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AbstratIn this thesis the absolute mass sale and statistial properties of neutrinos are inves-tigated in the ontext of the single and double β-deay proesses. To our knowledgethe �rst relativisti alulation of the β-deay of tritium is presented. By taking theadvantage of the elementary partile treatment of 3H and 3He the form for the β-deayendpoint spetrum of tritium is obtained, onsidering the e�ets of higher order termsof hadron urrent and nulear reoil. This approah is used also to study the role ofinterations beyond the Standard Model (e�etive salar and tensor interations) inthe β-deay of tritium. Till now the unknown energy distribution of emitted eletronsfor the �rst unique forbidden β-deay of 187Re is alulated. It is found that the p-waveemission of eletron dominates over the s-wave in this proess. It is shown that theKurie plot near the endpoint of the �rst unique forbidden β-deay of 187Re and of theseond unique forbidden β-deay of 115In is within a good auray linear in the limitof massless neutrinos like the Kurie plot of the super-allowed β-deay of 3H . Next, itis assumed that the Pauli exlusion priniple is violated for neutrinos, and thus, neu-trinos obey at least partly the Bose-Einstein statistis. It is shown that this violationstrongly hanges the two-neutrino double β-deay rates and modi�es the energy distri-butions of the emitted eletrons. The ase of pure bosoni neutrinos is exluded by thepresent data. Further, a disussion is given on possible realization of the Single StateDominane hypothesis in the ase of the two-neutrino double β-deay of 150Nd. Theobtained theoretial results within this thesis are important for the tritium experimentKATRIN, whih is under onstrution, and for the planed rhenium experiment MAREas well as for the next generation of double β-deay experiments like SuperNEMO,EXO, SNO+, et.keywords: neutrino mass, double β-deay, tritium β-deay, forbidden β-deays, Kurieplot, bosoni neutrinos, weak interations



AbstraktV danej prái sú skúmané absolútna ²kála hmotností a ²tatistiké vlastnosti neutrínv kontexte oby£ajného a dvojiého β rozpadu. Pokia© vieme po prvý krát je prezen-tovaný relativistiký výpo£et β rozpadu tríia. Vyuºitím prístupu popisu jadra 3H a
3He ako elementárnej £astie je získaný tvar kona spektra v β rozpade tríia berúdo úvahy efekty £lenov vy²²íh rádov hadrónovýh prúdov a jadrá so spätným rázom.Tento prístup je pouºitý k ²túdiu úlohy interak�í za �tandardným Modelom (efek-tívne skalárne a tenzorové interkaie) v tríiovom β rozpade. Aº doposia© neznámeenergetiké rozdelenie elektrónov emitovanýh v prvom zakázanom β rozpade 187Re jevypo£ítané. Zistilo sa, ºe emisia elektrónu v p vlne dominuje nad s vlnami v danomproese. Je ukázané, ºe Kurieho graf v blízkosti kona spektra pvého zakázaného βrozpadu 187Re a druhého zakázaného rozpadu 115In je s dobrou presnos´ou priamka vprípade bezhmotnýh neutrín, rovnako ako Kurieho graf pre povolený β rozpad 3H .�alej je predpokladané naru²enie Pauliho vylu£ovaieho prinípu pre neutrína, £ím bysa aspo¬ £iasto£ne riadili Bose-Einsteinovou ²tatistikou. Je ukázané, ºe toto naru²eniesilne mení rozpadové ²írky dvojneutrínového dvojitého β rozpadu a modi�kuje energet-iké rozdelenie emitovanýh elektrónov. Sú£asné dáta vylu£ujú prípad £isto bozónovýhneutrín. Moºná realizáia hypotézy dominanie jedného stavu v dvojneutrínovom dvo-jitom β rozpade jadra 150Nd je diskutovaná. Získané teoretiké výsledky v rámi tejtopráe sú d�leºité pre tríiový experiment KATRIN, ktorý je vo fáze kon²trukie a preplánovaný experiment MARE, ako aj pre experimenty budúih generáií dvojitého βrozpadu ako SuperNEMO, EXO, SNO+, at¤.k©ú£ové slová: hmotnos´ neutrína, dvojitý β rozpad, tríiový β rozpad, zakázané βrozpady, Kurieho graf, bozónové neutrína, slabé interakie
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Chapter 1IntrodutionReently, it has been established that neutrinos played an important role in the earlyUniverse in several ways. First, the number of neutrino speies does in�uene theprimordial nuleosynthesis that eventually a�ets the omposition of elements in theUniverse [1, 2℄. Seond, during the evolution of the Universe, massive neutrinos a�etthe formation of large-sale strutures in the form of hot dark matter. It appearsthat only about 4% of the energy/matter in the Universe onsists of ordinary matter(baryons). The remaining 95% is omposed of invisible "dark matter" (∼ 25 %) andunknown "dark energy" (∼ 70 %). The neutrinos that deoupled from the priomordialplasma, known also as reli neutrinos, are still the seond most abundant partiles in theUniverse right next to the photons. The aim of this thesis is to investigate fundamentalproperties of neutrinos, one of the most intriguing partiles in the Universe.The early period of neutrino historyThe history of neutrinos dates bak to the 4-th Deember 1930 with a proposal ofWolfgang Pauli in an open letter to partiipants of physis onferene held at Tübingen.In order to resolve the problem of energy onservation as well as of spin statistis innulear β-deay, he suggested the existene of weakly interating light neutral fermion.It was Enrio Fermi who proposed the name "neutrino".Another ruial step was the theory of β-deay formulated by Enrio Fermi, in1934, in analogy with quantum eletrodynamis. Also he pointed out in 1934 that theshape of the eletron energy spetrum of the β-deay , near the endpoint, is sensitiveto the neutrino mass [3℄. Namely, the endpoint is shifted to lower energies and theshape is tilted. The �rst measurement was performed by Hanna and Ponteorvo [4℄with tritium �lled proportional hamber. Their bound ∼ 1 keV was limited by thedetetor resolution. 3



It was Eugene Wigner who suggested to Maria Goeppert-Mayer in 1935 [5℄, onlyone year after Fermi published his theory desribing the β-deay, a rare proess - thetwo-neutrino double β-deay, whih involves the emission of two eletrons and twoantineutrinos.In 1987 the �rst atual laboratory observation of the two-neutrino double β-deaywas done for 82Se by M. Moe and ollaborators [6℄, who used a time projetion hamber.So far the 2νββ-deay has been reorded for nulei: 48Ca, 76Ge, 82Se, 96Zr, 100Mo,
116Cd, 128Te, 130Te, 136Xe, 150Nd, 238U [7, 8℄. In addition, the 2νββ-deay of 100Moand 150Nd to the 0+ exited state of the daughter nuleus has been observed.In 1937, Majorana published the symmetry theory between the eletrons and posi-trons [9℄. In this theory, he proposed a possible existene of ompletely neutral partilesthat are their own antipartiles. They are known as the Majorana partiles.In 1939, Wolfgang Furry [10℄ disussed the possibility of Majorana neutrinos inneutrinoless double β-deay, a proess whih involves the emission of two eletronsand no antineurinos. It was proved by Shehter and Valle that, if 0νββ-deay takesplae, regardless of the mehanism ausing it, the neutrinos are Majorana partileswith non-zero mass [11℄.The neutrinoless double β-deay has not yet been on�rmed.After the Fermi formulated the theory of β-deay, George Gamow and EdwardTeller extended the theory by introduing the axial-vetor urrents in order to explainthe hange of one unit of the nulear spin in some nulear β-deays. However, theextension was made in suh a way that the parity was still onserved.It was then realized that other ouplings, e.g. salar, pseudosalar and tensor, ouldpartiipate in weak interations. The ultimate ombination of ouplings remained anunsolved question for about two deades, mostly due to misleading interpretation ofimpressive experiments.After the disovery of parity violation in kaon deays by Lee and Yang in 1956[12℄, the ombination of Lorentz invariant interations in the Lagrangian of the weakinterations had beome even more ompliated. This apparently onfusing situationwas simpli�ed with the form of the V − A theory formulated in 1958 by Feynmanand Gell-Mann [13℄, Sudarshan and Marshak [14℄. The V − A struture of the weakinterations an be realized by using the two-omponent theory of massless neutrinos.This theory inorporates the left-handed neutrinos and right-handed antineutrinos.The observations of the muon deay led Bruno Ponteorvo to propose the univer-sality of the Fermi theory of weak interations of eletrons and of muons. The oneptof lepton number was introdued by Konopinski. The lepton number L = 1 for thefollowing partiles: e−, µ−, τ−, νe, νµ, ντ , while L = −1 for their antipartiles. The lep-4



Table 1.1: Flavor lepton numbers given for three generations of leptons.Lepton number e− νe µ− νµ τ− ντ

Le 1 1 0 0 0 0

Lµ 0 0 1 1 0 0

Lτ 0 0 0 0 1 1

ton number L is onserved in the V −A theory as well as in a Standard Model theoryof weak interations.Neutrinos in the onept of Standard ModelAn important milestone in the theory of weak interations is the formulation of theStandard Model by Glashow, Weinberg and Salam [15℄ in 1967. The theory is basedon a SU(2) ⊗ U(1) gauge model. The unique theoretial preditions of the neutralurrents and Z boson were on�rmed at CERN [16℄ in 1973. The model involves alsothe Higghs mehanism, i.e. partiles get their masses via the spontaneous symmetrybreaking mehanism. After experimental disoveries of several partiles it is foundthat the buiding bloks of SM are arranged in three generations, e.g. for neutrinospartiularly
(

νe

e−
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L

,

(

νµ

µ−

)

L

,

(

ντ

τ−

)

L

.The number of these generations was �xed by LEP experiments at CERN withinthe Z boson invisible deay width [17℄. The onept of the �avor lepton number, shownin Table 1.1, was established. The subsript L denotes the left-handed omponents ofthese leptons l (= e, µ, τ) and orresponding antineutrinos ν l. They form doublets,whih enter to the weak interations within the Lagrangian of SM. On the other hand,the right-handed omponents form singlets (eR, µR, τR) and do not partiipate in theweak interations.It is worthmentioning that there is no symmetry inorporated in the SM that wouldimply the �avor lepton number onservation.No experiments performed so far have shown deviation from the preditions of theSM, exept the neutrino osillation experiments.
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Neutrino mixing and osillationsThe idea of neutrino osillations was �rst proposed by Bruno Ponteorvo [18℄ in 1957in analogy with the K osillations phenomenon. At that time, the possible osillationwas ν ↔ ν for Majorana neutrinos. Later on, neutrino mixing was proposed by Maki,Nakagawa and Sakata [19℄ in 1962 with the assumption of two generations of neutrinos,
νe and νµ that are mixed states of two mass eigenstates ν1 and ν2. In 1967 in paper[20℄ Ponteorvo onsidered all possible trannsitions between νe and νµ and applied theidea of neutrino osillations to the solar neutrinos. In 1969 Gribov and Ponteorvo[21℄ onsidered the two-neutrino osillations in ase of two massive Majorana neutri-nos. Starting from 1975 many papers were published by Bilenky and Ponteorvo (see[22℄)who developed phenomenologial theory of the neutrino osillations, onsideringall possible neutrino mass terms (Dira, Majorana, Dira and Majorana).The atmospheri, solar and aelerator neutrino osillation experiments (Kam-LAND, K2K, SNO, et.) are explained in a framework of three neutrino mixing model.In more detail,
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,the three �avor states (νe, νµ, ντ ) are linear ombination of the three mass eigen-states (ν1, ν2, ν3). The Ponteorvo-Maki-Nakagawa-Sakata mixing matrix UPMNS (Uli;
l = e, µ, τ ; i = 1, 2, 3) is given here in the standard notation for Dira neutrinos.
sij = sin θij and cij = cos θij . θij is the mixing angle and δ is the CP-violating phase. Ifneutrinos are Majorana partiles the mixing matrix is multiplied by a diagonal phasematrix P = diag(eiα1 , eiα2 , eiδ), whih ontains two additional CP-violating Majoranaphases α1 and α2.The results from the neutrino osillation experiments an provide information onlyon the di�erenes in the square masses ∆m2

ij = m2
i − m2

j of neutrinos, not on theirmasses, and on the values of mixing angles θij . The neutrino osillation parameters,whih will be used to disuss the absolute sale of neutrino masses are listed bellow:
• θ12: The reator neutrino osillation experiment KamLAND [23℄ has determined
tan2 θ12 = 0.452+0.035

−0.033.
• θ13: The aelerator neutrino osillation experiment T2K has obtained the bound
0.04 < sin22θ13 < 0.34 [24℄ and reator neutrino osillation experiment DOUBLECHOOZ has determined sin2(2θ13) = 0.085 ± 0.029 (stat) ± 0.042 (syst) (68%CL) [25℄. 6



• ∆m2
12: The global �t value of the mass squared di�erene entering the solarneutrino osillation experiments ∆m2

SUN = ∆m2
12 = m2

2 − m2
1 is ∆m2

SUN =

(7.65+0.13
−0.20)× 10−5 eV 2 [26℄.

• ∆m2
31 (∆m2

32) : The mass squared di�erene entering the atmospheri neutrinooosillation experiments ∆m2
ATM = |∆m2

31| = |m2
3 − m2

1| (in ase of normalhierarhy and ∆m2
ATM = |∆m2

32| = |m2
3−m2

2| in ase of inverted hierarhy). Thelong baseline aelerator neutrino osillation experiment MINOS has determined
∆m2

ATM = (2.43± 0.13)× 10−3 eV 2 [27℄.We note that the absolute sale of neutrino masses is not known until now. Basedon the above for the neutrino masses we have following senarios:
• Normal spetrum: m1 < m2 < m3, then the mass squared di�erenes are givenas

∆m2
SUN = m2

2 −m2
1, ∆m2

ATM = m2
3 −m2

2. (1.1)The absolute sale of the neutrino masses is determined by the mass of the lighestneutrino m0,
m1 = m0, m2 =

√

∆m2
SUN +m2

0, m3 =
√

∆m2
ATM +∆m2

SUN +m2
0 (1.2)

• Inverted spetrum: m3 < m1 < m2, then the mass squared di�erenes aregiven as
∆m2

SUN = m2
2 −m2

1, ∆m2
ATM = m2

1 −m2
3. (1.3)The absolute sale of the neutrino masses is determined by the mass of the lighestneutrino m0,

m1 =
√

∆m2
ATM +m2

0, m2 =
√

∆m2
ATM +∆m2

SUN +m2
0, m3 = m0 (1.4)
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Determination of the absolute sale of neutrino massesInformation on absolute sale of neutrino masses an be obtained by three di�erentmethods:1. The limit on the sum of neutrino masses,
mcosmo =

3
∑

i=1

mi, (1.5)is obtained from the astrophysial and osmologial observations [28℄. For thepurpose of illustration we present a global average mcosmo = 0.71 eV .2. Searh for neutrinoless double β-deay, where the e�etive Majorana neutrinomass,
mββ =

3
∑

i=1

(UPMNS)
2
eimi = c212c

2
13e

2iα1m1 + c213s
2
12e

2iα2m2 + s213m3, (1.6)is extrated from the observed half-life of the proess [29, 30℄ .3. Diret determination of the neutrino mass by kinematis of the ordinary β-deay.The e�etive mass of the eletron neutrino
mβ =

√

√

√

√

3
∑

i=1

U2
eim

2
i =

√

c212c
2
13m

2
1 + c213s

2
12m

2
2 + s213m

2
3 (1.7)is obtained from preise investigation of the eletron spetrum near its endpoint[31, 32℄.Although methods 1 and 2 are very sensitive to neutrino masses, their results aremodel-dependent. On the other hand, diret neutrino mass determination from thekinematis of β-deays is essentially based on energy and momentum onservationonly and thus model independent.The above ombinations of masses an be written as follows:I) For the normal hierarhy (m1 ≪ m2 ≪ m3):

• Restrition from osmology and astrophysis:
mcosmo = m0 +

√

∆m2
SUN +m2

0 +
√

∆m2
ATM +∆m2

SUN +m2
0 (1.8)8



• 0νββ-deay:
mββ = c212c

2
13m0e

2iα1 + s212c
2
13e

2iα2

√

∆m2
SUN +m2

0 + s213

√

∆m2
ATM +∆m2

SUN +m2
0(1.9)

