two-neutrino double 3-decay of 1Mo into
the 2] first excited state of final nucleus are illustrated in Figs. 6.5, 6.6. Here, the
distortion of spectra is opposite for the decay to the 2% final state unlike the case of
the decay to the 0T ground state of °°Mo. With increasing value of mixing parameter
sin? y the electron spectrum is shifted to higher energies. This effect is obviously related
with the change of spin between initial and final nucleus. Within the transition 0t — 2
the system of emitted leptons should carry out the spin 2. Due to the polarization of

outgoing leptons (determined by V — A type of interaction) both electrons are emitted
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Figure 6.5: The differential decay rates normalized to the unity versus the sum of
kinetic energies of two outgoing electrons 1" for two-neutrino double 3-decay of Mo
to the first excited state (2]) of final nucleus. The results are obtained in the SSD
approach. The spectra are presented for various values of mixing parameter sin® x of

bosonic component.

preferably in the same direction and two antineutrinos in opposite direction with Pauli
blocking factor. For the case of bosonic neutrinos the corresponding Pauli blocking
factor vanishes and electrons might be more aligned, i.e. carry out higher energies
in the end. Therefore, the spectrum is shifted to higher energies. For the transition
0" — 0" the total leptonic momentum is zero, therefore possibility of electrons moving
in opposite directions is more prefered. It is worth to note that even a small contribution
from bosonic neutrinos cause remarkable distortion of the spectra (see Fig. 6.5) and
therefore this effect can be used to gain some information on bosonic neutrinos in future

experiments.

6.6 Restriction bounds on bosonic component of ne-
utrinos

There are several ways how to estimate the contribution of bosonic or partly bosonic
neutrinos, e.g. by use of energy spectra, total decay rates and the ratios of the total
decay rates to the excited over the rates to the ground state of final nucleus. We intent
to use these methods to obtain a valuable restriction on the parameter sin® x from the

existing experimental data.
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Figure 6.6: The differential decay rates normalized to the unity versus the single elec-
tron energy for the two-neutrino double S-decay of ““Mo to the first excited state
(2]) of final nucleus. The results are obtained in the SSD approach. The spectra are
presented for various values of mixing parameter sin?y of bosonic component. The

conventions used herein are the same as in Figs. 6.2, 6.5.

As was already mentioned for transitions 07 — 0T holds 7y < 1. In the case of
small ry the best bound on bosonic part of neutrinos can be obtained from the total
decay rate, i.e. the half-life. A spectrum distortion due to the presence of bosonic part
is rather small. On the other hand the transitions 0% — 2] are characteristic with
large values of ry. Therefore a very strong modification of spectra are expected in this
case.

In forthcoming, we present three complementary approaches of obtaining the bounds

on sin? y in more detail.

6.6.1 The half-life

We may obtain the restriction on sin® y by comparing theoretically predicted and ex-

perimentally measured half-life. With the use of relation (6.36) we get

f f
1 T T
.2 /2 1/2
sin” y = 1— 75 —To | 1 — =5 . 6.43
A Ty °< T1/2p> (6.43)

Here, the quantity ro = Tlf/Q/le/2 was already introduced in (6.12). Tlf/2 and T7),

are theoretically calculated half-lives for pure fermionic and pure bosonic neutrinos,
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respectively. Tff;’ is the experimentally measured half-life. If there exist an agreement

between the measured and predicted (for case of pure fermionic neutrinos) half-lives,

we may introduce the upper bound on sin? y by use of (6.43) as follows

1+ o Texp—max - Texp—max

f—min f—min

1 T T

sin® y < 1— | =2 —p (1 L) . (6.44)
1/2 1/2

Tlf/;mm is the minimal theoretically predicted value of the two-neutrino double

[-decay half-life calculated with appropriate nuclear model (e.g. QRPA or NSM).
Tf/gp ™% is the maximal experimentally measured value of the two-neutrino double
[-decay half-life. If rqy < 1 and 7y is small with respect to the relative accuracy of

Tlf/2 / Tf/gp , simultaneously, then we may omit terms proportional to r¢ in (6.44) and get

sin y < (1— /T ™" T ™). (6.45)

Unfortunately, this approach requires knowledge of nuclear matrix elements, i.e. is
dependent on choice of proper nuclear system description. Nevertheless, an adequate
estimation of nuclear matrix elements can be obtained for some nuclei, e.g. 1% Mo and
H6d with the use of the SSD hypothesis. For the case of °“M o we can take calculated
value of the half-life Tlf/2 = (6.84+3.42) x 10'® years from [88]. This half-life well agrees
with the experimental value of 777" = (7.11£0.54) x 10'® years [89] obtained from the
NEMO-3 experiment. We then get r4(0] ) = 0.086 and for the restriction we obtain

sin® y < 0.34. (6.46)

It is worth to note that the accuracy of estimated half-life Tlf/2

on the accuracy of half-life of electron capture on intermediate nucleus '°Tc [72].

depends crucially

Unfortunately, there does not exist more reliable experimental data on the half-life
value for electron capture on 'Tc, therefore the obtained limit on sin?x shall be
reconsidered in future when more precise data will be available.

However, stronger bound can be obtained by exploring the two-neutrino double
B-decay of 116Cd. The advantage is the fact that log ft values may be achieved from
beta strengths obtained with charge exchange reactions. Then for the value of half-life

we obtain T, = (2.76 +0.12) x 10 years [92]. For the bound we get
1/2

sin? x < 0.06. (6.47)
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6.6.2 The energy distributions

The precise measurement of differential characteristics of the two-neutrino double -
decay can probe more precisely bosonic or partly bosonic neutrinos. Such characte-
ristics are measured with NEMO-3 experiment for 1) 0,116Cd,'*° Nd,32Se,” Zr and
48Ca isotopes.

The aim is to compare the theoretically predicted shape of spectra with the experi-
mentally measured ones. A fit can be performed considering sin? y as a free parameter.
As was already mentioned this method is useful mostly in cases with large rq. There-
fore, it is suitable to analyze °°Mo decay to the ground state 0 — 0.

From the analysis of available experimental data the case of pure bosonic neutrinos
(sin?xy = 1) can be excluded [92]. By comparing the spectra (see Fig. 6.3) with the
experimental data, namely the shift of maximum to higher energies, we can estimate
a bound sin? y < 0.6. It is noteworth that there is not perfect agreement between the
experimental data and theoretical spectrum.

We make a comment on single electron energy spectrum of 1Mo double S-decay
also. Generaly it is assumed that SSD approach is adequate in case of ®“AMo but
a small discrepancy exist between the predicted and measured spectra. However, it
was pointed out that SSD is more likely realized in this case as HSD approximation
[78, 79]. The spectra for partly bosonic neutrinos (see Fig.6.4) compared with data
give a restriction sin?y < 0.7 [92]. We note that the theoretically predicted spectra
in SSD approach are not in an ideal agreement with data. This is mostly obvious in
low energy region (E = 0.2 — 0.4 MeV). From our point of view a natural explanation
occurs that it is an effect of partly bosonic neutrinos with parameter sin®y ~ 0.5 -
0.6. Only with progress in data analysis of NEMO-3 experiment we may get a better

bound on sin? x hopefully in near future.