• Ordinary β-deay:
mβ =

√

c212c
2
13m

2
0 + s212c

2
13 (∆m2

SUN +m2
0) + s213(∆m2

ATM +∆m2
SUN +m2

0)(1.10)By assuming normal hierarhy the mass m1 is negligibly small and we have
m1 ≪

√

∆m2
SUN , m2 ≃

√

∆m2
SUN , m3 ≃

√

∆m2
ATM . (1.11)Within these bounds an upper limit an be put on the e�etive Majorana neutrinomass

|mββ| ≃ |c213s212
√

∆m2
SUN + s213

√

∆m2
ATMe−2iα2 | ≤ 4 · 10−3 eV. (1.12)II) For the inverted hierarhy (m3 ≪ m1 < m2):

• Restrition from osmology and astrophysis:
mcosmo =

√

∆m2
ATM +m2

0 +
√

∆m2
ATM +∆m2

SUN +m2
0 +m0 (1.13)

• 0νββ-deay:
mββ = c212c

2
13e

2iα1
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∆m2
ATM +m2

0 + s212c
2
13e

2iα2

√

∆m2
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SUN +m2
0

+s213m0 (1.14)
• Ordinary β-deay:

mβ =
√

s213m
2
0 + s212c

2
13(∆m2

ATM +m2
0) + c212c

2
13(∆m2

ATM −∆m2
SUN +m2

0)(1.15)9



Figure 1.1: The normal and inverted hierarhy of neutrino masses are illustrated.We note that m1 < m2 < m3 in normal spetrum and m3 < m1 < m2 in invertedspetrum. Di�erenes between masses are determined by ∆m2
ATM and ∆m2

SUN fromneutrino osillation experiments. The absolute sale of neutrino masses is not known.By assuming inverted hierarhy the mass m3 is negligibly small and we have
m1 ≃ m2 ≃

√

∆m2
SUN , m3 ≪

√

∆m2
ATM . (1.16)For the limit of the e�etive Majorana neutrino mass we �nd

|mββ| ≃
√

∆m2
ATMc213(1− sin2 2 θ12 sin2 α12)

1
2 , (1.17)where α12 = α2−α1. The phase di�erene α12 is the only unknown parameter here.From [33℄ we obtain the following restrition

1.5 · 10−2 eV ≤ |mββ| ≤ 5.0 · 10−2 eV. (1.18)III) For the quasi-generate hierarhy (m0 = m1 ≃ m2 ≃ m3):
• Cosmology and ordinary β-deay:

mcosmo = 3m0 and mβ = 3m0. (1.19)
• 0νββ-deay: 10
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0.71eV for both senarios, normal and inverted spetrum.The e�etive Majorana netrino mass is relatively large in this ase and for bothsenarios of the neutrino mass spetrum is given by
m0|1− 2c212c

2
13| ≤ mββ ≤ m0. (1.20)For the sake of illustration the normal and inverted hierarhy are shown in Fig.(1.1)The above results for the osmologial limits as a funtion of the mass of the ligh-est neutrino are illustrated in Fig. (1.2) for both senarios the normal and invertedspetrum. From global �t value mcosmo = 0.71eV from astrophysial and osmologialobservations a orresponding mass of the lightest neutrino m0 = 0.23 eV is determinedfor both senarios. The lowest value for the sum of the neutrino masses, whih anbe reahed in future osmologial measurements [28, 34, 35℄ is about 0.05 − 0.1eV .The orresponding values of the m0 are in the region, where the normal and invertedspetrum preditions for mcosmo di�er signi�antly from eah other.The allowed range of the values for the e�etive Majorana neutrino mass |mββ | asa funtion of the mass of the lightest neutrino m0 is illustrated in Fig. (1.3) for normaland inverted spetrum. In ase of inverted spetrum the allowed region for the |mββ |is presented between two parallel lines in the upper part of Fig. (1.3). The allowedregion for |mββ| ≈ few meV in ase of the normal spetrum orresponds to the m0smaller than 10meV . 11
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Figure 1.3: The allowed range for |mββ| values is showed as a funtion of the mass ofthe lightest neutrino m0 for both senarios the normal and inverted spetrum. Theurrent experimental limits and the expeted future results are shown [36℄ ( Nulearmatrix elements in quasipartile random phase approximation with CD-Bonn short-range orrelations and gA = 1.25 are assumed [37, 38℄). It is worthmentioning thatin the senario of inverted spetrum there exist a lower bound, whih means that
0νββ-deay should be de�nitely observed, if the experiments reah the required level.The strongest limits on the half-life of the 0νββ-deay were set in Heidelberg-Mosow [39℄, NEMO3 [40℄, CUORICINO [41℄ and KamLAND-Zen [42℄ experiments:

T 0ν
1/2(

76Ge) ≥ 1.9× 1025 y

T 0ν
1/2(

100Mo) ≥ 1.0× 1024 y

T 0ν
1/2(

130Te) ≥ 3.0× 1024 y

T 0ν
1/2(

136Xe) ≥ 5.7× 1024 y. (1.21)From these experiments [39, 41, 42℄ by using of nulear matrix elements of Ref. [37℄alulated with Bruekner two-nuleon short-range orrelations the following stringentbounds on e�etive Majorana mass were obtained
|mββ| < (0.20− 0.32) eV (76Ge),

< (0.33− 0.46) eV (130Te),

< (0.17− 0.30) eV (136Xe). (1.22)However, there exist a laim of the observation of the 0νββ-deay of 76Ge madeby some partiipants of the Heidelberg-Mosow ollaboration [43℄. Their estimated12
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The results for the limits of the e�etive mass of eletron neutrino as a funtionof the mass of the lighest neutrino are illustrated in Fig. (1.4) for both senarios thenormal and inverted hierarhy.Complementary to the kinematial measurements of tritium β-deay appears thealorimetri measurement of the rhenium β-deay in MARE experiment [32℄, where alleletron energy released in reation is reorded. The ahieved sensitivity ofmβ < 15 eVwas limited by statistis [51℄. The suess of rhenium experiments has enouragedthe miro-alorimeter ommunity to proeed with a ompetitive preision searh for aneutrino mass. The ambitious projet is planned in two steps, MARE I and MARE II.MARE II is to hallenge the KATRIN goal of 0.2 eV in future.
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Chapter 2Aims of the thesisThe aim of this thesis is to investigate the absolute sale of the neutrino masses and thestatistis of neutrinos. The attention is paid to the determination of the neutrino massfrom single β-deays of tritium, rhenium and indium, i.e. β-emitters with low Q-values.The e�et of the neutrino mass on the shape of the eletron energy spetrum nearthe kinematial endpoint is analyzed via the Kurie funtion. Further, the statistis ofneutrinos is disussed in the ontext of the two-neutrino double β-deay. A possibility ofneutrinos obeying at least partly Bose-Einstein statistis is addressed. The assoiatednulear matrix elements are determined within the Single State Dominane (SSD) andHigher States Dominane (HSD) hypotheses. A possibility of realization of the SSDhypothesis for the 2νββ-deay of 150Nd is studied as well.
• A relativisti desription of the tritium β-deay:� For the β-deay of tritium the theoretial eletron energy spetrum will bederived within the Elementary Partile Treatment approah of Kim andPrimako�. The e�ets of higher order terms of hadron urrents and nulearreoil will be onsidered.� The role of weak interations beyond the Standard Model (the e�etivesalar and tensor) in the tritium β-deay will be investigated.
• Unique forbidden β-deays of rhenium and indium:� The theoretially unknown eletron energy spetrum of the �rst unique for-bidden β-deay of 187Re will be presented.� The dominane of the partiular di�erential deay rate assoiated with theemission of p-wave eletrons in the rhenium β-deay, whih was found outin the MIBETA experiment, will be investigated.15



� The seond unique forbidden β-deay of 115In to the �rst nulear exitedstate of 115Sn (with the lowest known Q-value) will be desribed theoreti-ally.
• Single State Dominane hypothesis:� For the two-neutrino double β-deay of 150Nd with the 1− ground stateof the intermediate nuleus 150Pm possible realization of the Single StateDominane hypothesis will be analyzed.� The energy distributions of emitted eletrons in the 2νββ-deay of 150Ndwithin the SSD (HSD) hypothesis will be alulated.
• Statistis of neutrinos:� The statistis of neutrinos will be studied within the two-neutrino double β-deay. For pure bosoni and partly bosoni neutrinos the normalized energydistributions of emitted eletrons will be derived.� For pure bosoni or fermioni neutrinos the half-lives of 2νββ-deay to theground (0+) and �rst exited (2+) states of the �nal nuleus will be alu-lated.

16



Chapter 3Neutrino mass and β-deay of tritiumIn a view of an enormous progress in the tritium β-deay experiments, whih aim todetermine the absolute sale of neutrino masses by preise investigation of the eletronenergy spetrum near its endpoint, there is a request for a highly aurate theoreti-al desription of this spetrum near the endpoint. The subjet of interest has beenmoleular e�ets in tritium β-deay [52℄, radiative orretions [53℄, Lorentz invarianeviolations [54℄, interations beyond the Standard Model [55℄, relativisti form for the
β-deay endpoint spetrum [56, 57℄ et.In onnetion with this, the theoretial desription of tritium β-deay is presented inthis hapter. First, a onventional approah to tritium β-deay is showed. Then, mainfous is set on the relativisti desription of this proess in the Elementary PartileTreatment approah. The e�et of reoil on the shape of the endpoint spetrum isdisussed. In addition to the standard V − A interation, the e�etive salar andtensor, beyond the Standard Model interations are taken into aount. Their role inthe tritium β-deay is disussed.3.1 A onventional desription of the β-deay of tri-tiumA onventional theoretial desription of the tritium β-deay is presented here. Thee�et of nulear reoil is negleted in this formalism. For the sake of simpliity weneglet the neutrino mixing. The onsidered weak β-deay Hamiltonian takes theform,

Hβ(x) =
Gβ√
2
ē(x)γµ(1− γ5)νe(x)j

µ(x) + h.c.. (3.1)Here, Gβ = GF cos θC . The GF stands for the Fermi oupling onstant of the weak17



interation and the cos θC is the osine of Cabbibo angle that is due to the mixing ofup and down quarks. The �eld operators for the eletron and neutrino are denoted as
e(x) and νe(x), respetively. The �eld is de�ned as

Ψ(x) =

∫

d~p√
2E

∑

σ

(

uσ(p)e−ipxc†(p) + uσ(−p)eipxd(p)
)

. (3.2)Here, uσ(p) is a Dira spinor.Normalization of the spinor is u(p)†u(p) = 1. Thisnormalization is used within the thesis, with only exeption being made in setions 3.2and 3.3 due to reasons mentioned therein. c†(p) is the reation operator of partileand d(p) is the anihilation operator of antipartile. The free harged hadron urrentonserving the strangeness is given by
jµ(x) = p̄(x)γµ(gV − gAγ5)n(x). (3.3)Here, p(x) and n(x) are the �eld operators of proton and neutron, respetively.The renormalization onstants of vetor and axial-vetor urrents are gV = 1.0 and

gA = 1.269, respetively.The single β-deay ours in the �rst order perturbation theory in the weak inter-ation. The orresponding S-matrix element is given by
S(1) = −i

∫

dx T
[

Hβ(x)e−i
∫
(Hh(z)+Hh;γ(z))dz

]

. (3.4)Here, Hh(x) and Hh;γ(x) is the Hamiltonian of strong interations and the latter isthe Hamiltonian of eletromagneti interations of hadron �elds involved. The strongand eletromagneti interations are taken into aount exatly in this way.The initial and �nal states an be written in the Dira notation as
|i > = |A >

|f > = |e(pe), ν(kν), A′ >

= c†(pe)d
†(kν)|A′ > . (3.5)Here, |A > and |A′ > denote mother and daugther nuleus. The reation operatorsof eletron and antineutrino are denoted as c†(pe) and d†(kν), respetively. pe and kνare the eletron and antineutrino four-momenta, respetively. For the S-matrix elementof the proess we get

< f |S(1)|i >= −i

∫

dx out <e(pe), ν(kν), A
′|Hβ

h.r.(x)|A>in, (3.6)18



with
Hβ

h.r.(x) =
Gβ√
2
[ē(x)γµ(1− γ5)νe(x)] J

µ(x) + h.c.. (3.7)Here, Jµ(x) is the weak harged nulear hadron urrent in the Heisenberg represen-tation and we have used
out < A′|Hβ

h.r.(x)|A >in=< A′|T (Hβ(x)e−i
∫
(Hh(x)+Hh;γ(x))dx)|A > . (3.8)For the sake of simpliity we will omit the indies "in" and "out" in the followingtext.In the tritium β-deay the spin and parity of initial and �nal nulei are equal.Therefore, it is lassi�ed as the super-allowed transition and the dominant ontributionto the deay rate is determined by the s-wave states of emitted leptons

Ψ(~x, pe) ≈
√

F0(Z + 1, Ee)u(pe)

Φc(~x, kν) ≈ u(−kν). (3.9)
~x stands for spatial oordinate vetor of the lepton. ei~p.~x ≈ 1, sine the s-wave statesof leptons are onsidered. The Fermi funtion F0(Z + 1, Ee) takes into aount theeletromagneti interation between the outgoing eletron and the daughter nuleus.Finally, the matrix element of the proess is given as
< f |S(1)|i > = −i

Gβ√
2

√

F0(Z + 1, Ee)
1√
2Ee

1√
2Eν

ū(pe)γα(1− γ5)u(−kν)

×
∫

dx ei(Ee+Eν)x0 < A′|Jα(x)|A >

= −i2πδ(Ef + Ee + Eν − Ei)
Gβ√
2

√

F0(Z + 1, Ee)

× 1√
2Ee

1√
2Eν

ū(pe)γα(1− γ5)u(−kν) < A′|Jα(0, ~x)|A > . (3.10)We use the non-relativisti impulse approximation for the hadron urrent,
Jµ(0, ~x) =

∑

m

τ+m [gµ0 + gAgµk(~σm)k]δ(~x− ~xm). (3.11)Here, the sum over m runs over all nuleons. The operator τ+m is the isospin raisingoperator that turns the m-th neutron into a proton and ~σm is the Pauli spin operator19



of m-th neutron. The metri tensor is de�ned as g = diag(1,−1,−1,−1). The matrixelement of the proess takes the form,
< f |S(1)|i > = −i2πδ(Ef + Ee + Eν −Ei)

Gβ√
2

√

F0(Z + 1, Ee)

× 1√
2Ee

1√
2Eν

ū(pe)γ
α(1− γ5)u(−kν)

×
[

gα0MF + gAgαk( ~MGT )k

]

. (3.12)The Fermi and Gamow-Teller matrix elements are given as
MF =

∑

m,m′

<3 He(1/2+)m′|
∑

n

τ+n |3H(1/2+)m >

~MGT =
∑

m,m′

<3 He(1/2+)m′|
∑

n

τ+n ~σn|3H(1/2+)m > . (3.13)The subjet of our interest is the non-polarized β-deay of tritium. Therefore, thesum over the z-projetions (m,m') of spins of mother and daughter nulei is performed.By performing the traes, the square of the matrix element is given as
∑

spins

| < f |S|i > |2 =

(

Gβ√
2

)2

F0(Z + 1, Ee)8(g
α0gβ0 + gkl)

×
[

gα0MF + gAgαk( ~MGT )
] [

gβ0M
∗
F + gAgβl( ~M

∗
GT )
]

=

(

Gβ√
2

)2

8F0(Z + 1, Ee)

×
(

|MF |2 + g2A |MGT |2
)

. (3.14)Here, the squares of Fermi and Gamow-Teller redued nulear matrix elements aregiven by
|MF |2 =

∣

∣

∣

∣

∣

<3 He(1/2+)||
∑

n

τ+n ||3H(1/2+) >

∣

∣

∣

∣

∣

2

|MGT |2 =

∣

∣

∣

∣

∣

<3 He(1/2+)||
∑

n

τ+n σn||3H(1/2+) >

∣

∣

∣

∣

∣

2

. (3.15)The Fermi matrix element an be evaluated by assuming the exat isospin symmetryand onsidering that the 3H and 3He form an ispospin doublet. Isospin is given as20



T = 1/2, with the Tz = +1/2 assigned to the 3He and the Tz = −1/2 to the 3H . Forthe Fermi matrix element we get MF = 1.The absolute square of the Gamow-Teller matrix element an be estimated by usingthe Ikeda sum rule. For the ground state of tritium it is given as
3(N − Z) =

∑

m

| < 3Hem|τ+σ|3Hg.s. > |2 + | < 3nm|τ−σ|3Hg.s. > |2

= 3. (3.16)In 3H the 1s neutron level is already oupied by two neutrons. Therefore, the tran-sition p → n would need to be sattered into a higher orbit, e.g. 2s in the ontinuum.This is forbidden for the Gamow-Teller operator sine it has no radial dependene.Thus only transition 3H →3 He but not 3H → 3n an ontribute to the Ikeda sumrule. In addition, there are no exited states of 3He. As a onsequene we have
|MGT |2 = 3.Usually, the Q-values of nulear β-deays are small in omparison with nulearmasses. Therefore, reoil energy is replaed with rest mass of �nal nuleus. Thusonly leptons, eletron and neutrino, are onsidered in the phase spae. The di�erentialdeay rate of the proess takes the form

dΓβ =
∑

spins

| < f |S|i > |2 2πδ(Ee + Eν +Mf −Mi)
d~pe
(2π)3

d~kν
(2π)3

. (3.17)The integration over the neutrino variables is performed in order to obtain theeletron energy distribution. For the sake of onveniene the phase spae is given inspherial oordinates.
dΓβ =

1

(2π)5
G2

βF0(Z + 1, Ee)
(

|MF |2 + g2A |MGT |2
)

×δ(Ee + Eν +Mf −Mi) p
2
edpedΩpe k2

νdkνdΩkν . (3.18)Next step is to integrate over the neutrino variables and eletron angles dΩpe . Fi-nally, the eletron energy spetrum of tritium β deay is obtained. In more detail, thenumber of eletrons N(Ee) emitted in narrow energy interval (Ee,Ee+ dEe) is given as
N(Ee) =

dΓβ

dEe
=

G2
β

2π3

(

|MF |2 + g2A |MGT |2
)

×F0(Z + 1, Ee)peEe (E0 − Ee)
√

(E0 −Ee)2 −m2
β. (3.19)21
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Figure 3.1: The endpoint eletron energy spetrum is presented for various neutrinomasses: mν = 0, 1 eV .Here, pe, Ee and E0 = Mi − Mf denote, respetively, the eletron momentum,energy and maximal energy in ase of zero neutrino mass. Mi and Mf stand for therest masses of initial and �nal nulei, respetively. For the non-zero neutrino mass themaximal eletron energy shifts to Emax
e = E0 − mν . The Fermi funtion F0(Z,Ee)takes into aount the Coulomb interation between the �nal nuleus and the emittedeletrons. The eletron energy spetrum near the endpoint is illustrated in Fig. 3.1.The e�et of the neutrino mass is obvious. The spetrum is shifted and distorted nearthe endpoint. The onnetion between the deay rate and the half-life is given as

[

T1/2

]−1
=

Γβ

ln 2
=

1

ln 2

∫ Emax
e

me

dEe N(Ee). (3.20)In addition, the Kurie funtion is de�ned by
K(Ee, mν) ≡

√

dΓβ/dEe

peEeF0(Z + 1, Ee)

=
1

2π3
G2

β

(

|MF |2 + g2A |MGT |2
)

(E0 − Ee)
√

(E0 − Ee)2 −m2
ν (3.21)The main aim of de�ning the Kurie funtion is its dependene on neutrino mass.For the ase of zero neutrino mass it is a straight line rossing the eletron energy22
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Figure 3.2: The Kurie funtion for allowed transitions is shown for two values of neu-trino mass: mν = 0, 1 eV .axis at the endpoint. For non-zero neutrino mass the linearity is lost, most apparentlynear the endpoint. The plot of the Kurie funtion for two di�erent neutrino masses isillustrated in Fig. 3.2. The linearity might be lost also in ase of forbidden transitionswhen the nulear matrix elements beome dependent on eletron energy.3.2 A relativisti treatment of tritium β-deayThe relativisti desription for the eletron energy spetrum near the endpoint is pre-sented in this setion. The fat that the nulei 3H and 3He are, respetively, thenulear analogs of the neutron and the proton is taken into aount. They form anisospin SU(2) doublet. The onsidered approah known as Elementary Partile Treat-ment whih was developed by Kim and Primako� [58℄ is revisited for the β-deay oftritium.The proess,
3H →3 He+ e− + νe, (3.22)is performed in analogy with the β-deay of free neutron,
n → p+ e− + νe. (3.23)23



The kinematis of the two proesses di�er mostly due to di�erent Q-values and theCoulomb orretions. The e�ets of higher order terms of hadron urrent and nulearreoil are taken into aount in this formalism.The invariant β-deay amplitude is given by
M =

Gβ√
2
u(Pe)γα(1− γ5)u(−Pν)

×u(Pf)

[

GV (q
2)γα + i

GM(q2)

2Mi
σαβqβ −GA(q

2)γαγ5 −GP (q
2)qαγ5

]

u(Pi).(3.24)Here, Pi = (Mi, 0), Pf = (Ef , ~pf), Pe = (Ee, ~pe) and Pν = (Eν , ~pν) are four-momenta of 3H , 3He, eletron and antineutrino in the laboratory frame, respetively.
qα = (Pf−Pi)α = (Pe+Pν)α is the momentum transferred to the hadron vertex. In thissetion, an exeption in the normalization of spinors is made with respet to the restof the thesis. Namely, the sum over polarizations of spinors is ∑

spins

u(P )ū(P ) = 6P +M .The in�nitesimal phase spae volume is then given as d~p/(2E(2π)3). In this notation,both phase spae and square of spin-summed amplitude are Lorentz invariant. TheLorentz invariane is important in the EPT approah of the reation.The form fators GV (q
2), GM(q2), GA(q

2), GP (q
2) are real funtions of the squaredmomentum q2. They are parameterized as follows

GV (q
2) =

gV
(

1− q2

M2
V

)2 , GM(q2) =
gM

(

1− q2

M2
V

)2 , GA(q
2) =

gA
(

1− q2

M2
A

)2 . (3.25)The two form-fator ut-o�s MV and MA are in general di�erent and their valuesare expeted to be of the order of 1 GeV like it is in the ase of nuleon form-fators.As it will be disussed later the q2-dependene of these form-fators is not ruial fortritium β-deay.The onserved vetor urrent hypothesis (CVC) implies gV = 1.0. gM = −6.106is alulated from the values of magneti moments of 3H and 3He using the CVChypothesis as well [59℄. The axial oupling onstant gA an be determined from themeasured half-life of tritium. The indued pseudosalar oupling is given by the par-tially onserved axial-vetor urrent hypothesis (PCAC)
gP (q

2) =
2Mi

m2
π − q2

gA(q
2). (3.26)24



mπ is the mass of pion.For the square of spin-summed, Lorentz-invariant amplitude we get
1

2

∑

spins

|M |2 = 16G2
β

[

G2
VPV V +GAGVPAV +G2

APAA +

+GAGPPAP +G2
PPPP +GVGM

PVM

2Mi

+GAGM
PAM

2Mi
+G2

M

PMM

4M2
i

] (3.27)with
PV V = PefPνi + PeiPνf −MiMfPeν, (3.28)
PAA = PefPνi + PeiPνf +MiMfPeν , (3.29)
PAV = 2 (PefPνi − PeiPνf) , (3.30)
PAP = Mf (m

2
ePνi +m2

νPei)−Mi(m
2
ePνf +m2

νPef), (3.31)
PPP =

1

2
(Pif −MiMf )

(

Peν(m
2
e +m2

ν) + 2m2
νm

2
e

)

, (3.32)
PVM = Mi

[

Peν(Pif −M2
f ) + Pef(Pνi − 2Pνf) + PeiPνf

]

+ Mf

[

Peν(Pif −M2
i ) + Pei(Pνf − 2Pνi) + PefPνi

]

, (3.33)
PAM = 2(Mi +Mf)(PefPνi − PeiPνf), (3.34)
PMM =

1

2
Pif

(

Peν(m
2
e +m2

ν) + 2m2
em

2
ν

)

−MiMfm
2
em

2
ν + 2PeiPef(Peν +m2

ν)

+ 2PνiPνf(Peν +m2
e)−

1

2
MiMfPeν

(

3m2
e + 3m2

ν + 4Peν

)

. (3.35)Here, Pkl ≡ (Pk · Pl) denotes the salar produt of two four-momenta. Indies i, f, eand ν stand for initial nuleus, �nal nuleus, eletron and antineutrino, respetively.By negleting the ontribution from higher order urrents (terms proportional to
GM,P ) it is found

1

2

∑

spins

|M |2 = 16G2
β

[

(GV +GA)
2(Pe · Pf)(Pν · Pi)

+(GV −GA)
2(Pe · Pi)(Pν · Pf)

(−G2
V +G2

A)MiMf (Pe · Pν)
]

. (3.36)The advantage of the presented formalism is that the squared Lorentz invariantamplitude is alulated exatly unlike in ref. [57℄, where an assumption about its25



dominant onstituent was onsidered. For GV = GA = 1 the squared amplitude isproportional to (Pe ·Pf)(Pν ·Pi), i.e., the struture is similar as, e.g., in the ase of themuon deay.For the tritium β-deay at rest the di�erential deay rate is
dΓ =

1

2Mi
F (Z,Ee)

(

1

2

∑

spins

|M |2
)

×(2π)4

(2π)9
δ(4)(Pi − Pf − Pe − Pν)

d3pe
2Ee

d3pν
2Eν

d3pf
2Ef

. (3.37)The fator 1/2 in front of the squared amplitude is for the average over the spin ofthe initial state.The subjet of interest is the energy distribution of the outgoing eletrons. Hene,the integration over antineutrino and �nal nuleus momenta has to be performed in(3.37). It requires alulation of the following integrals,
K =

∫

d3pf
Ef

d3pν
Eν

δ(4)(Q− Pf − Pν), (3.38)
(Lν,f)

ρ =

∫

d3pf
Ef

d3pν
Eν

δ(4)(Q− Pf − Pν)(Pν,f)
ρ, (3.39)

(Nkl)
ρσ =

∫

d3pf
Ef

d3pν
Eν

δ(4)(Q− Pf − Pν)(Pk)
ρ(Pl)

σ, (3.40)with Q = Pi − Pe and k, l = ν, f . The detailed alulation of the integrals is givenin the Appendix A.The di�erential deay rate is found to be of the form,
dΓ

dEe

=
1

2π3
G2

βF (Z,Ee)pe
M2

i

(m12)2

√

y

(

y + 2mν
Mf

Mi

)

×
[

g2VRV V + gAgVRAV + g2ARAA+ + gAgPRAP

+ g2PRPP + gV gMRVM + gAgMRAM + g2MRMM

]

, (3.41)where (m12)
2 = M2

i + m2
e − 2MiEe and y = Emax

e − Ee. The maximal eletronenergy,
Emax

e =
1

2Mi

(

M2
i +m2

e − (Mf +mν)
2
)

, (3.42)26



gives value by about 3.4 eV lower than the onventional onsideration Emax
e =

E0−mν . The energy of 3.4 eV is arried out by the reoiling nulei. In the alulationwe negleted q2 dependene of the form-fators as for the β-deay of tritium the valueof q2 is rather small. Their onsideration would lead only to small orretion fators,whih are not sensitive to neutrino mass. It is not of use to present here the expliitform of all RI (I = V V , V A, AA, AP , PP , VM , AM , MM) fators. Instead of thatthe onlusion about their struture and importane is made.The analysis showed that eah term of RI is proportional to
(y+mν(Mf +mν)/Mi) or (y+mνMf/Mi). Hene, a ommon (y+mνMf/Mi) an beput in front of the braket in (3.41) by negleting a small term mν/Mi. The importaneof di�erent RI ontributions an be studied in the limit Mi = Mf , Ee = me and bymaking Taylor expansion in mν , me (mν ≪ me ≪ Mi). The leading terms of di�erent
RI (without the ommon fator) are

V V : meMi, AA : 3meMi, AV : 2m2
e,

V M :
1

2

m3
e

Mi
, MM :

3

16

m5
e

M3
i

, AM : 2m2
e,

AP : 2meMi
m2

e

m2
π

, PP :
1

2
meMi

m4
e

M2
i m

2
π

. (3.43)From their omparison the onlusion that in fat the ontributions oming fromhigher order terms of hadron urrent to the deay rate an be negleted is obtained.The eletron energy distribution is given as follows,
dΓ

dEe
=

1

2π3
G2

βF (Z,Ee)pe
M2

i

(m12)2

√

y

(

y + 2mν
Mf

Mi

)

×
[

(gV + gA)
2y

(

y +mν
Mf

Mi

)

M2
i (E

2
e −m2

e)

3(m12)4

+(gV + gA)
2(y +mν

Mf +mν

Mi
)
(MiEe −m2

e)

m2
12

×(y +Mf
Mf +mν

Mi

)
(M2

i −MiEe)

m2
12

−(g2V − g2A)Mf

(

y +mν
(Mf +mν)

Mi

)

(MiEe −m2
e)

(m12)2

+(gV − gA)
2Ee

(

y +mν
Mf

Mi

)]

. (3.44)The �rst term in the brakets in (3.44), whih is quadrati in y, plays a subleadingrole. By keeping only the dominant ontributions and by introduing a mass saleparameter M instead of the Mi and Mf , we get27



dΓ

dEe

≃ 1

2π3
G2

βF (Z,Ee)peEe(g
2
V + 3g2A)

×
√

y (y + 2mν) (y +mν) . (3.45)The relativisti form of the Kurie funtion is de�ned by
K(y) = B

(

√

y (y + 2mν) (y +mν)
)1/2

, (3.46)with
B =

Gβ√
2π3

√

g2V + 3g2A. (3.47)The unknown oupling onstant gA of the hadron urrent is �xed to the half-life of
3H [60, 61℄ with result gA = 1.247. This value oinides well with that of the axial-vetor oupling of the free nuleon. Then the β-strength is B = 3.43 × 10−6 GeV −2.The numerial fators, 1 and 3, in front of onstants gV and gA in eq. 3.47, respetively,orrespond to the values of Fermi and Gamow-Teller matrix elements obtained in theonventional nulear physis desription of the proess. Further, if y is replaed with
(E0−Ee−mν), the relativisti Kurie funtion in eq. (3.46) is redued to the ommonlyknown Kurie funtion given in eq. (3.21).The plot of the relativisti Kurie funtion versus y = Emax −Ee near the endpointis illustrated in Fig. 3.3. Speial attention is given to the e�et of a small neutrinomass (mν = 0.2, 0.4, 0.6 and 0.8 eV ). For the zero neutrino mass the relativisti Kuriefuntion is linear. Deviation from linearity depends on the magnitude of neutrino mass
mν . Though, there is no di�erene with the previously known dependenes, it is worthto note that in this ase the relativisti form of the β-deay Kurie funtion is used,whih also takes the nulear reoil into aount.In summary, it is found that the relativisti e�ets are small orretions to theresults known in the onventional approah due to a small Q-value of the proess. Wefound out that the reoil of the nuleus (∼ 3.4 eV ) does not yield a signi�ant hange ofthe endpoint spetra if sub eV mass of neutrino is measured. It is found that there is nosigni�ant modi�ation of the shape of the eletron spetra lose to the endpoint dueto the nulear reoil within the onsidered Elementary Partile Treatment of β-deayof tritium.
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Figure 3.3: Endpoints of the relativisti Kurie plot [see Eqs. (3.46) and (3.47)℄ of thetritium beta deay for various values of the neutrino mass: mν = 0, 0.2, 0.4, 0.6, and
0.8 eV .3.3 Weak interations beyond the Standard ModelThe role of the weak inetrations beyond the Standard Model, e.g. e�etive salar andtensor interations, is disussed here. It is worth to note that these exoti interationsappear naturally in theories beyond SM, e.g. within the R-parity breaking SUSYmodels. The onstraints on the oupling onstants of salar and tensor interationsare given by the measurements of reoil spetrum in nulear β-deays performed bythe WITCH experiment at ISOLDE [62℄. The theoretial framework used here is theElementary Partile Treatment (EPT) of the tritium β-deay. The onsidered approahallows to perform the relativisti alulation for the eletron energy spetrum lose tothe endpoint with the nulear reoil taken into aount.The phenomenologial Hamiltonian [63℄ of weak proesses takes the form

Hβ = (HV,A +HS +HT ) , (3.48)with
29



HV,A =
Gβ√
2
[ēγλ(gV + g′V γ5)νe] [p̄γ

λn]

− [ēγλγ5(gA + g′Aγ5)νe] [p̄γ
λγ5n] + h.c.