6.6.3 Ratios of half-lives to excited and ground state

We define the ratio of half-lives to the excited and ground state

)5 (7)

)5(0%)

riy(J7) = (6.48)

for fermionic and bosonic neutrinos, separately. The advantage of introducing the
ratio (6.48) is the fact that nuclear matrix elements that are for some cases known
with poor accuracy are canceled in ratio with SSD (or HSD) approach. Therefore, the

uncertainty of log ft values does not have any impact on precision of the ratio (6.48).
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In case of Mo transitions to 07 and 0] were already experimentally observed by
NEMO-3 [89, 90]. So we have

r¥ (0F) ~ 80. 6.49
erp.\Y1

On the other hand the theoretically calculated values within the SSD approach are

12

7 (07) 61 (fermionic vs)

~ 73 (bosonic vs). (6.50)

One may conclude that bosonic neutrinos fit data somehow better. Let us remark
that the involved SSD approach may not be enough satisfactory. The statistics of
transitions to 0] excited state need to be improved also.

Unlike the case of transition to 0] state the transition to 2 appears to be a better
tool for study of bosonic neutrinos. For the two-neutrino double S-decay of Mo in

the SSD approach we obtain

r*(27) ~ 2.5 x10* (fermionic vs)
~ 2.7 x 10 (bosonic vs). (6.51)
These values are substantially different for fermionic and bosonic neutrinos. Unfor-

tunately the decay to 2] of 1Mo has not been measured yet. Inserting only the limit
on half-life [94] to the 2 excited state of 1% Ru into (6.48) we get

i (21) > 2.2 x 10°, (6.52)

We see that this bound is too close to the value for bosonic neutrinos. Therefore,
experimental evidence on the decay of 1% Mo to 2] state is highly required in order to

exclude pure bosonic neutrinos and to study partly bosonic neutrinos.

Conclusions

We summarize here briefly the achieved results of analysis of partly bosonic neutrinos
in the two-neutrino double S-decay.
Double -decay is a unique process that provide a test of the Pauli exclusion princi-

ple and statistical feature of neutrinos. It is worthmentioning that statistics of neutrinos
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and violation of Pauli exclusion principle is still an open question. Appearance of even
small bosonic component in neutrino states can lead to a remarkable change of total
decay rates as well as the energy distributions.

We defined ratio rq of the total decay rates for bosonic to fermionic neutrinos.
The nuclear systems with higher ry are preferred due to higher sensitivity to bosonic
comoponent of neutrinos. For %Mo decay to the ground state we found 74(07) =
0.076. However, for °Mo decay to the excited state we found rather large value
70(2]7) = 7.1. We have to note that the '°°Afo double 3-decay to the excited state 2]
has not been measured until now.

The introduced parameter sin? y describes the case of mixed statistics of neutrinos,
i.e. the case of partly bosonic neutrinos. The upper limit on sin® y can be obtained
by comparing theoretically predicted and experimentally measured total decay rates.
However, the small accuracy of nuclear matrix elements involved in the decay rates
lowers the reliability of this method. The conservative bound of sin? y < 0.5 is found
for 1%°Mo, i.e. the case of pure bosonic neutrinos can be excluded. Much better
restriction sin® y < 0.06 is obtained from Cd decay studies. Nevertheless, these
bounds need to be verified in future with new experiments.

The transitions with large r4(J™) value are worthwhile because of higher sensitivity
to spectrum distortions caused by bosonic component of neutrinos. By use of available
experimental data on the transition 0% — 0% for Mo a bound sin®y < 0.6 is
obtained. From transition 07 — 2] to the nuclear excited state of 1% Ru a stronger limit
can be achieved in principle due to relatively high value of r¢(2]) ~ 7. Unfortunately,
more experimental results are needed for this channel. We found that the distortion
of the energy spectra caused by bosonic part of neutrinos is opposite for 0% — 0" and
for 0t — 2] transitions. The presence of bosonic part of neutrinos shifts the energy
spectrum of outgoing electrons to low energy region for 0T — 0% transition, while for
the 0T — 2] transition spectrum is shifted to higher energies.

A rather strong restriction on sin? y might be obtained from ratios of half-lives to
the excited (2]) and ground (0") state of final nucleus, where the discrepancy between
the bosonic and fermionic neutrino cases is quite large. However, further experimental
progress in the decays to the excited states (2]) is necessary.

We note that there exist no restriction on bosonic component of neutrinos obtained
from the Big Bang Nucleosynthesis. The main aim is to put a qualitative bound
on the mixing parameter sin®y. From the two-neutrino double -decay we found a
conservative bound sin® y < 0.6 that excludes pure bosonic neutrinos. These findings

were published in Ref. [X] give in the List of publications.
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Summary

In this thesis the absolute scale of the neutrino masses and the statistics of neutrinos
have been investigated. The focus was set on the determination of the neutrino mass
from the single $-decays of tritium, rhenium and indium. A possible violation of the
Pauli exclusion principle for neutrinos was studied in the case of the two-neutrino dou-
ble S-decay.

Absolute mass scale of neutrinos in the context of the single S-decay
Tritium (B-decay (see Chapter 3)

e By taking use of the analogy between the >H and 3He nuclei and neutron and
proton particles the super-allowed [-decay of tritium has been described within
the Elementary Particle Treatment (EPT) of Kim and Primakoff.

e A relativistic form of the electron energy spectrum in the EPT approach has been
derived. It was found that the nuclear recoil shifts the kinematical endpoint to
lower value by about 3.4 eV. In addition, it is concluded that the effects of higher

order terms of hadron currents are negligible.

e The relativistic Kurie function for the tritium (-decay has been defined and
presented in a simple form suitable for the neutrino mass determination from the
shape of the endpoint spectrum. A connection with the commonly used Kurie

function was established.

e The role of weak interactions beyond the SM in the tritium [-decay near the
endpoint spectrum has been studied. We showed that the effective scalar and
tensor interactions cannot produce a significant effect near the endpoint and,

therefore, cannot interfere with that produced by the neutrino mass.
Rhenium and indium B-decay (see Chapter /)

e The theoretically unknown electron energy spectrum of the first unique forbidden

[-decay of rhenium has been presented.
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e By a detailed analysis it was found that the particular decay rate associated with
the p-wave emission of electron dominates over the s-wave contribution to decay

rate by a factor ~ 10%.

e The Kurie function for the first unique forbidden B-decay of '8"Re has been
introduced. The analysis of the Kurie function for the rhenium S-decay showed
that within a good accuracy it coincides up to a factor to the Kurie function of

the super-allowed transitions.

e The electron energy spectrum of the second unique forbidden B-decay of '°In
to the first nuclear excited state has been derived. It was showed that in this
transition electrons are predominantly emitted in d partial waves. There is a
general conclusion that the Kurie function for the unique forbidden [-decays
with low Q-value is undistinguishable with the Kurie function of superallowed

[-transitions.