HS =
Gβ√
2
[ē(gS + g′Sγ5)νe] [p̄n] + h.c.

HT =
Gβ√
2

1

2
[ēσλµ(gT + g′Tγ5)νe] [p̄σ

λµn] + h.c.. (3.49)
HV,A, HS and HT are e�etive vetor-axial, salar and tensor Hamiltonians, re-spetively. The e�etive pseudosalar Hamiltonian an be negleted due to the smallenergy release in the deay. gV,V ′, gA,A′, gS and gT are vetor, axial-vetor, salar andtensor oupling onstants, respetively. Considering the time reversal invariane of theHamiltonian the oupling onstants gi,i′ are real parameters [62℄. The standard V −A

β-deay Hamiltonian is restored from eq. (3.48) by the set of parameters given as
g′V = −gV = −1, g′A = −gA = 1.269 and g′S = gS = g′T = gT = 0. In addition to thestandard V − A interation we add salar or tensor interation, respetively:i) g′S = −gS 6= 0 and g′T = gT = 0;ii)g′S = gS = 0 and g′T = −gT 6= 0.It is worth to mention that there exist onstraints on salar and tensor oupling on-stants, gS/gV = 0.0013 and gT/gA = 0.0036 [62℄, obtained from the WITCH experimentat ISOLDE.For the sake of simpliity the neutrino mixing is negleted here. Within the on-sidered EPT approah of tritium β-deay the di�erential deay rate takes the form

dΓ

dEe
=

1

(2π)3πMi
G2

βF (Z,Ee)pe[CV−A + CS,T ]. (3.50)Here, the CV−A term in the di�erential deay rate is assoiated with the standard
V −A interation. The term CS (CT ) is due to the interferene between standard V −Ainteration and additional salar (tensor) interation. They take the following form

CV−A = (g2A − g2V )MiMf (Pe.Lν) + (gV − gA)
2(Pe.Pi)(Pν .Pf)K

+(gV + gA)
2P ρ

e P
σ
i Nρσ

CS = gV gS meMi(Pf .Pν)K + gV gSmeMf (Pi · Lν)

CT = −3gT (gA − gV )meMi(Pf .Pν)K − 3gT (gA + gV )meMf(Pi · Lν), (3.51)with the phase spae integrals given as30



K =

∫

d3pf
Ef

d3pν
Eν

δ(4)(Q− Pf − Pν)

(Lν,f)
ρ =

∫

d3pf
Ef

d3pν
Eν

δ(4)(Q− Pf − Pν)(Pν,f)
ρ

(Nν,f)
ρσ =

∫

d3pf
Ef

d3pν
Eν

δ(4)(Q− Pf − Pν)(Pν)
ρ(Pf)

σ. (3.52)We reall that Pi = (Mi, 0), Pf = (Ef , pf), Pe = (Ee, pe) and Pν = (Eν , pν)are four-momenta of the 3H , 3He, eletron and neutrino in the laboratory frame,respetively. The Q = Pf+Pν = Pi−Pe is the four-momentum of the system onsistingof neutrino and reoiling nuleus. The next step is the integration over reoil andneutrino momentum. Details of alulation are given in Appendix A. The energydistribution of emitted eletrons is given as
(

dΓ

dEe

)

V−A,S

≃ 1

2π3
G2

βF0(Z,Ee)pe
√

y(y + 2mν)(y +mν)

×
(

Ee(g
2
V + 3g2A) +me2gV gS

)

(

dΓ

dEe

)

V−A,T

≃ 1

2π3
G2

βF0(Z,Ee)pe
√

y(y + 2mν)(y +mν)

×
(

Ee(g
2
V + 3g2A)−me6gAgT

)

. (3.53)The terms with oupling onstants gS (gT ) in set of eqs. (3.53) are due to interfer-ene between the standard V − A and salar (tensor) interation. The subjet of ourinterest is the impat of these additive terms on the shape of the spetrum. Let usanalyze the terms in parentheses with oupling onstants. We have
Ee(g

2
V + 3g2A) +me2gV gS = me(g

2
V + 3g2A) +

p2e
2me

(g2V + 3g2A) +me2gV gS (3.54)and
Ee(g

2
V + 3g2A)−me6gAgT = me(g

2
V + 3g2A) +

p2e
2me

(g2V + 3g2A)−me6gAgT (3.55)The �rst (onstant) term on the right hand side of eqs. (3.54) and (3.55), me(g
2
V +

3g2A), is the dominant one. The seond term, kineti energy of eletron, has a maximum31



value of about 18.6 keV within β-deay of tritium. Considering the onstraints on salar(gS = 1.3 × 10−3) and tensor (gT = 2.3 × 10−3) oupling onstants obtained from theWITCH experiment [62℄, a omparison of numerial values of expressions (3.54) and(3.55) is made.
(pmax

e )2

2me

(g2V + 3g2A) = 108 keV

me2gV gS = 1.33 keV

me6gAgT = 8.9 keV. (3.56)We get
(pmax

e )2

2me

(g2V + 3g2A) > me2gV gS

(pmax
e )2

2me
(g2V + 3g2A) > me6gAgT (3.57)and eventually we have

Ee(g
2
V + 3g2A) ≫ me2gV gS

Ee(g
2
V + 3g2A) ≫ me6gV gT . (3.58)We note that the kineti energy term p2e/2me in eqs. (3.57) beomes smaller thanthe ontributionme2gV gS (me6gV gT ) from the interferene of salar (tensor) interationwith V −A for p2e/2me < 0.23 keV (p2e/2me < 1.5 keV )By analysis of the struture of (3.53) a onlusion is made that the e�et of salarand tensor interations is signi�antly weaker than the well known V − A interationon the spetrum of emitted eletrons in the β-deay of tritium and an be thereforenegleted.ConlusionsIn this hapter, the relativisti alulation of the β-deay of tritium in a hadron modelwas presented. The elementary partile treatment of tritium β-deay follows fromthe analogy between 3H (3He) and the neutron (proton) having the same spin-isospinproperties. It allowed us unlike in Ref. [57℄ to determine the squared β-deay amplitude32



more aurately. The e�ets of higher order terms of hadron urrent and nulear reoilare taken into aount in this formalism. The relativisti Kurie funtion was derivedand presented in a simple form suitable for the determination of neutrino masses fromthe shape of the endpoint spetrum. By omparing the relativisti and previously usedKurie funtions a good agreement between them was established.The relativisti form for the endpoint spetrum of tritium β-deay was derivedwithin EPT approah by taking into aount beyond the SM, e�etive salar andtensor, interations. It was found that these interations, weaker than the V-A SMinteration, with the SM interation annot produe e�ets near the endpoint of thetritium β-deay spetrum whih are of di�erent harater from those produed by thepurely kinemati e�et of the neutrino mass expeted within the SM. These �ndingswere published in Refs. [V,VIII℄ given in the List of publiations.
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Chapter 4Neutrino mass and forbidden unique
β-deays of rhenium and indiumThe aim of this hapter is to derive the form of the endpoint spetrum of emittedeletrons for the β-deay of 187Re, whih is needed to extrat the e�etive eletronneutrino mass mβ or to plae a limit on this quantity from future MARE I and IIexperiments. The unique �rst forbidden β-deay of rhenium is partiularly promisingdue to its low transition energy of ∼ 2.47 keV and the large isotopi abundane of
187Re (62.8%), whih allows the use of absorbers made with natural Rhenium.Reent measurement with Penning traps [64℄ has established that the β-deay of
115In(9/2+) to the �rst exited state of 115Sn(3/2+) is a transition with the smallestQ value (∼ 155eV ) among β-deays. The theoretial spetral shape of emitted elet-rons assoiated with the seond unique forbidden β-deay transition 115In(9/2+) →115

Sn(3/2+) is presented.The Kurie funtion of these transitions is disussed in the ontext of neutrino massand the Kurie funtion of superallowed β-deay of tritium.4.1 Theoretial treatment of the �rst unique forbid-den β-deay of rheniumWe present the �rst unique forbidden β-deay of the rhenium here. The subjet of ourinterest is the proess
187Re(5/2+) →187 Os(1/2−) + e− + ν. (4.1)The energy release of this reation is the smallest known among all the groundstate to ground state β-deaying nulei . The spin-parity hange between mother and34



daughter nulear ground states, 187Re(5/2+) →187 Os(1/2−), is ∆Jπ = 2−, i.e. thistransition is lassi�ed as the �rst unique forbidden. The hange of nulear spin andparity is arried out by the emitted leptons involved in the reation. Therefore, forthe sake of onveniene, the lepton wave funtions are expressed in terms of spherialwaves,
Ψ(Ee, ~x) = ΨS(Ee, ~x) + ΨP (Ee, ~x) + ΨD(Ee, ~x)... . (4.2)Here, the indies S, P,D, .. stand for the angular momentum values l = 0, 1, 2, .., i.e.we adopted the atomi physis notation. The parity of the partiular spherial waveis given by π = (−1)l. Considering the �rst order of Gβ in the perturbation theory ofweak interation, for the amplitude of the proess we get

MRe = −i
Gβ√
2

∫

d~x < Jf ,Mf |Jα(0, ~x)|Ji,Mi > Ψ̄e(~x)γα(1− γ5)Ψν(~x). (4.3)Here, the Jα(0, ~x) (see eq. 3.11 for the expliit form) is the nulear harge hangingweak hadron urrent. The main ontribution to the amplitude arises from the s and pwaves of the emitted leptons. The hange of the angular momentum of 2 units an beahieved either byi) the emission of the eletron in the s1/2-state and antineutrino in the p3/2-statesimultaneously, orii) the emission of the eletron in the p3/2-state and antineutrino in the s1/2-statesimultaneously.Due to the entrifugal repulsion and small energy release in the above mentionedreation (4.1) is the ontribution from higher spherial waves of the leptons negligible.Both of the above mentioned hannels for lepton states ontribute oherently to theamplitude of the reation (4.1). Thus, the amplitude is given as
MRe = −i

Gβ√
2

∫

d~x < Jf ,Mf |Jα(0, ~x)|Ji,Mi >

×
[

Ψ̄
(s1/2)
e (~x)γα(1− γ5)Ψ

(p)
ν (~x) + Ψ̄

(p3/2)
e (~x)γα(1− γ5)Ψ

(s)
ν (~x)

]

. (4.4)The experimental observable is the energy of eletron that is emitted in the rhenium
β-deay (4.1). In order to obtain the eletron energy spetrum we have to performseveral proedures that are ommon for β-deay treatment.35
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Figure 4.1: The eletron energy spetrum of 187Re beta deay normalized to the ex-perimental value of half-life T exp
1/2 = 4.35× 1010 y [65℄.Thus, we neglet the reoil e�et here for the sake of smallness of energy releasein the rhenium deay. As far as the neutrino is not observed we have to perform theintegration over the neutrino momentum. Subjet of our interest is the non-polarized

β-deay of rhenium, i.e. we sum over the spin polarizations of onstituents involvedand �nally we integrate over the eletron momentum diretion. After these steps weend up with the di�erential deay rate with respet to the eletron energy Ee, that ismeasured experimentally indeed. The theoretial shape of eletron energy spetrum ofthe β-deay of 187Re is
N(Ee) =

dΓ

dEe
=

1

2π3
G2

βBR2peEe(E0 − Ee)
√

(E0 − Ee)2 −m2
β

× 1

3

(

F1(Z,Ee)p
2 + F0(Z,Ee)((E0 −Ee)

2 −m2
β)
)

. (4.5)with
B =

g2A
6
| < Os−1/2||

√

4π

3

∑

n

τ+n
rn
R
{σ1(n)⊗ Y1(n)}2||Re+5/2 > |2. (4.6)

Gβ = GFVud, where GF is the Fermi onstant and Vud is the element of the Cabbibo-Kobayashi-Maskawa (CKM) matrix. pe, Ee and E0 are the momentum, energy, andmaximal endpoint energy (in the ase of zero neutrino mass) of the eletron, respe-tively. R is the nulear radius. The Fermi funtions F0(Z,E) and F1(Z,E) in (4.5)36



are present due to a distortion of the s1/2 and the p3/2 eletron wave states in theCoulomb �eld of �nal nuleus, respetively. We note that due to the fat of the �rstunique forbidden transition there is only one nulear matrix element involved. Thevalue of nulear matrix element in (4.6) (B = 3.573 × 10−4) an be determined fromthe measured value of half-life T exp
1/2 = 4.35× 1010y of the β-deay of 187Re [65℄.However, it is the shape of the eletron energy spetrum, espeially near the end-point, that is so important for the neutrino mass estimation. The area beneath thisspetrum negligibly depends on neutrino mass.It is worth to mention that derived theoretial shape of the eletron energy spetrumof 187Re β-deay (4.5) has not been presented with relativisti eletron wave funtionpreviously. The shape of the eletron energy spetrum is shown in Fig. 4.1. It wasalready found out by the experiment [66℄ that the eletrons are preferably emitted inthe p3/2-wave state. In forthoming, we present the reasons that larify the eletronp-wave dominane in ase of rhenium β-deay.4.2 The dominane of eletron p-wave in the �rst uniqueforbidden β-deay of rheniumThe di�erential deay rate of β-deay of 187Re (4.5) with respet to the eletron energyis found to be a sum of two ontributions.

dΓ

dEe
=

dΓs1/2

dEe
+

dΓp3/2

dEe
, (4.7)where dΓs1/2 and dΓp3/2 are the individual parts of di�erential deay rate assoiatedto eletrons to be in the s1/2 and p3/2 wave states, respetively. It is noteworth thatthe interferene between eletron s- and p- wave states does not appear in the deayrate due to the fat that these are two distinguishable physial states. The expliitform of these partiular parts of di�erential deay rate is given as

dΓs1/2

dEe
=

B

6π3
G2

β R2 pe F0(Z,Ee) Ee (E0 −Ee)
(

(E0 − Ee)
2 −m2

β

)3/2 (4.8)and
dΓp3/2

dEe
=

B

6π3
G2

β R2 p3e F1(Z,Ee) Ee (E0 −Ee)
√

(E0 −Ee)2 −m2
β . (4.9)37
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Figure 4.2: The partiular deay rates assoiated with eletron s1/2 and p3/2 wavestates normalized to unity versus eletron kineti energy in rhenium β-deay.The notation used here is the same as in the previous setion. The partiulardi�erential deay rates (4.8, 4.9) normalized to unity are shown in Fig. 4.2 as a funtionof eletron kineti energy. We see that the partial deay rate assoiated with eletron in
p3/2-state is rather smooth funtion and beomes dominant espeially near the endpointthat is ruial for neutrino mass estimation.One an naturally asks what is the relative strenght of the individual parts of thedeay rate entering to the rhenium β-deay rate. For this purpose it is onvenient tode�ne

R(Ee) =
dΓs1/2/dEe

dΓp3/2/dEe
, (4.10)the ratio of the individual parts of di�erential deay rate (4.8, 4.9) as a funtion ofthe eletron energy. The ratio 4.10 allows to see the relative strength as a funtion ofenergy for the whole energy region of few keV interesting for ase of rhenium β-deay.The funtion (4.10) is shown in the Fig. 4.3 against the eletron kineti energy. Asfar as we might see the eletron s1/2 wave ontribution to the deay rate is negligiblewith respet to the p3/2 wave ontribution. In addition, for the ratio of deay ratesassoiated with p3/2 and s1/2 eletron waves we get

Γs1/2

Γp3/2
= 1.011× 10−4, (4.11)38
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Figure 4.3: The ratio of the partiular di�erential deay rates assoiated with eletronin s1/2 and p3/2 wave states versus eletron kineti energy for the rhenium β-deay.with
Γs1/2 =

∫ E0

me

dEe

(

dΓs1/2

dEe

)

Γp3/2 =

∫ E0

me

dEe

(

dΓp3/2

dEe

) (4.12)This result means that the eletron p-wave is dominant in the β-deay of rhenium,fat that an be seen from the energy behavior of the ratio de�ned in eq. 4.10 also.In order to understand the dominant behavior of the partiular di�erential deayrate dΓp3/2/dEe assoiated with the eletron emission in p3/2 wave state we start ouranalysis with the plane wave limit for the sake of simpliity. In more detail, we "switho�" the eletromagneti interation between the emitted eletron and the �nal nuleus.This limit also establish the symmetry between the two emitted leptons with the restmass being the only di�erene. By use of the property of the Fermi funtions
lim

αZ→0
Fk(Z,Ee) → 1 (4.13)we obtain for the eletron energy spetrum in plane wave approximation (PWA)
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Figure 4.5: The neutrino momentum asa funtion of eletron kineti energy inthe single β-deay of 187Re.
(

dΓ

dEe

)

PWA

=
1

2π3
G2

βBR2peEe(E0 − Ee)
√

(E0 − Ee)2 −m2
β

× 1

3

(

p2e + k2
ν

)

, (4.14)with the square of neutrino momentum obtained from the energy onservation ofthe proess (4.1), given as
k2
ν = (E0 − Ee)

2 −m2
β . (4.15)The di�erential deay rate is expressed with respet to the eletron kineti energythat is observed experimentally indeed. The integration over the neutrino momentumand diretion of eletron momentum was already performed in (4.14).The individual parts of the deay rate (4.8, 4.9) in the limit of no Coulomb inter-ation take the following form

(

dΓ

dEe

)

PWA

=

(

dΓs1/2

dEe

)

PWA

+

(

dΓp3/2

dEe

)

PWA
(

dΓs1/2

dEe

)

PWA

= CS(Ee) k
2
ν

(

dΓp3/2

dEe

)

PWA

= CS(Ee) p
2
e, (4.16)where the ommon funtion is de�ned as

CS(Ee) =
1

6π3
G2

βBR2peEe(E0 − Ee)
√

(E0 − Ee)2 −m2
β . (4.17)40
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ν) and eletron (p2e) momenta, respetively. It is learthat behavior of partiular di�erential deay rates in plane wave approximation obeythe behavior of lepton momenta. Therefore it is worth to turn more attention to leptonmomenta as a funtion of eletron energy.The Q-value (∼ 2.5 keV ) is the maximal kineti energy of eletron (and neutrinosimultaneously) that might be ahieved in the deay. The Q-value in the rhenium deayis rather small with respet to the eletron rest mass but still large with respet to thereent upper limit on neutrino rest mass(∼ 2.2 eV). As a onsequene: i) the maximalneutrino momentum (energy) is ∼ 2.5 keV. ii) the maximal eletron momentum is
∼ 50 keV. However, it is worthmentioning that neutrino and eletron do not ahievethe maximal momenta (kineti energies) simultaneously. From energy onservationfollows that if eletron reahes maximum kineti energy, neutrino is at rest and vieversa. For the sake of ompleteness the eletron and neutrino momenta versus theeletron kineti energy are illustrated in Figs. 4.4 and 4.5, respetively. It is obviousthat eletron momentum dominates over neutrino momentum for almost the wholeenergy region with only exeption in the low energy region.We see that the kinematis is enhaning the eletron p-wave ontribution to thedeay rate. 41



However, the eletromagneti interation between the emitted eletron and �nalnuleus takes plae, eventually. Therefore, we have to investigate the behavior ofrelativisti Fermi funtions Fk(Z,Ee) (k = 0, 1) at least in the few keV region thatis interesting for the ase of rhenium β-deay. The expliit analytial form of thesefuntions is given in (B.14). We would rather point out the behavior of the relativistiFermi funtions versus eletron energy that is illustrated in Fig. 4.6. It is lear that theFermi funtion F1(Z,Ee) assoiated with p3/2 eletron waves dominates over the Fermifuntion F0(Z,Ee) assoiated with s1/2 eletron waves for the energy region su�ientfor the rhenium β-deay.In summary, we found out that eletrons in rhenium β-deay are emitted preferablyin p3/2-wave states. This an be understood as a diret onsequene of small Q-valuein rhenium β-deay. The fat that Q-value is small with respet to the eletron restmass and yet still large with respet to neutrino rest mass limit allow us to see theeletron p-wave dominane in the reation. There are two reasons for the enhanementof eletron p-wave. These are: i) the kinematis of the reation and ii) relativistiFermi funtions behavior in low energy region. These two e�ets sum up oherentlyinto the deay rate.4.3 The Kurie funtionThe Kurie funtion (3.21) has been introdued in order to resolve the issue of neutrinomass non-zeroness. For the allowed β-transitions the nulear matrix elements are in-dependent of the energy arried out by emitted eletrons. Therefore, they ontributeonly as a saling fator to the di�erential deay rate and heneforth do not hangethe shape of the eletron energy spetrum. On the ontrary, for forbidden transitionsthe nulear matrix elements are dependent on energy [67℄. In spite of this the Kuriefuntion (3.21) deviates from linearity even for zero neutrino mass. Nevertheless, asbeomes lear in forthoming, we de�ne the Kurie funtion for the rhenium β-deay ina standard way
K(Ee, mβ) =

√

N(Ee)

pe Ee F0(Z,Ee)
. (4.18)The behavior of the Kurie funtion (4.18) de�ned is shown in Fig. 4.7 against theeletron kineti energy for the zero neutrino mass in ase of rhenium β-deay. As asurprise, one may see that it is a straight line, within a good auray, rossing theenergy axis at the endpoint. 42
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Figure 4.7: The Kurie funtion versus eletron kineti energy for rhenium β-deay inase of zero neutrino mass.In order to understand this result we present here our analysis of the behavior of theKurie funtion (4.18). The expliit analytial form of the relativisti Fermi funtions
Fk(Z,Ee), taking into aount the Coulomb interation between the emitted eletronsand �nal nuleus, lead us to the following approximation

p2eF1(Z,Ee)

F0(Z,Ee)
≈ m2

e

[

1 + 2
(Ee −me)

me

]

. (4.19)We note that the maximal eletron kineti energy (Q-value ∼2.5 keV) with respetto the eletron rest mass is of the order of ∼ 1% and therefore the ratio (4.19) an beapproximated as a onstant wihin a good auray. Negleting the eletron s1/2 waveontribution to the deay rate we de�ne for the rhenium β-deay
BRe =

Gβ

√
B√

2π3

√

R2 p2e
3

F1(Z,Ee)

F0(Z,Ee)
. (4.20)Here, the B stands for the nulear matrix element de�ned in (4.6). Consideringaforementioned we assume the fator in (4.20) to be a onstant. We might turn bak tothe linearity of Kurie funtion for the rhenium β-deay at this point. However, beforewe proeed further, we would like to point out the expliit form of the experimentalobservables, e.g. eletron energy spetrum and Kurie funtion, in ase of three neutrinomixing here. For the sake of simpliity we assume the normal mass hierarhy of neutrinomasses (m3 > m2 > m1). For the eletron energy spetrum we then get43
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N(Ee) =

dΓ

dEe

=
3
∑

k=1

|Uek|2
G2

FV
2
ud

2π3
BR2peEe(E0 − Ee)

√

(E0 − Ee)2 −m2
k

× 1

3

[

F1(Z,Ee)p
2
e + F0(Z,Ee)((E0 −Ee)

2 −m2
k)
]

θ(E0 − Ee −mk).(4.21)The nulear matrix element is the same as in (4.6).The Kurie funtion for forbidden β-deay of rhenium takes the form
K(y) = BRe

√
y +m1

[

|Ue1|2
√

y(y + 2m1)

+|Ue2|2
√

(y +m1 −m2)(y +m1 +m2)θ(y +m1 −m2)

+|Ue3|2
√

(y +m1 −m3)(y +m1 +m3)θ(y +m1 −m3)
]1/2

, (4.22)with y = (E0−Ee−m1) ≥ 0 as the independent variable instead of eletron energy
Ee and θ is the ommon step funtion.For the reent rhenium β-deay experiments is the energy resolution far beyondthe limit to see the e�et of small di�erenes of the neutrino masses mi − mj . It iswell possible to estimate the mass of neutrino below the energy resolution of detetors
mk ≪ δE. For the Kurie funtion we obtain the following form44



K(y) ≃ BRe

(

(y +mβ)
√

y(y + 2mβ)

)1/2

, (4.23)where mβ is the e�etive mass of eletron neutrino.The Kurie funtion (4.23) is illustrated in Fig. 4.8 for various neutrino massesversus y near the endpoint. We see that for zero neutrino mass the Kurie plot is linearfuntion.We ome to the onlusion, that the Kurie funtion of rhenium β-deay revealsthe same funtional dependene on neutrino mass, near the endpoint, as those for theallowed β-transitions. These �ndings are important for the planned experiment MAREII that aims to reah sub eV sensitivity.4.4 Seond unique forbidden β-deay of indiumIn this setion the theoretial spetral shape of emitted eletrons in the seond uniqueforbidden β-deay,
115In(9/2+) → 115Sn(3/2+) + e− + νe (4.24)is presented. Reent measurements performed with Penning traps showed that theQ-value of this reation is the smallest known ∼ 155 eV [64℄.The spin-parity hange between the ground state of 115In(9/2+) and the �rst nulearexited state of 115Sn(3/2+) is ∆Jπ = 3+. Hene, the β-deay of 115In to the �rstexited state of 115Sn is lassi�ed as the seond unique forbidden transition. Theemitted eletrons and antineutrinos are expeted to be, respetively, in d5/2- and s1/2-states, p3/2- and p3/2-states and s1/2- and d5/2-states.The β-deay rate is a sum of ontributions assoiated with the d5/2, p3/2 and s1/2wave eletrons (see B). We get

dΓ

dEe

=
3
∑

k=1

|Uek|2
G2

β

2π3
BInpeEe(E0 −Ee)kν

×1

9

(

p4eF2(Z,Ee) + 4p2ek
2
νF1(Z,Ee) + k4

νF0(Z,Ee)
)

θ(E0 − Ee −mk).(4.25)Here, kν =
√

(E0 −Ee)2 −m2
k is the neutrino momentum. Fk(Z,Ee) (k=1,2,3) isthe relativisti Fermi funtion. BIn takes the form45
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Figure 4.9: The single eletron di�erential deay rate normalized to the total deayrate versus eletron energy Ee for β transition 115In(9/2+) → 115Sn(3/2+).
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. (4.26)It ontains single squared nulear matrix element due to the uniqueness of the deay.Its value an be determined from the measured half-life of 115In(9/2+) → 115Sn(3/2+)transition. gA is the axial-vetor oupling onstant. rn is a oordinate of the n-thnuleon.In Fig. 4.9 the single eletron di�erential deay rate normalized to the total deayrate is shown as funtion of eletron energy. This quantity is free of the nulear matrixelement of the proess.By performing numerial analysis of partial deay rates assoiated with emissionof the d5/2, p3/2 and s1/2 eletrons (terms assoiated with F2(Z,Ee), F1(Z,Ee) and
F0(Z,Ee) in Eq. (4.25), respetively) we onlude that about ∼ 105 times more d5/2-state eletrons are emitted when ompared with other -state eletrons. The reason for itis a small Q-value resulting to a fat that maximal eletron momentum (∼ 12.6 keV )is muh larger than the maximal momentum of neutrino (∼ 155 eV ). In addition,
F2(Z,Ee) ≫ F1(Z,Ee) ≫ F0(Z,Ee) for Ee − me < Q. Thus, one an safely negletsmall ontributions to the total deay rate given by an emission of the p3/2- and s1/2-state eletrons.For a normal hierarhy of neutrino masses with m3 > m2 > m1 the Kurie funtion46



of the unique seond forbidden β-deay of 115In is given by
K(y) =

√

dΓ/dEe

peEeF0(Z,Ee)

= BIn

√
y +m1

[

|Ue1|2
√

y(y + 2m1)

+|Ue2|2
√

(y +m1 −m2)(y +m1 +m2)θ(y +m1 −m2)

+|Ue3|2
√

(y +m1 −m3)(y +m1 +m3)θ(y +m1 −m3)
]1/2

, (4.27)with
BIn =

Gβ

√
BIn√

2π3

√

1

9

p4eF2(Z,Ee)

F0(Z,Ee)
, (4.28)and y = (E0−Ee−m1) ≥ 0. With a good auray the fator BIn an be onsideredto be a onstant.For the degenerate neutrino mass region (m1 ≃ m2 ≃ m3 ≃ m0 with m0 =

∑3
i=1 |Uei|2mi) we get

K(y) ≃ BIn

(

(y +m0)
√

y(y + 2m0)
)1/2

, (4.29)where y = (E0 − Ee − m0). We see that the Kurie funtion for unique seondforbidden β-deay of 115In is linear near the endpoint for m0 = 0. However, thelinearity of the Kurie plot is lost if m0 is not equal to zero.In summary, for the seond unique forbidden β-deay of 115In to the �rst exitedstate of 115Sn, the theoretial spetral shape is presented. The deay rate of this proessis a sum of partiular deay rates assoiated with emissions of d5/2-, p3/2- and s1/2-stateeletrons with a lear dominane of the d5/2-state ontribution. The Kurie funtion,de�ned by Eq. (4.27), oinides up to a fator to the Kurie funtion of superallowed
β-deay of tritium.ConlusionsThe theoretial spetral shape of emitted eletrons for the �rst unique forbidden β-deay of 187Re to the ground state of 187Os was presented. The deay rate of theproess was found to be a sum of partiular deay rates assoiated with emissions of
s1/2 and p3/2 eletrons, whih depend in a di�erent way on the neutrino mass. The p-wave emission dominates over the s-wave. Kurie funtion for the rhenium β-deay was47



derived. It was shown that the Kurie plot near the endpoint is within a good auraylinear in the limit of massless neutrinos like the Kurie plot of the superallowed β-deayof tritium.The theoretial spetral shape for the seond unique forbidden β-deay of 115In tothe �rst exited state of 115Sn was presented. Our investigation showed that in thistransition eletrons are predominantly emitted in d5/2 partial waves. In addition, it wasfound that the Kurie funtion assoiated with this transition near the end point withina good auray re�ets a behavior the Kurie funtion of superallowed β-transitions.Based on these �ndings we onlude that behavior of the Kurie funtion of anarbitrary n-th unique forbidden β-deay with su�iently small Q-value is to a good a-uray the same as the behavior of Kurie funtion of superallowed β-deay transitions.These �ndings were published in Refs. [I-IV,VI,VII℄ given in the List of publiations.