Statistics of neutrinos in the context of the 2v35-decay
A detailed description of the 2v(S3-decay (see Chapter 5)

e A general expression for the decay-rate of the 2v38-decay to the ground (0T)
and excited (2%) state of the final nucleus has been derived by considering in
addition to electron s-waves also the emission of p-wave electrons associated with

transitions through 17 -states of the intermediate nucleus.

e For 2v35-decay of O Nd the half-life has been calculated in a phenomenological
SSD approach by using the log ft values of single -transitions of the ground
state of the intermediate nucleus. By performing a comparison with measured
half-life it was concluded that SSD hypothesis is not realized in the case of the
2v33-decay of YN,

e Normalized energy distributions of the 2v33-decay of »°Nd to the ground (0T)
and excited (21) state of the final nucleus has been presented by considering both

the Single State Dominance and Higher States Dominance hypotheses.
Statistics of neutrinos (see Chapter 6)

e By assuming neutrinos to fulfill Bose-Einstein statistics the differential characte-
ristics and half-life of the 2v33-decay have been determined. Both, transitions

to the ground (07) and the excited (27) states of final nucleus were considered.
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e Qualitative conclusion is that the pure bosonic neutrino is excluded by measured
half-life of the 2v33-decay of ' Mo.

e Parameter sin? y that describes the case of mixed statistics, i.e. partly bosonic
neutrinos, has been introduced. The energy distribution dependence on the mix-
ing parameter was studied. A conservative bound sin? y < 0.6 was obtained from
data of the NEMO3 experiment.

The results and findings presented in this thesis are important for the KATRIN tritium
[-decay experiment, which is under construction and for the planned MARE rhenium
[b-decay experiment as well as for the next-generation double S-decay experiments like
SuperNEMO, EXO, SNO-+, etc.
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Résumé

Uvod

Neutrina zohréavali doleziti dlohu v rannych fazach Vesmiru. V sucastnosti vieme, ze
iba 4% z hmoty vo Vesmire tvori oby¢ajna baryonova hmota. ZvySnych 96% hmoty
Vesmiru, ktord je ndAm neznama, sa nazyva tzv. tmavi hmota. Zastiipenie neutrin v
tejto komponente je stile otazkou Spekulacii. Dolezité je poznamenat, Ze neutrina,
ktoré sa oddelili od primordidlnej hmoty, tzv. reliktné neutrina, st dodnes popri
fotonoch druhymi najpocetnejsimi ¢asticami. NavySe, experimenty s oscilaciami neu-
trin [23, 24, 25| dokazuju, Ze existuji najmenej 2 hmotné neutrina. Aj dodnes st nam
mnohé zakladné vlastnosti neutrin stile nezname.

Cielom tejto prace je skimanie fundamentalnych vlastnosti neutrin: i) absolutna
skala hmotnosti neutrin a ii) Statistické vlastnosti neutrin.

Priame urcenie absoliitnej skaly hmotnosti neutrin je mozné pomocou stidia konca
spektra elektronov emitovanych v obyc¢ajnom S rozpade. Efekt nenulovej hmotnosti
neutrin sa prejavuje deforméciou spektra pri jeho konci a posunom maximélnej energie
elektronov k nizsim hodnotam.

Priame skimanie Statistického charakteru neutrin je prevedené v ramci analyzy

energetickych charakteristik dvojneutrinového dvojitého 8 rozpadu.

Stidium hmotnosti neutrina v 5 premene tricia

V stcastnosti je pozornost k 5 spektru tricia venovand najmé v ramci experimentu
KATRIN v Karlsruhe, ktory by mohol urobit objav hmotnosti neutrin na trovni ~ 0.35
eV alebo dosiahnut horny limit hmotnosti neutrin na arovni ~ 0.2 eV [31].

Z tohto hladiska rezonuje poziadavka na precizny teoreticky popis konca spektra
elektronov emitovanych v 3 premene tricia a preverenia inych vplyvov na koniec spektra

nez zo samotnej hmotnosti neutrin.
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Relativistické spektrum elektrénov v § premene tricia

Relativistické spektrum elektronov je odvodené v rameci pristupu Elementary Particle

Treatment (EPT), ktorym zavadzame analogiu medzi 5 premenou tricia

*H =3 He4e +7, (6.53)

a rozpadom volného neutrénu

n—pte +V.. (6.54)

V ramci tohto pristupu je zahrnuty spitny raz jadier v kinematike danej reakcie,

ktory sposobuje, ze maximalna energia elektronov,

max 1 2 2 2
e (M2 +m? — (M +m,)?), (6.55)

je 0 3.4 eV mensia nez hodnota ziskana konvenénym odvodenim E"** = (M;—M;—
m,). M; a M; je hmotnost *H a *He. m, je hmotnost elektronu a m,, je hmotnost
neutrina. Pre spektrum elektronov emitovanych v beta premene tricia po tpravach

dostdvame

a1
dE.,  2m3

GHF(Z, Eo)peEe(gy +392)Vy (y+2my) (y +m,) . (6.56)

pe & E. st hybnost a energia elektronu. Fermiho funkcia F(Z, E.) berie do uvahy
Coulombovski interakciu medzi emitovanym elektronom a koncovym jadrom. f)alej

definujeme relativisticky tvar Kurieho funckie nasledovne

Ko =B(VyGram)w+m) . (6:57)

kde B = Gg\/g% + 3g%/V2m3. Tu, G je Fermiho konstanta slabej interakcie. gy a
g4 st konstanty renormalizacie vektorového a axialneho toku a nezavisla premenné je
y = E.— E™®. Priebeh Kurieho funkcie (6.57) pri konci spektra je znazorneny na obr.
(3.3) pre rozne hmotnosti neutrin. Mozeme vidiet, Ze pre nulovi hmotnost neutrina je

Kurieho funkcia linearna, kym pre nenulovii hmotnost je linearita narusena.
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Slabé interakcie za Standardnym Modelom v 8 premene
tricia

Dosledky efektivnych skalarnych a tenzorovych slabych interakcii, ktoré majia povod v
teoriach idtcich za ramec SM st Studované v [ premene tricia. Existujice ohranice-
nia na hodnoty vizbovych konstant skalarnej a tenzorovej interakcie (gs a gr [62]) si
ziskané z energetického spektra koncovych jadier v 5 premene, meranych na experi-
mente WITCH na ISOLDE v CERNe. V ramci pristupu EPT je odvodené spektrum
elektonov emitovanych v triciovom 3 rozpade s primesami exotickych interakcii v hamil-
toniane slabych interakcif nasledovne: i) standardnd V' — A a skalarna (S) interakcia.
ii)standardna V — A a tenzorova (T) interakcia.

Vysledkom je aditivny ¢len v spektre elektronov, ktory pochadza z interferen-
cie V — A a skalarnej (tenzorovej) interakcie. Numerickou analyzou pre pripad tri-
cia prichddzame k zaveru, 7e efekt exotickych interakcii, ktorych hodnoty véizbovych
konstant uvazujeme z experimentu WITCH [62] je omnoho slabsi ako Standardnej

V — A, a preto moze byt pri analyze konca spektra zanedbany.

Stidium hmotnosti neutrina v zakazanych 5 premenach
rénia a india

Predmetom zaujmu experimentu MARE je kalorimetrické meranie energie vyletuji-
cich elektronov v réniovom £ rozpade (Q ~ 2.47 keV) s presnostou merania hmotnosti
neutrina na urovni 200 meV. Preto je doraz kladeny na preciznu znalost teoretického
priebehu spektra elektrénov vylietajucich v réniovom [ rozpade. Nedavne merania
hmotnosti izotopov pomocou Penningovych pasci objavili, 7e energia reakcie v § roz-
pade 15In do prvého excitovaného stavu deérskeho jadra dosahuje najnizsiu hodnotu
@ = 155 eV spomedzi vSetkych jadrovych systémov. Z tohto dovodu je predmetom

nasich stadii spektrum elektréonov emitovanych v § premene india.

Teoreticky popis prvej zakidzanej § premeny rénia

V prvom zakdzanom [ rozpade rénia,

BT Re(5/2%) =187 0s(1/27) + e~ + 7, (6.58)

je zmena spinu a parity medzi pociatoénym a koncovym jadrom AJ™ = 27. Ta

sa realizuje bud i) emitovanim elektronu v 512 vlne a neutrina v p3/» vine, alebo
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ii) emitovanim elektréonu v ps, vine a neutrina v s/, vine. Prispevky od vyssich
parcialnych vin mozu byt zanedbané kvoli nizkej hodnote @ danej reakcie.
Energetické spektrum vyletujicich elektronov, ktoré doposial nebolo teoreticky

zname je dané nasledovne

ar 1
N(E.) = Fio ﬁGzBR%eEe(EO — E)V/(Ey— E.)2 —m2
1
x = (Fl(Z, E)p? + Fo(Z,E.)(Ey — E,)? — m,%)). (6.59)

Ey je maximéalna energia elektronu v pripade nulovej hmotnosti neutrina. R je
polomer jadra. Fermiho funkcie Fy(Z, E.) a Fy(Z, E.) beri do tvahy Coulombicki
interakciu medzi koncovym jadrom a vyletujicim elektronom v s a p vine. Polcas

rozpadu je urceny len jednym maticovym elementom

g 47
T<osally 5 S " on(n) @ Vi) hallRed, > P (6.60)

ktory je len multiplikativnym faktorom, t.j. nemeni tvar priebehu spektra. 7Z ex-
perimentéalne znidmeho poléasu rozpadu (773 = 4.35 x 10'%) je potom mo7né urcit
hodnotu maticového elementu (B = 3.573 x 107%). 7.7 a o1(n) st izospinovy zvySovaci

operator a Pauliho spinovy operator n-tého nukleonu.

Dominancia elektrénovej p viny v S premene rénia

Rozpadova Sirka (3 premeny rénia sa da napisat ako suma dvoch prispevkov, I' =
[z 4 I'Ps/2. T¥1/2 a I'P3/2 s jednotlivé casti rozpadovej Sirky zodpovedajice tomu,
ked su elektrony emitované v s a p vlnach. Z numerickej analyzy tychto partikularnych
rozpadovych §irok vyplyva, ze ~ 10% viac elektréonov je emitovanych v p vlne ako v s

vlne. Vysvetlenie tejto dominancie elektronovej p viny spoc¢iva v dvoch pric¢inach:

e Velmi nizka hodnota energie danej reakcie (Q ~ 2.47 keV), ktora sposobuje, Ze

elektron je nerelativisticky.

e Funkéna zavislost Fermiho funkcii Fy(Z, E.) a Fy(Z, E.) v oblasti energii pre

réniovy [ rozpad.

Za ucelom pochopenia dominancie elektronovej p viny z hTadiska kinematiky daného
procesu prejdeme k limite rovinnych vin emitovanych elektronov, t.j. Fi.(Z,E.) ~ 1

(k = 0,1). Prispevok elektronovej p (s) viny je nasobeny kvadratom hybnosti elektronu
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(neutrina). Hmotnost neutrina je zanedbatelna v porovnani s hodnotou @ a preto je
maximéalne dosiahnutelna hybnost neutrina ~ 2.47 keV. Na druhej strane maximalne
dosiahnutelna hybnost elektronu je ~ 49 keV. To znamend, Ze samotna kinematika
procesu umochuje vklad elektronovej p viny do celkovej Sirky rozpadu.

Numerické analyza ukazuje, ze Fy(Z, E.) < F1(Z, E.) v oblasti energii pre réniovy
[ rozpad.

Kurieho funkcia pre prvy zakazany  rozpad rénia

Zanedbanim prispevku od s viny elektronov definujeme Kurieho funkciu v pripade

prvého zakazaného [ rozpadu rénia podobne ako pre pripad tricia:

K(y.m) = Br (0 + m) /ol + 2my)) (6.61)

kde Br. = GsvVB/V2rm3\/(R2 p2/3)(F\(Z, E.)/Fo(Z, E.)) je s dobrou presnostou
kon$tanta. Dévodom je nizka hodnota energie reakcie vzhladom na pokojovi hmotnost

elektronu.

Druhy zakazany ( rozpad india

Nedévne merania pomocou Penningovej pasce [64] ukazali, ze druhy zakazany 5 rozpad
india do prvého excitovaného stavu deérskeho jadra (M'°In(9/27) —!5 Sp(3/27) +
e~ + 7.) je B prechod z doposial najnizSou znamou ) hodnotou reakcie ~ 155 eV.
Zmena medzi zakladnym stavom jadra 1°In(9/27) a prvym excitovanym stavom jadra
1158n(3/2%) je AJ™ = 3T. Dané zmena spinu a parity je splnena ak si elektron a
neutrino emitované vo vinach v tomto poradi: ds/s a s1/2, p3/2 @ P32, S1/2 a ds2. Nizka
hodnota energie danej reakcie a Fy(Z, E.) > F\(Z,E.) > Fy(Z, E.) sposobuju, 7e
dominantny vklad do rozpadovej Sirky je z d viny elektronov. Zanedbanim s a p viny

tak definujeme Kurieho funkciu ako

K(y,m,) = B, ((y +mu)\Vyly + 2ml,))1/2 , (6.62)

kde B, = Ggv/Br,/(V213)\/(1/9)piFy(Z, E.)/Fy(Z, E.) je konitanta v dobrom

priblizeni. Maticovy element je dany ako

2
8T
B =g |<* Sn/2Il 35 Lo rim {ontn) @ Ya(mhl M 1n(9/2") >

(6.63)
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Zhrnutim vysledkov dosiahnutych pre zakdzané § rozpady rénia a india sme prisli
k zaveru, ze pre [ubovolny n-ty S rozpad s dostato¢ne nizkou hodnotu energie reakcie

bude zavislost Kurieho funkcie totozna s tou, ktoréa je pre povolené 5 prechody.