48



Chapter 5Double β-deay within Single StateDominane hypothesisThe main interest in the double β deay is onneted with the neutrinoless mode asa probe for physis beyond the Standard Model of eletroweak interations. On theother hand, the detetion of double β-deay with emission of two neutrinos, whih isan allowed proess in the SM, provides the possibility for experimental determinationof the orresponding nulear matrix elements.A subjet of interest is the Single State Dominane (SSD) hypothesis proposed byAbad et al. [68℄, whih suggests that the amplitude of 2νββ-transition, where theground state of intermediate nuleus is 1+ state, is determined by two step transition,whih onnets initial and �nal states through this 1+ ground state of intermediatenuleus. A disussion is given on possible realization of the SSD hypothesis in the aseof the two-neutrino double β-deay of 150Nd with 1− ground state of the intermediatenuleus 150Pm.The harateristis of the 2νββ-deay of 150Nd, e.g. half-life and energy distribu-tions of emitted eletrons, are derived within SSD hypothesis.5.1 Theoretial desription of the double β-deayWe present here the derivation of deay rate of the double β deay. The subjet of ourinterest is the two-neutrino double β-deay,
(A,Z) → (A,Z + 2) + 2e− + 2ν. (5.1)This reation is governed by th Hamiltonian of weak interation given as49



Figure 5.1: The Feynman diagram of the two-neutrino double β-deay proess.
Hβ(x) =

Gβ√
2
ē(x)γα(1− γ5)νe(x)jα(x) + h.c.. (5.2)Here, Gβ = GF cos θC is the weak interation oupling onstant. GF and θC areFermi onstant and Cabbibo angle, respetively. e(x) and νe(x) represent the eletronand neutrino �eld. The free hadron urrent takes the form

jα(x) = p̄(x)γα(gV − gAγ5)n(x). (5.3)Here p(x), n(x) are the proton, neutron �elds respetively and gV = 1 and gA =

1.269 are renormalization onstants of vetor and axial-vetor hadron urrent, respe-tively.Double β-deay is a seond order proess in theory of weak interation given byHamiltonian (5.2). Therefore, the relevant ontribution to the S-matrix element isgiven as
S(2) =

(−i)2

2

∫

dx1dx2T
[

Hβ(x1)Hβ(x2)e
−i

∫
(Hh(z)+Hh;γ(z))dz

]

. (5.4)
Hh(x) aHh;γ(x) stand for the Hamiltonian of strong interation and eletromagnetiinteration of hadrons, respetively. The strong and eletromagneti interation isonsidered here exatly.The Feynman diagram for this nulear proess is illustrated in Fig. 5.1. For theinitial and �nal states we may write 50



|i > = |A >

|f > = |e(pe1), e(pe2), ν(kν1), ν(kν2), A′ >

= c†(pe1)c
†(pe2)d

†(kν1)d
†(kν2)|A′ > . (5.5)Here, |A > and |A′ > denote initial (A,Z) and �nal (A,Z + 2) nuleus. pe1 and

pe2 orrespond to the eletron four-momenta and kν1 and kν2 stand for the neutrinofour-momenta, respetively. For the eletron and antineutrino operators, c† and d†, theantiommutation relations are given by
c†(pe1)c

†(pe2) = −c†(pe2)c
†(pe1)

d†(kν1)d
†(kν2) = −d†(kν2)d

†(kν1). (5.6)For the matrix element of the two neutrino double β-deay we have
< f |S(2)|i >=

(−i)2

2
×

∫

dx1dx2 out <e(pe1), e(pe2), ν(kν1), ν(kν2), A
′|T
[

Hβ
h.r.(x1)Hβ

h.r.(x2)
]

|A>in, (5.7)with
Hβ

h.r.(x) =
Gβ√
2
[ē(x)γα(1− γ5)νe(x)] Jα(x) + h.c.. (5.8)Here, Jα(x) is the weak hadron urrent in Heisenberg representation. We have alsoused the relation

out < A′|T (Hβ
h.r.(x1)H

β
h.r.(x2))|A >in

=< A′|T (Hβ(x1)H
β(x2)e

−i
∫
(Hh(x)+Hh;γ(x))dx)|A > . (5.9)For the sake of simpliity we will omit the indies "in" and "out". In order toperform the integration over the time we have to rewrite the T-produt with help ofthe step funtion de�ned as

ϑ(t) =

{

0 t ≦ 0

1 t > 051



The T-produt an be expressed as
T (Hβ

h.r.(x1)H
β
h.r.(x2)) =

ϑ(x10 − x20)H
β
h.r.(x1)H

β
h.r.(x2) + ϑ(x20 − x10)H

β
h.r.(x2)H

β
h.r.(x1). (5.10)It is worth mentioning that both terms of the expressed T-produt ontributeequally to the double β-deay matrix element (5.7). We shall take the advantage ofthe ompleteness of states (∑n |n >< n| = 1) of the intermediate nuleus (A,Z + 1).Moreover, the nulear states of parent, daughter and intermediate nulei are eigensta-tes of the nulear Hamiltonian H . Considering the time dependent form of the hadronurrent operator in Heisenberg representation given as

Jµ(x) = eiHx0Jµ(0, ~x)e
−iHx0 (5.11)with the above mentioned onsiderations we get

< e(pe1), e(pe2), ν(kν1), ν(kν2), A
′|Hβ

h.r.(x1)H
β
h.r.(x2)|A >=

(

Gβ√
2

)2

e(Ee1+Eν1)x10e(Ee2+Eν2)x20 ×

Ψ̄(~x1, pe1)γµ(1− γ5)Φ
c(~x1, kν1) Ψ̄(~x2, pe2)γν(1− γ5)Φ

c(~x2, kν2)×
∑

n

ei(Ef−En)x10ei(En−Ei)x20 < A′|Jµ(0, ~x1)|n >< n|Jν(0, ~x2)|A >

−(pe1 ↔ pe2)− (kν1 ↔ kν2) + (pe1 ↔ pe2)(kν1 ↔ kν2). (5.12)
Ei, Ef and En are the initial, �nal and intermediate nulear state energies, respe-tively. The sum ∑

n runs over all disrete states of the intermediate nuleus assumingtheir ompleteness. By use of adiabati swith o� of interation at in�nity (x0 → ±∞)
∫ 0

−∞

eiaτdτ =⇒ lim
ε→0

∫ 0

−∞

ei(a−iε)τdτ = lim
ε→0

−i

a− iε
,

∫ ∞

0

e−iaτdτ =⇒ lim
ε→0

∫ ∞

0

e−i(a−iε)τdτ = lim
ε→0

−i

a− iε
(5.13)we may perform the integration over the time variables. We end up with
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< f |S(2)|i >= i 2πδ(Ee1 + Ee2 + Eν1 + Eν2 + Ef −Ei)

(

Gβ√
2

)2

∫

d~x1d~x2Ψ̄(~x1, pe1)γµ(1− γ5)Φ
c(~x1, kν1) Ψ̄(~x2, pe2)γν(1− γ5)Φ

c(~x2, kν2)

×
∑

n

< A′|Jµ(0, ~x1)|n >< n|Jν(0, ~x2)|A >

En −Ei + Ee2 + Eν2

−(pe1 ↔ pe2)− (kν1 ↔ kν2) + (pe1 ↔ pe2)(kν1 ↔ kν2). (5.14)For the sake of simpliity we introdue the following approximations as far as theywill not redue the value of further results.i) We onsider only the s1/2 and p1/2 eletron waves and s1/2 neutrino wave (seeApp. B).
Ψ(~x, pe) ≈

√

F0(Z + 2, Ee)

(

1 +
α(Z + 2)

2
γ0~γ · ~x

R

)

u(pe)

Φc(~x, kν) ≈ u(−kν). (5.15)
~x is the lepton oordinate vetor and R is the nulear radius.ii) The non-relativisti approximation of hadron urrent is given as

Jν(0, ~x) =
∑

m

τ+m[gν0 + gAgνk(~σm)k]δ(~x− ~xm), (5.16)where the sum is running over all nuleons.iii) The subjet of our interest are only the transitions to the ground state 0+ and�rst exited state 2+1 of daughter nuleus. Due to the previous assumptions on leptonwave funtions these transitions an be realized only via the 0+, 1+, 0− and 1− statesof the intermediate nuleus.By use of the relation
~γ · ~a ~γ ·~b = ~a ·~b+ γ0~γ ·

(

~a×~b
) (5.17)for the transitions 0+ → 0+ and 0+ → 2+ we get
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< f |S(2)|i >= i

(

Gβ√
2

)2

2πδ(Ee1 + Ee2 + Eν1 + Eν2 + Ef − Ei)

×
√

F0(Z + 2, Ee1)
√

F0(Z + 2, Ee2)
1√
2Ee1

1√
2Ee2

1√
2Eν1

1√
2Eν2

×ū(pe1)γµ(1− γ5)u(−kν1) ū(pe2)γν(1− γ5)u(−kν2)

×
[

gµ0gν0M(0)(J+) + gµkgνlM(1)
kl (J

+)
]

−(pe1 ↔ pe2)− (kν1 ↔ kν2) + (pe1 ↔ pe2)(kν1 ↔ kν2), (5.18)with
M(0)(J+) =

∑

J π=0+,0−

∑

n

< J+
f |O(J π)|J π, n >< J π, n|O(J π)|0+i >

En − Ei + Ee2 + Eν2

M(1)
kl (J

+) =
∑

J π=1+,1−

∑

n

< J+
f |Ok(J π)|J π, n >< J π, n|Ol(J π)|0+i >

En −Ei + Ee2 + Eν2
. (5.19)The transition operators are given as

O(0+) =
∑

m

τ+m , Ok(1
+) = gA

∑

m

τ+m (~σm)k

O(0−) = −gA

(

αZ ′

2

)

∑

m

τ+m

(

~xm · ~σm

R

)

,

Ok(1
−) =

(

αZ ′

2

)

∑

m

τ+m
1

R
(~xm − gA~xm × ~σm)k . (5.20)Here O(0+) and Ok(1

+) are the operators of Fermi and Gamow-Teller transitions.
O(0−) and Ok(1

−) are operators involved in the �rst forbidden β-deays. Z ′ stands forthe proton number of �nal nuleus (Z ′ = Z + 2).We shall take the advantage of the Fierz transformation (for details see AppendixC) in order to reouple the eletron and neutrino spinors together
ū(pe1)γµ(1− γ5)u(−kν1) ū(pe2)γν(1− γ5)u(−kν2) =

−1

2
ū(pe1)(1 + γ5)u(−pe2) ū(kν1)γνγµ(1− γ5)u(−kν2)

+
1

8
ū(pe1)σ

αβ(1 + γ5)u(−pe2) ū(kν1)γνσαβγµ(1− γ5)u(−kν2). (5.21)For the double β-deay amplitude we then have54



< f |S(2)|i >= 2πδ(Ee1 + Ee2 + Eν1 + Eν2 + Ef − Ei)×
−i

2

(

Gβ√
2

)2
√

F0(Z ′, Ee1)
√

F0(Z ′, Ee2)
1√
2Ee1

1√
2Ee2

1√
2Eν1

1√
2Eν2

×
[

(K(0) + L(0))ū(pe1)(1 + γ5)u(−pe2) ū(kν1)(1− γ5)u(−kν2)

−(K(0) −L(0))

4
ū(pe1)σ

αβ(1 + γ5)u(−pe2) ū(kν1)γ0σαβγ0(1− γ5)u(−kν2)

+(K(1)
kl + L(1)

kl )ū(pe1)(1 + γ5)u(−pe2) ū(kν1)γ
lγk(1− γ5)u(−kν2)

−(K(1)
kl − L(1)

kl )

4
ū(pe1)σαβ(1 + γ5)u(−p2) ū(kν1)γ

lσαβγk(1− γ5)u(−kν2)

]

, (5.22)with
K(0) =

∑

J π=0+,0−

∑

n

< J+
f |O(J π)|J π, n >< J π, n|O(J π)|0+i > Kn

L(0) =
∑

J π=0+,0−

∑

n

< J+
f |O(J π)|J π, n >< J π, n|O(J π)|0+i > Ln

K(1)
kl =

∑

J π=1+,1−

∑

n

< J+
f |Ok(J π)|J π, n >< J π, n|Ol(J π)|0+i > Kn

L(1)
kl =

∑

J π=1+,1−

∑

n

< J+
f |Ok(J π)|J π, n >< J π, n|Ol(J π)|0+i > Ln. (5.23)The energy denominators are given as

Kn =
1

En − Ei + Ee1 + Eν1

+
1

En − Ei + Ee2 + Eν2

Ln =
1

En − Ei + Ee1 + Eν2

+
1

En − Ei + Ee2 + Eν1

. (5.24)For the di�erential deay rate the relation,
dΓ2ν =

∑

spins

| < f |S|i > |22πδ(Ei − Ef −Ee1 −Ee2 −Eν1 − Eν2)

× d~pe1
(2π)3

d~pe2
(2π)3

d~kν1
(2π)3

d~kν2
(2π)3

, (5.25)holds. We reall the relationship between the total deay rate and half-life for thesake of ompleteness. 55



Γ2ν =
ln 2

T 2ν
1/2

. (5.26)5.2 Double β-deay to the 0
+ ground stateWe present here the half-life of the double β-deay to the 0+ ground state of daughternuleus. Based on the alulations presented in previous setion (5.1)we may write

(

T 2ν
1/2(0

+)
)−1

=
me

32π7 ln 2
(Gβm

2
e)

4 I2ν(0+) (5.27)for the half-life. The integral is given as
I2ν(0+) =

1

m9
e

∫ Ei−Ef−me

me

dEe1F0(Z
′, Ee1)pe1Ee1 ×

∫ Ei−Ef−Ee1

me

dEe2F0(Z
′, Ee2)pe2Ee2

∫ Ei−Ef−Ee1−Ee2

0

dEν1E
2
ν1E

2
ν2|M2ν(0+)|2. (5.28)Here, the neutrino energy, following the energy onservation law, is given as Eν2 =

Ei−Ef −Ee1−Ee2−Eν1. pe = |~pe| stands for the eletron momentum. For the matrixelement of nulear transition we have
|M2ν(0+)|2 = |M (0)

K (0+) +M
(0)
L (0+)|2 + 3|M (0)

K (0+)−M
(0)
L (0+)|2 +

|M (1)
K (0+) +M

(1)
L (0+)|2 − 1

3
|M (1)

K (0+)−M
(1)
L (0+)|2 +

2Re{(M (0)
K (0+) +M

(0)
L (0+))(M

(1)
K (0+) +M

(1)
L (0+))} −

2Re{(M (0)
K (0+)−M

(0)
L (0+))(M

(1)
K (0+)−M

(1)
L (0+))}, (5.29)with

M
(0)
K (0+) = M

(0+)
K (0+) +M

(0−)
K (0+) =

∑

J π=0+,0−

∑

n

< 0+f ||O(J π)||J π, n >< J π, n||O(J π)||0+i > Kn

M
(1)
K (0+) = M

(1+)
K (0+) +M

(1−)
K (0+) =

−
∑

J π=1+,1−

∑

n

< 0+f ||O(J π)||J π, n >< J π, n||O(J π)||0+i > Kn. (5.30)56



When replaing Kn with Ln in M
(0)
K (0+), M (1)

K (0+) we get M (0)
L (0+), M (1)

L (0+).The presented form of half-life in (5.27) inludes the forbidden β-transitions throughthe intermediate nuleus. Also, he exat energy dependene of the energy denomina-tors have been kept so far. The β-transitions M (0−)
K,L (0+) and M

(1−)
K,L (0+) enter to thedouble β-deay matrix element of Fermi (M (0+)

K,L (0+)) and Gamow-Teller (M (1+)
K,L (0+))throughout the 0− and 1− states of intermediate nuleus. We neglet the double Fermimatrix element due to the fat, that initial and �nal nulei belong to the di�erentisospin multiplets [69℄. The matrix elements M (0−)

K,L (0+) and M
(1−)
K,L (0+) assoiated withthe forbidden transitions are suppressed by a fator ((αZ ′)/2)2 with respet to theallowed transitions onneting the intermediate nuleus states with ground states ofinitial and �nal nulei. This suppression has its origin in p1/2 eletron wave funtionthat has to be inluded in order to hange parity between the state of intermediatenuleus and ground state of mother and daughter nuleus (0+). The suppression fortypial double β-deaying nulei is roughly ∼ 1/40.There exist an approximation that replaes the energy of leptons with a mean valueassoiated with the energy release of the deay.

∆ ≡ (Ei −Ef )/2

Eei + Eνj ≈ ∆. (5.31)Here, i, j = 1, 2. This approximation is alled the energy denominators losure andits advantage is the denominator indenpendene of lepton energies. Taking into aountthis advantage we an write the half-life (see 5.27) as a produt of the phase spaeintegral and nulear matrix element. By the use of the above mentioned approximationwe get
|M2ν(0+)|2 = |M (0)(0+) +M (1)(0+)|2

=

∣

∣

∣

∣

2
∑

J π=0+,0−,1+,1−(−1)J
∑

n

<0+f ||O(J π)||J π,n><J π ,n||O(J π)||0+i >

En−Ei+∆

∣

∣

∣

∣

2

. (5.32)The energy denominators losure is usually involved in ase when onsidering HigherStates Dominane (HSD) hypothesis, i.e. when the main ontribution to the double
β-deay matrix element omes from higher lying states of intermediate nuleus withspin and parity 1+. Considering only the s1/2 eletron wave states and negleting thedouble Fermi matrix element due to isospin symmetry we have57



|M2ν(0+)|2 = g4A|M2ν
GT (0

+)|2

= 4g4A

∣

∣

∣

∣

∣

∑

n

< 0+f ||
∑

m τ+mσm||1+, n >< 1+, n||∑m τ+mσm||0+i >

En − Ei +∆

∣

∣

∣

∣

∣

2

.(5.33)The half-life is then given as
(

T 2ν
1/2(0

+)
)−1

=
me

8π7 ln 2
(Gβm

2
e)

4 g4A|me M
2ν
GT (0

+)|2J2ν(0+), (5.34)with the phase spae integral given as
J2ν(0+) =

1

m11
e

∫ Ei−Ef−me

me

dEe1F0(Z
′, Ee1)pe1Ee1 ×

∫ Ei−Ef−Ee1

me

dEe2F0(Z
′, Ee2)pe2Ee2

∫ Ei−Ef−Ee1−Ee2

0

dEν1E
2
ν1E

2
ν2. (5.35)5.3 Double β-deay to the 2

+
1 exited stateThe aim of this setion is to present the half-life of the double β-deay to the �rstexited state (2+1 ) of daughter nuleus. Based on the alulations presented in previoussetions (5.1,5.2), for the half-life we may write

(

T 2ν
1/2(2

+)
)−1

=
me

32π7 ln 2
(Gβm

2
e)

4 I2ν(2+), (5.36)with the integral de�ned as
I2ν(2+) =

1

m9
e

∫ Ei−Ef−me

me

dEe1F0(Z
′, Ee1)pe1Ee1 ×

∫ Ei−Ef−Ee1

me

dEe2F0(Z
′, Ee2)pe2Ee2

∫ Ei−Ef−Ee1−Ee2

0

dEν1E
2
ν1E

2
ν2|M2ν(2+)|2. (5.37)The matrix element of the transition 0+ → 2+ is given as

|M2ν(2+)|2 = |M (1)
K (2+)−M

(1)
L (2+)|2, (5.38)with 58



M
(1)
K (2+) = M

(1+)
K (2+) +M

(1−)
K (2+) =

1√
3

∑

J π=1+,1−

∑

n

< 2+f ||O(J π)||J π, n >< J π, n||O(J π)||0+i > Kn. (5.39)Replaing Kn with Ln from M
(1)
K (2+) matrix element we get M (1)

L (2+).By introduing the replaement of energy of leptons with the half of the energyrelease of the deay we have
|M2ν(2+)|2 = 4(Ee1 −Ee2)

2(Eν1 −Eν2)
2

m4
e

|M (1)(2+)|2

=
4(Ee1 − Ee2)

2(Eν1 − Eν2)
2

m4
e

×
∣

∣

∣

∣

∣

∣

m2
e√
3

∑

J π=1+,1−

∑

n

< 2+f ||O(J π)||J π, n >< J π, n||O(J π)||0+i >

(En − Ei +∆)3

∣

∣

∣

∣

∣

∣

2

. (5.40)As previously we onsider only the s1/2 eletron wave funtion. So we get
|M2ν(2+)|2 = 4(Ee1 − Ee2)

2(Eν1 − Eν2)
2g4A|M2ν

GT (2
+)|2

= 4(Ee1 − Ee2)
2(Eν1 − Eν2)

2g4A ×
∣

∣

∣

∣

∣

1√
3

∑

n

< 2+f ||
∑

m τ+mσm||1+, n >< 1+, n||∑m τ+mσm||0+i >

(En − Ei +∆)3

∣

∣

∣

∣

∣

2

. (5.41)The half-life then takes the form
(

T 2ν
1/2(2

+)
)−1

=
me

8π7 ln 2
(Gβm

2
e)

4g4A|m3
e M2ν

GT (2
+)|2 J2ν(2+), (5.42)with the phase spae integral de�ned as

J2ν(2+) =
1

m15
e

∫ Ei−Ef−me

me

dEe1F0(Z
′, Ee1)pe1Ee1 ×

∫ Ei−Ef−Ee1

me

dEe2F0(Z
′, Ee2)pe2Ee2(Ee1 −Ee2)

2 ×
∫ Ei−Ef−Ee1−Ee2

0

dEν1E
2
ν1E

2
ν2(Eν1 − Eν2)

2. (5.43)59



5.4 Nulear eletron apture and β-deayThe aim of this setion is to present brief exposition of nulear single β-deay andeletron apture on nulei in order to show the onnetion between nulear matrixelements and the log ft values. The advantage of the results gained herein will beomemore obvious in theoretial treatment of the double β-deay within SSD hypothesis.We will omit some details of the theoretial desription of the single β-deay beausethe theoretial treatment of single β-deay is presented in Se. (3.1) for the tritiumdeay.Nulear β-deayWe present here the derivation of the single β-deay half-life. The subjet of our interestis the nulear β-deay with the hange of spin and parity ∆Jπ = 1+, 1− between initialand �nal nulei. Therefore we onsider the eletron s1/2 and p1/2 wave funtions only.The non-relativisti hadron urrent approximation is also taken into aount. For thetransitions Jπi
i → 0+f the β-deay amplitude is given as

< f |S(1)|i > = −i
Gβ√
2
2πδ(Ee + Eν + Ef − Ei)

×
√

F0(Z ′, Ee)
1√
2Ee

1√
2Eν

ū(pe)γ
µ(1− γ5)u(−kν)

×
[

gµk

(

~M(1+)
β + ~M(1−)

β

)k
]

, (5.44)with
~M(1±)

β =< 0+f | ~O(1±)|Jπi
i > . (5.45)

Z ′ is the proton number of �nal nuleus and operators O(1±) are the same as in(5.20). For the half-life we eventually get
[

T β
1/2(J

πi
i → 0+f )

]−1

=

me

2π3 ln 2
(Gβm

2
e)

2

(

1

2Ji + 1
B

(1±)
β

)

fβ(Z
′, Ei − Ef) (πiπf = ±1). (5.46)The phase spae integral is here inluded in the Fermi integral funtion60



Table 5.1: The matrix element values of transitions 100Tc(1+g.s.) → 100Ru(0+g.s.) and
150Pm(1−g.s.) → 150Sm(0+g.s.) are presented here with the use of eq. (5.49). Z ′ is theproton number of �nal nuleus [70℄.Transition Ei − Ef [MeV℄ Z ′ T1/2 [s] |< 0+||O(1±)||1± >|

100Tc(1+) → 100Ru(0+) 3.713 44 15.8 0.695
150Pm(1−) → 150Sm(0+) 3.965 64 9648 0.0159

fβ(Z
′, Ei − Ef ) =

1

m5
e

∫ Ei−Ef

me

dEeF0(Z
′, Ee)peEe(Ei −Ef − Ee)

2, (5.47)that depends on the proton number Z ′ and the energy release of the reation. The
β-strength is given throughout the value of matrix element as

B
(J π)
β =

∣

∣< 0+f ||O(J π)||1±i >
∣

∣

2
(J π = 1+, 1−). (5.48)The above presented alulations are helpful tool for the experimental estimationof the single β-deay matrix element. Colleting previous results we �nally may writefor the matrix element

∣

∣< 0+f ||O(J π)||1±i >
∣

∣ =

√

3D

fβ(Z ′, Ei −Ef )T1/2
. (5.49)Inserting the known Q-value and half-life T1/2 into the eq. (5.49) we extrat thebare value of the nulear matrix element. The D = (2π3 ln 2)/(G2

βm
5
e) is a onstantfator.The two nulear transitions

100Tc(1+) → 100Ru(0+) and 150Pm(1−) → 150Sm(0+)are the subjet of partiular interest. By use of the relation (5.49) we evaluate thematrix elements of these transitions.The matrix element values are presented in Tab. (5.1). It is learly seen that theforbidden β-transition 150Pm(1−) → 150Sm(0+) is supressed nearly by a fator of ∼ 44against the allowed β-transition 100Tc(1+) → 100Ru(0+). This is just a onsequene ofthe p1/2 eletron ontaining the fator αZ ′/2.61



Table 5.2: logft values for transitions 100Tc(1+) → 100Mo(0+), 150Pm(1−) →
150Nd(0+) are shown herein. († - estimated value.)transition log ft

100Tc(1+) → 100Mo(0+) 4.59
150Pm(1−) → 150Nd(0+) 7.87†

Eletron apture on nuleusWe present here the theoretial desription of the eletron apture from atomi shellby nuleus
e−b + (A,Z) → (A,Z + 1) + νe. (5.50)We onsider only the eletrons from KI and LII shells. The ontribution from othershells an be negleted due to the small overlap of the eletron wave funtion with thebulk of the nuleus. For the sake of simpliity we adopt the bound atomi eletronwave funtions from [71℄ in the form

ΨKI
(x) = NKI

e−
Z
ae

|~x|e−iεbx0ue, N2
KI

=
Z3

πa3e

ΨLII
(x) = NLII

e−
Z

2ae
|~x|e−iεbx0γ0~γ · ~x

R
ue, N2

LII
=

Z5R2

96πa5e
, (5.51)with

us
e =

(

χs

0

)

, ae =
1

α

~c

me
= 5.28 × 104 fm. (5.52)

εb is the energy of bound eletron. We get the half-life of eletron apture as follows
[

TEC
1/2 (1

±
i → 0+f )

]−1
=

me

2π3 ln 2
(Gβm

2
e)

2

× 1

2Ji + 1
B

(1±)
EC fEC−KI ,LII

(Z,Ei − Ef ) (5.53)The phase spae integration is inluded in the funtion62



fEC−KI ,LII
(Z,Ei −Ef ) = 2π2

(

1

m3
e

N2
KI ,LII

)

ξ(Z)
(Ei − Ef + εb)

2

m2
e

. (5.54)The proton number of initial nuleus enters into the normalization fator N2
KI ,LIIand fator ξ(Z) = 1, ξ(Z) = (2/(αZ))2 for KI , LII eletrons, respetively. The β-strength is given as

B
(J π)
EC =

∣

∣< 0+f ||O(J π)||1±i >
∣

∣

2
(J π = 1+, 1−). (5.55)The half-life value of the eletron apture of 100Tc(1+g.s.) → 100Mo(0+g.s.) was alreadyexperimentally measured. By evaluation of the funtion (5.54) we get for the barevalue of the matrix element of the transition

∣

∣< 0+||O(1+)||1+ >
∣

∣ =

√

3D

fEC(43,−0.343 MeV ) 243.8h
= 0.82. (5.56)The orresponding logft value is presented in Tab. 5.2. We note that measuredvalue of the eletron apture is logft = 4.45+0.18

−0.3 [72℄, i.e. our estimation is not farfrom the measured value indeed.The eletron apture of 150Pm(1−g.s.) → 150Nd(0+) has not been observed experi-mentally yet. In order to estimate the logft value for this reation we assume that thevalue of bare nulear matrix element for the eletron apture is of the same order as thebare nulear matrix element value of the single β deay of 150Pm(1−g.s.) → 150Sm(0+).A justi�ation of suh an approah an be seen in omparison of the eletron aptureand β-deay matrix elements of 100Tc → 100Mo (0.8) and 100Tc → 100Ru (0.7), respe-tively. For the logft value of eletron apture by 150Pm(1−) we get logft = 7.87. Theimpliation for the half-life value is at the level of TEC
1/2 ≈ 6.1016 years. Regrettably wehave to onlude that this value of half-life would not be reahed, most likely, in nearfuture experiments.5.5 Double β-deay within the Single State Domi-nane hypothesisThe Single State Dominane (SSD) hypothesis was presented for the �rst time in [68℄by Abad, et al. The SSD hypothesis states that for the double β-deaying nulear63
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Table 5.3: The evaluated values (T SSD
1/2 ) of double β-deay half-life of 100Mo and 150Ndare presented here. The experimentally measured values (T exp

1/2 ) are shown also [75℄.Nuleus Ei −Ef [MeV℄ T SSD
1/2 [years℄ T exp

1/2 [years℄
100Mo 4.05 7.16× 1019 7.1× 1018

150Nd 4.39 4.02× 1024 8.2× 1018

instane. Previous theoretial studies involved the approximation that replaes theenergy of leptons with the mean value in order to examine the SSD hypothesis [76, 77℄.It was found in [69℄ that for some nulear systems this approximation is inappropriateand more adequate approah was suggested therein.The subjet of our interest is the double β-deay to the ground state (0+) andto the �rst exited state (2+1 ) of �nal nuleus. We investigate herein two isotopes ofpartiular interest, namely 100Mo and 150Nd. The intermediate nulei 100Tc, 150Pmhave the ground state spin and parities 1+ and 1−, respetively. The nulear strutureof 150Pm is still an open task from both theoretial and experimental point of view. Sowith use of double β-deay di�erential harateristis we may onlude whether thereexist a low lying 1+ state of 150Pm or not.We take the advantage of results of previous setions (5.1,5.2, 5.3,5.4) and write forthe two-neutrino double β-deay half-life of 0+ → 0+, 2+1 transitions following
(

T 2ν−SSD
1/2 (J+

f )
)−1

=
me

8π7 ln 2
(Gβm

2
e)

4I2ν−SSD(J+
f )×

| < J+
f ||O(1π)||1π > |2| < 1π||O(1π)||0+i > |2. (5.57)Here, π = ±1 and the phase spae integral is given as

I2ν−SSD(J+
f ) =

1

m9
e

∫ Ei−Ef−me

me

dEe1F0(Z
′, Ee1)pe1Ee1 ×
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me
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′, Ee2)pe2Ee2

∫ Ei−Ef−Ee1−Ee2
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dEν1E
2
ν1E

2
ν2DSSD

KL (J+
f ). (5.58)The di�erene between the deay to the ground and exited state is given by inte-grand, 65
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Figure 5.3: The single eletron energy spetrum of the two neutrino double β-deayof 100Mo to the ground state of �nal nulues 100Ru(0+) is illustrated for the SSD andHSD approah.
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3
(K2

1 +K1L1 + L2
1) (J+

f = 0+)

=
1

3
(K1 − L1)

2 (J+
f = 2+1 ). (5.59)The energy denominators K1, L1 are given in eq. (5.24).We see here the advantage of the SSD approah. The only nulear matrix elementinvolved herein onsists from two β-strenghts that ould be determined from the logftvalues of single β-transitions of the intermediate nuleus. The evaluation of the β-strenghts, | < 1π1 ||O(1π)||0+i > |2 and | < J+

f ||O(1π)||1π1 > |2, for the two isotopes
100Tc and 150Pm of partiular interest has been already performed in previous setion(see 5.4). Calulated values of half-life of the two-neutrino double β-deay of 100Moand 150Nd are presented in Tab. 5.3. We see the disrepany between the theoreti-ally predited value of half-life (T SSD

1/2 ) alulated within the SSD assumption and themeasured value T exp
1/2 for 150Nd. This an be naturally taken into aount as a proofof non-realization of SSD for the ase of 150Nd. Although it is worth mentioning thatrelatively high unertainity of double β-deay matrix element has its origin in poorestimation of matrix element of the eletron apture by 150Pm nuleus. This e�et anlead to a di�erene between the phenomenologially estimated value of half-life andthe measured one in the end.It is worth to note that the half-life is only one of the observables in the two neutrino66
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+
f ). (5.60)Here, we distinguish two di�erent approahes, namely SSD and HSD hypothesis.67
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KL(J
+
f ) = 1 (J+

f = 0+),

= (Ee1 − Ee2)
2(Eν1 − Eν2)

2 (J+
f = 2+). (5.61)The single eletron energy distribution (5.60) is independent of the value of double