Hypotéza dominancie jedného stavu v 2v33 rozpade

Hypotéza dominancie jedného stavu (Single State Dominance - SSD) bola navrhnuta
v praci Abad, et al. [68]. SSD hypotéza postuluje pre 2v35 aktivne jadra, ktorych
zakladny stav medzijadra je 17, Ze maticovy element 2v53 premeny je dany maticovymi
elementnmi dvoch g prechodov: i) 8 prechod spajajici zakladny stav (07) pociato¢ného
jadra so zakladnym stavom (17) medzijadra a ii) 5 prechod spajajici zakladny stav
(11) medzijadra so zakladnym stavom (0*) koncového jadra. Predmetom nasho zaujmu
je skiimat platnost SSD hypotézy pre 2303 rozpad jadra *Nd s 1~ zakladnym stavom
medzijadra 1°°Sm, nakol'ko existencia nizko leZiacich 17 stavov jadra *°Sm nie je
experimentalne vylicena. To je mozné pomocou diferencidlnych charakteristik, ktoré
st merané v experimente NEMO3.

V ramci odvodenia rozpadovej sirky dvojneutrinového dvojitého S rozpadu,
(A, Z) = (A, Z +2)+2e~ +2v, do 07 zdkladného a 27 excitovaného stavu jadra sme
vzali do ivahy s;/2 a p1/2 vinu elektrénov a iba s;/, vlnu neutrin. Tym moZze byt tento
prechod realizovany iba cez 07, 17, 0~ a 1~ stavy medzijadra.

Zo znameho pol¢asu premeny [ rozpadu medzijadra a hodnoty energie uvolnenej v
danej reakcii Q je mozné urc¢it hodnotu maticového elementu tohto 5 prechodu nasle-

dovne

+ ™ + _ 3D
|< OFIlOITMII >| = \/fﬁ(z,’Ei_Ef)Tl/z. (6.64)

D = (27°In2)/(G%m7) je konstanta. fz(Z', Ey) je integral cez fazovy priestor

zavisly na @) hodnote danej reakcie a T}/, je polcas rozpadu. Operatory O(J™) st

dané ako

O0") = Y 7h  O(1") =gad 7} (@)

o aZ’ 4 [ Tm Om

A 1
Ok(lf) = (%) ZT’;LLE (fm — gAfm X Em)k (665)
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Z' je protonové ¢islo koncového jadra a o je konStanta jemnej Struktury. Podobne
+
pre elektronovy zachyt vieme urcit hodnotu § sily prechodu, BSC) =|< 0 110(T™) 15 > }2,

zo znameho polcasu

Me 9\ 2 1
53 (o) 20, + 1

+
B(E}C)fchKI,LII<Z7 E; — Ef)'
(6.66)

(TS aE — o] =

Funckia fpo_k,.1,,(Z, E; — Ey) zodpoveda integralu cez fazovy priestor. Z tychto

hodno6t maticovych elementov potom vieme urcit polc¢as 2v33 rozpadu ako

me(G6m2)4
8771In 2
x| < 0F[[OA7)|[1™ > | < 17 [Jo7)[of > 2.

-1
<T12/1/2fSSD (O}L)) 2ufSSD(O}r)

(6.67)

1?7=55P(07) je integral cez fazovy priestor emitovanych leptonov. Pre jadro ' Nd je
hodnota pol¢asu 2v33 rozpadu za predpokladu realizacie SSD hypotézy le/”Q_SSD (07) =
4.02 x 10*r, pricom experimentilna hodnota je Tf/";exp(OJr) = 8.2 x 108r. 7Z ich
porovnania je o¢ividné, Ze hypotéza SSD sa nerealizuje pre pripad 2v33 rozpadu ' Nd.

V praci [74] bola vyslovena hypotéza dominancie vyssich stavov ( Higher States
Dominance - HSD ), ktora predpoklada, 7e dominantny vklad do maticového elementu
pochadza z vyssie leziacich 1T stavov.

Platnost oboch hypotéz (SSD i HSD) je mozné verifikovat pomocou spektra energie

jedného elektronu normalizovaného celkovou rozpadovou Sirkou,

LAy
v — N =SSD, HSD). 6.68
v g, (V= 55D, HSD) (6.6)

f

Pl (Ba) =

Vyhodou tohto pristupu je, 7ze v pripade SSD hypotézy je spektrum nezavislé na
maticovych elementov. V pripade hypotézy HSD zavedenim aproximécie energetickych
menovatelov (E.; + E,; = (E; — E¢)/2. 1,j = 1,2) sa stane normalizované spektrum
nezavislé od jadrovych maticovych elementov. Pre pripad 2v33 rozpadu jadra "°Nd
za predpokladu SSD a HSD hypotéz je spektrum jedného elektronu normalizované na

jednotku znazornené na obr. (5.5).
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Statistické vlastnosti neutrin v rameci dvojneutrinového
dvojitého [ rozpadu

Predpoklad mozného narusenia Pauliho vylucovacieho principu bol uz diskutovany vo
viacerych ¢lankoch [80], no zatial ziaden konzistetny mechanizmus nebol navrhnuty. Je
mo7né, 7e vdaka unikdtnym vlastnostiam neutrin (neutralita, velmi nizka skala hmot-
nosti) je narusenie Pauliho principu silnejsie v neutrinovom sektore ako v sektoroch
ostatnych ¢astic. Moznost bozoénovych neutrin bola uz studovana v ramci astrofyzikal-
nych a kozmologickych procesov [84, 85|. Dvojneutrinovy dvojity 3 rozpad je unikatny
proces z toho hladiska, Ze sa ho zucastiiuji dve neutrina. Skumanim charakteristik

2v45 rozpadu tak mozno priamo Studovat Statistické vlastnosti neutrin.

Bozoénové neutrina v 2v(55 premene

Pre krea¢né operatory neutrin zavedieme komutacné vztahy (d'(k,1)d' (ko) = d(k,2)d (1)),
kym pre elektrony predpokladame standardné antikomutacéné vztahy ako pre fermiony.
Ukazuje sa, ze zmena znamienka v komutaénych vztahoch sa prejavi do znamienka

Vyrazov

1 1

+
Em_Ei+Eel+Eul Em_Ei+EeZ+Eu2
1 1
LY = + : 6.69
" Em_Ei+Eel+Eu2 Em_Ei+EeZ+EV1 ( )

Kb =

Kombinacie K/t + L0 a KIP — £10 vstupujt do rozpadovej sirky 2v33 premeny
do zakladného 01 stavu koncového jadra. Pri 2v33 premene do excitovaného 27 stavu
vstupuje iba kombinacia K/ — £/ do rozpadovej §irky. Pre analyzu bozénového
neutrina je vhodné zaviest pomer rozpadovych Sirok pre bozénové a fermidénové neutrina
ro(J™) = Ty(J™)/T¢(J7) do zakladného (07) a vzbudeného (27) stavu koncového jadra.

Vyhodou v ramci hypotézy SSD je to, ze v danom pomere 7y sa maticové elementy
B rozpadu a elektronového zachytu medzijadra vykratia. Preto je vhodné obratit po-
zornost na jadro %Mo, u ktorého je relizdcia SSD hypotézy uz potvrdena [94]. Pre

2v 33 rozpad 1Mo do zakladného 0 stavu dostavame

T)2(0F,) = 68x10%r

f g.s.
7,2(0F,) = 89x10Yr. (6.70)

Tak mame 74(0;,) = 0.076. Pre pripad 2033 rozpad Mo do vzbudeného 2+

stavu dostavame
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T/%(2f) = 17x10% ¢

T?(2F) = 24x 1021 (6.71)

Dostaneme tak ro(2]) = 7.1. Rozdiel medzi fermiénovymi a bozénovymi neutri-

nami je najviac evidentny pri rozpade do 2] excitovaného stavu koncového jadra.

6.2 Pripad c¢iasto¢ne bozénovych neutrin v radmci 2v33 rozpadu

Pre pripad ¢iasto¢ne bozénovych neutrin piSeme neutrinovy stav ako kombinéciu fer-
mionového a bozonového neutrina |v) = cosd|f) + sind|b). Amplituda 2v/5 rozpadu,
Agp = cos® x Ay +sin® x 4, , je dand ako linedrna kombinacia amplitudy 2v33 rozpadu
dana pre ¢isto fermionové a bozonové neutrina. Parameter sin?y vyjadruje velkost
bozonovej komponenty neutrin. Rozpadova Sirka je potom dana 'y, = cos* xT'y +
sin® Y I'y. Nie je tu interferencie medzi fermiénovou a bozénovou ¢astou. Dovodom je
fakt, Ze pri zamene dvoch nerozliSitelnych castic fermiony davaju znamienko minus,
kym bozony znamienko plus v danej amplitide. Nakolko vSak integrujeme cez fa-
zovy priestor, kazdy antisymetricky ¢len voc¢i zadmene 17 <> v, vymizne. Preto nie
je interferencia medzi fermiénovou a bozoénovou ¢astou amplitudy. Pre celkovi roz-
padovi sirku 2v35 premeny do zékladného aj vzbudeného stavu dostavame Iy (J7) =
cos* XI'(J™) + sin* Ty (J™).

Normalizovana diferencidlna rozpadova Sirka je dana ako

P dTsot(J™)  cos® x dwy(J™) + sin® x ro(J™)dwy(J™)
T Ti(J7) cost x + sin y ro(J7)

kde dws(J™) = dU's(J7)/T¢(J™) a dwp(J™) = dl'y(J7)/Ty(J7). Vidime, Ze pomer

ro(J™) vahuje bozénovi komponentu neutrin v diferencianej rozpadovej sirke. To zna-

: (6.72)

mend, ze pre velké rqg sta¢i aj mald komponenta bozénovych neutrin na to, aby sa
prejavila v spektre.

Na obrazkoch (6.1,6.2) st ilustrované sumarne energetické spektrum dvoch vyletuji-
cich elektronov a energetické spektrum jedného vyletujiceho elektronu za predpokladu
realizacie hypotéz SSD i HSD pre ¢isto fermionové a ¢isto bozonové neutrina do zaklad-
ného stavu (01) koncového jadra. Dalej, na obrazkoch (6.6,6.5) st ilustrované sumarne
energetické spektrum dvoch vyletujicich elektronov a energetické spektrum jedného
vyletujiceho elektronu za predpokladu realizacie SSD hypotézy do excitovaného stavu
(27) koncového jadra pre pripad ¢iastotne bozénovych neutrin.

Efekt bozonového neutrina je slabo zavisly na vol'be danej hypotézy (SSD/HSD) a

prejavuje sa v spektre elektronov tym, ze maximum sa postuva k nizsim hodnotam.
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Ohranic¢enia na bozénovi komponentu neutrin

Existuju tri rozne sposoby akymi mozeme ziskat ohrani¢enie na bozénovi komponentu
neutrin (sin?y). Prvy sposob je porovnanie teoreticky uréeného poléasu rozpadu s

experimentalne nameranym. Horné ohranicenie je

sin® x < (1 — /T, Tew=mes), (6.73)

f
Tl/szn

hodnota, ktord je experimentdlne namerand. Toto ohranic¢enie plati za predpokladu

je minimalna teoreticky ur¢end hranica pre polcas a Tf/gp "% 36 maximalna

ro < 1, ¢o je vSak velmi dobre splnené pre prechody 0™ — 0. Nevyhoda je potreba
vypoctu jadrovych maticovych elementov.

Pre pripad Mo a 11%Cd je mozné urcit pol¢asy zo znamych log ft hodnot v ramci
hypotézy SSD. Ziskané ohranicenia si sin? x < 0.34 (!°°Mo) a sin? y < 0.06 (1'6Cd).

Dalsou moinostou je zaviest sin®y ako fitovaci parameter, t.j. urcit jeho hodnotu
pomocou dostupnych dat zo spektier energie jedného elektréonu a sumérnej energie
oboch elektronov. Tato metoda je vhodna pre velké rg. Z dostupnych dat (NEMO3)
plynie ohrani¢enie sin® y < 0.7 [92], t.j. pripad &isto bozénového neutrina je vyliceny.

Tretia moznost je definovat pomer pol¢asov rozpadov do excitovaného a zéakladného

stavu

T/5(J™)

P =
T{5(0%)

(6.74)

separatne pre fermionové a bozoénové neutrina. Za predpokladu SSD hypotézy pre

100 A 70 méame

ri(07) ~ 61
r(0F) ~ 73, (6.75)

Prechod do 0 bol namerany experimentom NEMO 3 [89, 90] a teda 7%, (0f) =~ 80.

Na prvy pohlad sa zda, Ze bozonové neutrina lepSie vyhovuju experimentalnym datam.

exrp. (

Rozdiel moéze byt zapri¢ineny samotnym prepodkladom SSD hypotézy.
Prechod do 2] stavu sa javi byt vhodnejsim nastrojom na $tadium bozénovych

neutrin. Za predpokladu SSD hypotézy pre %Mo mame

T 2.5 x 10*
ri(27) ~ 2.7x10% (6.76)

<
~ ¥
~—~
[\
N~—
12
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Pre 2033 rozpad jadra 1% Mo do 2] stavu existuje iba dolné ohrani¢enie na pol¢as

*

p(21) > 2.2 x 10%. Sucasné experimentéalna hod-

rozpadu [94], s ktorym dostaneme r
nota je teda blizko prahu vylucenia ¢isto bozénovych neutrin. Progres v merani 2v3(3
rozpadu jadra 1Mo do 2] stavu koncového jadra by umoznil urobif zévery aj pre

pripad ¢iasto¢ne bozénového neutrina.

Zaver

V danej praci boli diskutované fundamentalne vlastnosti neutrin. Menovite absolatn
skala hmotnosti neutrin a naruSenie Pauliho vyluc¢ovacieho principu pre neutrina v
kontexte oby¢ajného a dvojitého g rozpadu. Origindlne vysledky, ktoré boli prezento-
vané v danej praci zazneli na viacerych medzinarodnych konferencidch a workshopoch
a tkatiez boli opublikované v zahrani¢nych karentovanych zurnaloch. Dané vysledky
a zistenia su dolezité pre triciovy experiment KATRIN, ktory je vo faze spustania a
pre planovany experiment merajici réniovy [ rozpad MARE, ako aj pre pripravované

experimenty merajuce dvojity 5 rozpad ako napr. SuperNEMO, EXO, SNO+ a pod.
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Appendix A

Phase space integrals evaluation
within the relativistic treatment of
tritium (-decay

We present here details of calculation of the phase space integrals necessary for the

electron energy spectrum in tritium S-decay. We recall the integrals that need to be

calculated.

&py dp
— ZEr T Pros(4) P, —P
K /Ef E, Q= Py = B)

d’py d’p,
wy = [ G e@-p - RRY

d3p; d3p,
Wy = [ GO P - PR (A1)

with Q = P, — P.. The notation is the same as in sec. 3.2.

Integration of

The integral is indeed a scalar function of the four-momentum ). Most apparent scalar
consisting of four-momentum () is Q?. Then the Lorentz invariance of ) allow us to
perform the calculation in a particular frame, where @) = (Qy, 0), i.e., the rest frame
associated with the center of mass of the system containing the final nucleus and the

antineutrino.
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3
k= //dpfdpy Q- P;—P,)

= /dEfdeg Qo — Ey — E,) ps
(A.2)

Here, for the energy of neutrino we have E, = \/ml% + E} — M7. We shall take the

advantage of the expression

5wm:%%ﬁl

For the sake of simplicity here we assume that function f(z) has only one zero-point,

(A.3)

i.e. the xy, what is for the case of tritium [S-decay true so far. Then we have

/G F = F)| _|-Fr_y[_@ "
aEf Ey EV
The argument of the delta function is zero for
= (@0 + My = m)/(20). (4.5)
For the I integral we get
1/E2 M2 E,
V@O P O =
Q3
(A.6)

Taking the advantage of Lorentz invariance of the K integral we may replace Q2

with Q% and get the integral in general form

o o V= Ol T, G = (M = )
=2 % )
We notice that in the laboratory frame, which is the subject of choice for almost
all cases, Q* = M? +m? — 2E,M;.

(A7)
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Integration of L/

We consider the integral

d’ps dp,
@y = [ GG Q- P - YRy

(A.8)

as a vector function of the four-momentum () that may be written in a general way

as

£r = BQ", (A.9)

where the function B = B((Q?) might be the scalar function of the () at most. By
multiplying (£,)? with @, we get

i d3p f d3pu (4)
B@—/fiﬁﬁaaw4@—a—a> (A.10)

The scalar product (Pf- Q) we evaluate using the four-momentum conservation law.

Pf2 = (Q_PV)2
M; = @ —2(P,-Q)+m]

(P-@) = 5I@2+mi— )

(A.11)
Then we have
BQ* = L@t emi gy [P0 0 b p)
2 v 1) E; B,
= %[Q2 +mi — Mj] K. (A.12)
Eventually, we have
QP
e
(Q* + mj) — M})
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Integration of N}

The integral

. d*py d’p, ,
Nop)? = E—ff Z §(Q = Py — P,)(P,)(P)

(A.14)

takes the form of the second rank tensor. We may express the integral with the use

of Q) vector as follows

(Nop)? = Cg” + DQ"Q”,

(A.15)

where C' = C(Q?) and D = D(Q?) are scalar functions of Q% at most. By multi-

plying N* with the metric tensor g,, we get

40+ DQ* = (B, - Py) K.

By multiplying N*° with Q,Q, we find

CQ*+DQ*Q* = (Q-P)(Q Py)K.

By solving the set of these two equations we find

C = %((Py.pf)—(Q'P”ZQ(QQ'Pf))IC
_ L (ip . py_ 4@ R)Q P
D = ~30 <(P,, Py)—4 5 )IC

The integral (N, f)?” then takes the form

(NP = % <<Pu'Pf) _ (Q-Pyéz(QQ.Pf)) K g
1

—3 <(P,,-Pf)—4

Q° Q°
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Scalar products of four-momenta

Eventuallly, we need to evaluate the scalar products of four-momenta of particles in-

volved in the tritium $-decay. They are given as follows:

Q> = M?+m?—2ME, = (my)*
Q2 = (R_Pe)zzMz‘2+mi_2(Pe'Pi)

1
Pei = (PE'Pi):§[Mz'2+mz_Q2]:MiEe

Q* = M}+m?-2ME,
= 2(E™* — E,)M; + M? +m? — 2M; E™**
= 2yM; + (M; +m,)?

Q> = (Pr+PB)=M;+m.+2(P-P,)
1

m, M
Py = (P P)= L@~ a2 —m2 = M, (w—f)

2 M;

= (@ P)= (P P)~ (P P) = MZ = S [M? 4~ @
- %[Q2+Mz‘2_mi] = M; (M; — E.).

= (Q'Pe):(Pi'Pe)_<Pe'Pe>: [MiQ_'—mg_QQ]_mg

1
2

(2

= M7 - = Q7 = M, —

= (@ P)= (P P+ (P P) = 5[Q% — M} 2] 4 i
= %[QQ—M?JFmi]:Mi (y+W)

= (@ P =(Py P+ (B Pp) = M} 4 [Q7 — M7 — )

Mf(Mf + my)
M;

1
= §[Q2+M?—mi]:Mi(y+
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(A.23)

(A.24)

(A.25)
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(Pe'»cu) = 2Q2 (QPe)IC
 M(ME. — m?) my, (My +m,)
(m12)? ( M ) K (A.27)
PPPI(Nyf)po = % <(Py.pf) B (Q-Pyéz(QQ-Pf)) K (P,-P)
_% <(Pqu) _4(QPV22(2QPf)) ’C(QpegggQPz)
(A.28)
We simplify with result
PepPiU<Nl/f)P0 = %((Pvpf>Q2_<QPu><QPf>) ((PePZ)QQ_<QPe)<QPZ>)
tor QP (@ P) (@ R)(@ )
K 2(, 2 2 2 m, M
= WMZ (me - Ee) My (y+ Tlf)
K B —my (2 — B M (4 ey )
o (V6B =) (0 = ) -+ L)

X (yMZ + Mf(Mf + my))
(A.29)
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Appendix B

Distorted relativistic electron wave

function with Coulomb field

The creation of electron and antineutrino takes place simultaneuosly in the bulk of the
nucleus in the nuclear $-decay. Unlike the antineutrino, the electron carries an electric
charge. It is worth to mention that the Coulombic interaction between the electron
and the final nucleus is not negligible in the §-decay. The electron wave function is
distorted in presence of the electromagnetic field of the final nucleus and the overlap
of the electron wave function with the bulk of the nucleus is enhanced.

For the emphasis of nuclear 5-decay description, it is very convenient to expand
the electron wave function into the terms of partial waves. A few terms are presented
explicitly.

The electron wave function is expanded into spherical waves

V(E,7) =VUg(E,7)+Yp(E,7)+ VUp(E,T)+ ... (B.1)

in similarity with atomic physics notation of S, P and D being the electron wave
functions with orbital angular momentum [ =0, [ = 1 and [ = 2, respectively.

We recall that a free spin 1/2 particle is described by the Dirac equation

(=iv"0, +m)¥(p,r) =0, (B.2)

where the solutions are given as

U,(p,r) = us(p)e™, us(p)Z\/E22m< ﬁ_ifsx ) (B.3)

E+m
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Here, us(p) denotes the Dirac spinor with four-momentum p and spin projection
s. However, in order to describe the real situation we have to take into account the

Coulomb interaction between the emitted electron and final nucleus.

(=" 0, +m + ey A,)¥(p, 1) = 0. (B.4)

The electromagnetic four-potential takes the form A, = (V(7),0) in the frame
associated with the final nucleus with V' (7) being the Coulomb potential of final nucleus.
For the purpose of our calculations presented in this thesis we assume the electric charge

distribution inside the nucleus to be of the homogenious form

R stands for the nuclear radius R = 1.14'3 fm and o = 1/137 is the fine structure
constant. We adpot here the approach from [95] to find solutions of the equation (B.4)

in a form

Valpr) = 3 (6. 5) Vi (p.7). (B.6)

Here, k denotes the principal quantum number of the total angular momentum of
electron that consists from the orbital angular momentum [ and spin s(= 1/2) and pu

is the z-th component of this total angular momentum. & is defined as

l = 1-1/2
K= J / (B.7)
-1 j=141/2

We see that x takes either positive or negative integers. In the notation familiar to
the atomic physics we have K = —1,1, =2,2, ...(51/2, D1/2, D3/2, d3/2; ... )

Partial wave functions are defined as

9n (B )Xo () ) | (B8)

rulpor) = ( i (B, )X (7)

The weight factor a,,(p, s) in (B.6) describes the electron with certain four-momentum
p and polarization s. We mention that for the limit case r — oo for the weight factor
holds
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R Ik 1. e
e (P, 8) = Ami"™C (L, i it =, s)Y2(p). (B.9)

The angular part of the electron wave function is expressed as

XHM 72 Z C K 7]57 - )YM O(f)X (B]'O)
o=%41/2
Here, Y, is the two-component Pauli spinor with polarization ¢ and YXZH’ are the
spherical harmonics.

Modified radial functions are given by

G (E, : (L
GulBr) ) _ ing (9B ) (B.11)
fo(E,T) fo(E,T)
The overall phase shift e~A% is introduced for the sake of the fulﬁling the boundary
condition at r — oo and in our calculations can be omitted (e*2% = 1). The subject

of our interest is the radial wave functions near the origin, therefore we may express

them in terms of power series

JH(EW) Jli ( 7])

Here, the coefficients a,, b, are the same as in [95]. The constants of normalization

are evaluated from the continuity condition at » = R and are estimated up to terms of
(aZ)? as

E+m

AL,
+k 28

L 1(Z,E), (B.13)

where k = 1,2, ... and the Fermi functions Fy_;(Z, E') are given by

I'(2k+1)
)L (2, + 1

FilZ.8) = |1 )| @RI P (B

Here, 7 = v/k? — (aZ)? and y = aZE/p.

For the purpose of our calculations we shall rewrite the expansion (B.1) as
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V(E,T) = Vs, ,(E,7) + ¥y, ,(E,7) + Uy, ,(E,7) + ... (B.15)

It is worth to note that particular terms of expansion correspond to the situation
when spin s(= 1/2) is parallel or antiparallel with respect to the orbital angular mo-
mentum [. This turns out to be an advantage in the derivation of the decay rate of
forbidden S-decays when the change of spin and parity between the initial and final nu-
cleui has to be carried out by leptons. The fact, whether the individual term from the
expansion (B.15) contribute to the decay rate or not, is easily seen from the selection
rules for the change of angular momentum and parity in S-decay.

For the purpose of our calculation it is sufficient to have an explicit form of the

electron wave function expanded up to the ds/o-wave of electrons. From [95] we have

Uy = ( 1% ) (B.16)
0.p J1Xs
_ < (52(3.)(5.5) + §-2[3(7-D) = (.7) (G D))xs ) | B.17)
(=F1(@7) + RBGD)(G ) = (7)xs
v, _<g+2 [+3(0:7)(F.7)(F ) — 1] Xs
for [=3(G)GF) + (F5)] xs
24 3(p.7)

. ( g [ZR07 300G ~ 1] xs ) (B
fas [=207)(0.) + 3(p.7)(G7) — ()] xs

In order to have more convenient form of the electron wave function, i.e. expressed

in terms of the Dirac spinors, it is necessary to do some algebra. After calculation for

the electron wave functions we get

§71Xs
\I’sl/2 = ( 525 ~X )
. 1Xs

(B.19)
Ty = ( 9:(6.7)(@.5)xs )
_ffl(o_:'r)xs
aZr
= 5% Fo(Z, E) v 7.7 us(p),
(B.20)
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Uiz = Z( ~~2[[3<f.?)

(B.21)
S _<g+2 [+3<ﬁf><*.f<*.ﬁ>—1]xs)
: fro [23(07)(@5) + (3.0 X
= V|69 G 60 - 69 50z0" (7.3
+(p;) +%§ga o (’7-17)} us(p)
(B.22)
b (g3 [~ (0.)? + 3(57)(0.7)(7) — 1] x3>
: feo [ 02E0) + 305 — (F5)] x.
— VR | T B L0 (0 6 | o
(B.23)
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Appendix C
Fierz transformation

The Fierz transformation is presented here. The aim of the Fierz transformation is
to recouple the electron and neutrino wave functions together in order to make the
calculation of traces easier and more transparent. We assume the expression to be in

following form,

‘I]<pelaf) 7#(1 - 75) (I)c<kulaf) . \I]<pe2ag) fVV(l - 75) (I)c<ku2ag)' (Cl)

Here, the following term,

U (per, T) yu(1 =) P(ku1, @)+ (o2, §) (1 +75) ¥E(pea, 9), (C.2)

is expressed in scalar components in the form,

(P (per, ), (Va1 = 75)) 1 p (2 (K, ©)) - (P (K2, ) o7 (1 (1 4 75)) o7 o (B (P2, §) o

(C.3)
For the sake of simplicity we establish the matrix notation
Aplp = (/YM(]‘ - 75))plp
Ba/o = (/yl/(]' +’y5))0/0’ (04)

Here, we expand the matrices A, B into the complete set of unitary matrices O°.

Ap’pBala = Z aijO;/UOi,p (CE))

27.]
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Multiplying the equation by O , Oia, we obtain for the coefficients a;; the following,

g

B TrA O’ B O

"o 0

aij

For the special case of our interest, i.e. A = ~,(1 — ;) and B = v,(1 + 75), the

non-zero contribution give only the terms:

CLZ']' O;/O Ozjr'/p
1/2 (14 s) Yo Yu(l = 75)
1/8 oas(L+7s5) YOapVu(l —75) (C.7)

Summing these results we finally obtain the necessary relation as follows,

U (per, @) Yu(l = 75) (ko1 @) U(pe2, §) 1 (1 = 75) P(hu2, 9) =
= e U+ 5) U (o, DB(Run, 70701~ 75) (i, )
bW, D)oas(1+95) U (b, D, D001 = 35) B, D
= e D)1+ %) Ve, DB, D1 25) (ki )
bW, Doas(1+5) V(e DB, D001 = %) B (i, D

(C.8)

This recoupling make it easy to evaluate the traces in the calculation of the non-

polarized double -decay half-life presented in Chapter 5.
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