β-deay nulear matrix elelement, axial-vetor onstant gA and Fermi onstant GFfor the SSD and HSD assumptions. Therefore this phenomenologial approah forthe desription of two-neutrino double β-deay is free of any nulear model strutureassumptions. This shall be taken into aount as an advantage. Reent observationsapprove the SSD to be realised in ase of 100Mo double β-deay [78, 79℄. The singleeletron energy spetrum normalized to unity (5.60) of 100Mo double β-deay to theground (0+) and �rst exited (2+1 ) state of �nal nuleus 100Ru is illustrated in Fig.5.3 and 5.4, respetively. The di�erent approah (SSD, HSD hypothesis) is leadingto deviation of the spetrum most apparently at the low eletron energies. Fromthe omparison of measured and evaluated half-live of 150Nd (see Tab. 5.3) one anonlude that SSD is not realized in this partiular nulear system. With the singleeletron energy spetrum we gain muh stronger tool for on�rming or ruling out theSSD hypothesis of 150Nd →150 Sm proess beause spetrum is free of any nulearmatrix elements. Moreover, we may probe the validity of the HSD too. The single68
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Chapter 6Statistis of neutrinos andtwo-neutrino double β-deayWe disuss here the possibility of Pauli exlusion priniple violation for neutrinos, andthus, posssibility that neutrinos obey at least partly the Bose-Einstein statistis. Theparameter sin2 χ is introdued that haraterizes the bosoni (symmetri) fration ofthe neutrino wave funtion. Consequenes of the violation of the exlusion priniplefor the two-neutrino double beta deay are onsidered. This violation strongly hangesthe rates of the deay and modi�es the energy distributions of the emitted eletrons.We assume that Pauli exlusion priniple is violated for neutrinos and thereforeneutrinos obey (at least partly) the Bose-Einstein statistis. Possible violation of theexlusion priniple was disussed in a series of papers [80℄ though no satisfatory andonsistent mehanism of the violation has been proposed so far. The assumption ofviolation of the Pauli exlusion priniple leads to a number of fundamental problemswhih inlude loss of a positive de�niteness of energy, violation of the CPT invariane,and possibly, of the Lorentz invariane as well as of the unitarity of S-matrix. (For aritial review see ref. [81℄.) Experimental searhes of the e�ets of the Pauli prinipleviolation for eletrons [82℄ and nuleons [83℄ have given negative results, leading toextremely strong bounds on the magnitude of violation.It may happen however that due to unique properties of neutrinos (neutrality,smallness of mass assoiated to some high mass sales), a violation of the Pauli priniplein the neutrino setor is muh stronger than in other partile setors. Therefore onemay expet that e�ets of this violation an be �rst seen in neutrino physis.A possibility of the Bose statistis for neutrinos has been �rst onsidered in ref. [84℄where its e�ets on the Big Bang Nuleosynthesis (BBN) have been studied. Aordingto [84℄ the hange of neutrino statistis from pure fermioni to pure bosoni diminishesthe primordial 4He abundane by ∼ 4%. 70



The idea of bosoni neutrinos has been proposed independently in ref. [85℄ whereosmologial and astrophysial onsequenes of this hypothesis have been studied. Bo-soni neutrinos might form a osmologial Bose ondensate whih ould aount for all(or a part of) the dark matter in the universe.As far as the astrophysial onsequenes are onerned, dynamis of the supernovaollapse would be in�uened and spetra of the supernova neutrinos may hange [85,93℄. The presene of neutrino ondensate would enhane ontributions of the Z-burststo the �ux of the UHE osmi rays and lead to substantial refration e�ets for neutrinosfrom remote soures [85℄.We assume that the Pauli priniple is violated substantially for neutrinos, while theviolation is negligible for other partiles. In partiular, for eletrons we will assume theusual Fermi-Dira (FD) statistis. How to reonile this pattern of the violation withthe fat that in the standard model the left-handed neutrino and eletron belong to thesame doublet? The answer may be onneted to the fat that neutrinos are the onlyknown neutral leptons and thus they an have substantially di�erent properties fromthose of the harged leptons. In partiular, neutrinos an be the Majorana partilesand violate lepton number onservation. The di�erene between harged leptons andneutrinos should be related to breaking of the eletro-weak (EW) symmetry, and itan originate from some high mass sale of Nature. One may onsider senario whereviolation of the Pauli priniple ours in a hidden setor of theory related to the Planksale physis or strings physis. It ould be mediated by some singlets of the Standardmodel - (heavy) neutral fermions whih mix with neutrinos when the EW symmetryis broken. Sine only neutrinos an mix with the singlets, e�ets of the Pauli prinipleviolation would show up �rst in the neutrino setor and then ommuniate to otherpartiles. In this way a small or partial violation of the relation between spin andstatistis might our. A violation of the spin-statistis theorem for other partiles anbe suppressed by an additional power of a small parameter relevant for the violationin the neutrino setor and due to weak oupling of neutrino to other partile setors.A violation of the Pauli priniple for neutrinos should show up in the elementaryproesses where idential neutrinos are involved. A realisti proess for this test is thetwo-neutrino double beta deay,
(A,Z) → (A,Z + 2) + 2ν̄ + 2e−. (6.1)It was shown in [85℄ that the probability of the deay as well as the energy spetrumof eletrons should be a�eted. Qualitative onlusions were that the pure bosonineutrino is exluded, whereas large fration of the bosoni omponent in a neutrinostate is still allowed by the present data. In this onnetion, a possibility of partly71



bosoni (mixed-statistis) neutrinos an be onsidered.In this hapter we perform a detailed study of the e�ets of bosoni neutrinos onthe double beta deay. We onsider the general ase of partly bosoni neutrinos. Weintrodue a phenomenologial parameter sin2 χ whih desribes the fration of bosonineutrinos in suh a way that a smooth hange of sin2 χ from 0 to 1 transforms fermionineutrinos into bosoni ones. So, in general, neutrinos may possess a kind of mixed ormore general statistis than Bose or Fermi ones [86, 87℄. We present an analyti studyof the double beta deay probabilities. The exat expressions for the two-neutrinodouble β-deay rates to ground (0+) and exited (2+1 ) states are shown. The results ofnumerial alulations of the total rates and energy distributions for the two-neutrinodouble β-deays of 100Mo are presented herein. The obtained bounds on sin2 χ fromthe existing data are presented.6.1 Bosoni neutrinos in two-neutrino double β-deayFirst, let us disuss the ase of pure bosoni neutrinos, i.e. the neutrinos possessthe spin 1/2 but obey the Bose-Einstein statistis. The subjet of our interest hereis the two-neutrino double β-deay. The detailed alulation of this reation for thefermioni neutrinos was already given in Chap. 5. We shall take the advantage of thistreatment therein with the assumption on fermioni neutrinos and thus present hereonly the di�erenes for the bosoni neutrinos. By introduing bosoni neutrinos wehave to make hange in (5.6) by hanging the antiommutation relations for fermionineutrinos to ommutation realtions for bosoni neutrinos, i.e.
c†(pe1)c

†(pe2) = −c†(pe2)c
†(pe1)

d†(kν1)d
†(kν2) = +d†(kν2)d

†(kν1). (6.2)Some of the ommon approximations have been made in the derivation of the twoneutrino double β-deay rate:i) We take into aount only the s1/2 wave of the outgoing leptons.ii) The double β-deay Fermi nulear matrix element is negleted beause the initialand �nal nulei belong to the di�erent isospin multiplets.iii) The non-relativisti hadron urrent aprroximation (see 5.16) is used therefore onlyGamow-Teller operators (5.20) are onsidered.We present the di�erential deay rate of two neutrino double β-deay to the 0+ground state and 2+1 exited state of �nal nuleus for bosoni and fermioni neutrinos,simultaneously. In this way we gain a very ompat formula useful for the omparison72



of bosoni e�et of neutrinos on the deay rates. The main purpose of this treatmentwill beome more lear in forthoming. Following the steps made in Chap. 5, for thedi�erential deay rate of two neutrino double β deay to the ground and exited stateof �nal nuleus we get
dΓf,b(J

+) = a2νF0(Z + 2, Ee1)F0(Z + 2, Ee2) Mf,b
Jπ dΩ. (6.3)Here, a2ν = (GβgA)

4m9
e/(64π

7) and Gβ = GF cos θc (GF is Fermi onstant, θc isCabbibo angle) are onstants. F0(Z + 2, Ee) denotes the relativisti Fermi funtionand gA stands for the axial-vetor oupling onstant. The index f and b stands forfermioni and bosoni neutrinos, respetively. The phase spae is given as
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θ denotes the angle between the two emitted eletrons. The expression Mf,b
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f = 0+f , 2+f , respetively. The Ei, Ef and Em standfor the initial (|0+i >), �nal (|J+
f >) and intermediate (|1+m >) nulei energies. Theenergy denominators for the fermioni neutrinos are the same as in (5.24)
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For the bosoni neutrinos the energy denominators take the form
Kb

m =
1

Em − Ei + Ee1 + Eν1

− 1

Em − Ei + Ee2 + Eν2

Lb
m =

1

Em − Ei + Ee1 + Eν2

− 1

Em − Ei + Ee2 + Eν1

. (6.8)Essentially the di�erene between the amplitude of the two-neutrino double β-deayfor the bosoni neutrinos and for the ase of fermioni neutrinos is in the minus sign inenergy denominators indeed (see 6.7,6.8). This an be understood when onsidering thepitorial way for amplitude from the Feynman diagram of the two-neutrino double β-deay (see Fig. 5.1). The hange of two lepton legs for the idential partiles with givenfour-momenta in Feynman diagram leads to a relative minus or plus sign aording tothe statistial feature of that partiles. In more detail, for fermions we have relativeminus sign and for bosons we have relative plus sign. For partiular ase of our interest,the two-neutrino double β-deay, we have three permutations in addition to Feynmandiagram shown in Fig. 5.1 assoiated with interhange of lepton legs in Feynmandiagram.i) No hange for neutrinos and interhange for eletrons give a relative minus sign.ii) Interhange for neutrinos and no hange for eletrons give a relative plus sign.iii) Interhange for neutrinos and interhange for eletrons give a relative minus sign.We see the uniqueness of the proess as far as two neutrinos as idential partilesare involved in reation. Therefore the statistial harateristis an be explored withthe two-neutrino double β-deay diretly. In order to understand this bosoni e�et,given so far as a relative minus sign in the energy denominators, we have to analyzethe di�erential deay rates.Following the �nal result for the deay rate (6.5) we may see that there exist asigni�ant di�erene between the double β-deay to the ground (0+) and exited state(2+1 ) of �nal nuleus. The ombinations of Kf,b
m +Lf,b

m and Kf,b
m −Lf,b

m enter to the deayrate in ase of deay to the ground state of �nal nuleus. On the other hand onlythe latter term (Kf,b
m − Lf,b

m ) is involved in ase of deay to the exited state of �nalnuleus. This feature is independent of statistial behavior of neutrinos, i.e. ommonfor fermioni and bosoni neutrinos. Therefore, we shall study the energy denomina-tors in suh ombinations in more detail. Let us introdue the energy denominatorsapproximation. This proedure onsists of replaing the lepton energy with the meanvalue, equal to the half of the energy release of reation
∆ = (Ei − Ef )/2

Eei + Eνj ≈ ∆, i, j = 1, 2. (6.9)74



With this approximation for the ombinations of Kb
m and Lb

m we get
Kb

m + Lb
m ≈ 2

Eν2 − Eν1

(Em − Ei +∆)2
,

Kb
m − Lb

m ≈ 2
Ee2 − Ee1

(Em − Ei +∆)2
(6.10)for the bosoni neutrinos. It is obvious that the struture of both terms is verysimilar. As a onsequene of this similiarity is the fat that qualitatively the transitionsto the ground (0+) and exited (2+) state are of the same order for bosoni neutrinos.We note that energy di�erenes in the numerators in (6.10) lead to the signi�antsuppression of the total deay rate of the proess at the level of 1-3 orders of magnitude.The impat is also observable on the eletron energy distribution. Correspondingombinations for the fermioni neutrinos are given as
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. (6.11)Unlike the ase of bosoni neutrinos the ombinations of Kf
m and Lf

m have signi�-antly di�erent behavior. The termKf
m−Lf

m has an additional fator (Ee2−Ee1)/(Em−
Ei + ∆) that suppress it even stronger against the term Kf

m + Lf
m. By summing theabove mentioned fats yield that double β-deay to the ground and exited state rep-resents an outstanding tool for study of the bosoni feature of neutrinos.The kinematial fators Kf,b

m and Lf,b
m entering to the deay rates are weighted withthe orresponding nulear matrix elements.We introdue the ratio

r0(J
π) ≡ Γb(J

π)

Γf(Jπ)
, (6.12)of the deay probabilities to ground (Jπ = 0+g.s.) and exited (Jπ = 2+1 ) state for purebosoni Γb(J

π) and pure fermioni Γf (J
π) neutrinos. In general ase for the ratio r0(Jπ)one needs to evaluate the orresponding nulear matrix elements for a given transitionwithin an appropriate nulear model. The situation is quite simpli�ed for those nulearsystems where the transition via only the ground state of the intermediate nuleim = 1dominates [68, 74, 88℄. For suh nulear systems the Single State Dominane (SSD)hypothesis is onsidered. Then we may fator out the nulear matrix elements andtake the advantage that they vanish in the ratio r0(J

π).75



6.2 Single State Dominane hypothesisThe Single State Dominane hypothesis states that for those nulear systems with theground state of intermediate nuleus 1+ the two-neutrino double β-deay is realized bytwo virtual transitions:i) �rst one is onneting the ground state of initial nuleus with the ground state (1+)of intermediate nuleus,ii) the seond one is onneting the ground state (1+) of intermediate nuleus with theground state of �nal nuleus.Assuming the SSD hypothesis we get
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+)|2 (Kf,b

1 − Lf,b
1 )2

(

1 +
1

3

~pe1 · ~pe2
Ee1Ee2

)

. (6.13)The sum of the omplete set of nulear states of intermediate nuleus is replaedonly with transition throughout the 1+ ground state of intermediate nuleus, i.e. m = 1.The nulear matrix element is given as
Mg.s.(J

π) =
1√
s
< Jπ

f ||
∑

j

τ+j σj ||1+1 >< 1+1 ||
∑

k

τ+k σk||0+i > . (6.14)The main advantage of the SSD hypothesis is the nulear model independet way ofestimating the value of the nulear matrix element Mg.s.(J
π). The individual matrixelements of the two virtual transitions are determined from the log ft values for theeletron apture on intermediate nuleus and the single β-deay to the ground (exited

2+1 ) state of �nal nuleus, simultaneously. Details of the extration of the nulearmatrix element from the logft values of eletron apture and single β-deay are givenin Se. (5.4).The total deay rate within the SSD approximation is given as
Γf,b(J

π) = |Mg.s.(J
π)|2If,b

SSD(J
π). (6.15)The integral over the phase spae takes the form
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e

[

1

3
(Kf,b

1 Kf,b
1 + Lf,b

1 Lf,b
1 +Kf,b

1 Lf,b
1 )

]

gf,b2+ (Ee1, Ee2, Eν1, Eν2) = m2
e

(

Kf,b
1 − Lf,b

1

)2

. (6.17)The two-neutrino double β-deay half-life is given as
T f,b
1/2(J

π) =
ln 2

Γf,b(Jπ)
. (6.18)6.3 Higher States Dominane hypothesisThe Higher States Dominane hypothesis suggests that the dominant ontribution tothe double β-deay nulear matrix element has its origin in higher lying 1+ states ofintermediate nuleus. Within this assumption there exist a ommonly used approxi-mation alled energy losure that replaes the lepton energies in the denominators withan average value equal half of the reation energy release

Em −Ei + Eek + Eνj ≈ Em − Ei +∆ (k, j = 1, 2). (6.19)The main aim of this approah is to separate the nulear and lepton parts in the de-ay rate of two-neutrino double β-deay. With the use of HSD hypothesis for fermionineutrinos we get
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. (6.20)and for the ase of bosoni neutrinos we have77
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. (6.21)The nulear Gamow-Teller matrix elements are given by
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(6.22)and r = 1, 2, 3. The total deay rates for fermioni and bosoni neutrinos areexpressed as

Γf (0
+) = |M (1)

GT (0
+)|2If

HSD(0
+),

Γf (2
+) = |M (3)

GT (2
+)|2If

HSD(2
+) (6.23)and

Γb(J
π) = |M (2)

GT (J
π)|2If

HSD(J
π). (6.24)The phase spae integrals are given by
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ν1. (6.25)The energy onservation yields

Eν2 = Ei − Ef −Ee1 −Ee2 −Eν1. (6.26)The integrand funtions are given as
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(Jπ = 2+). (6.27)6.4 The two-neutrino double β-deay with partly bo-soni neutrinosHere, we write down more general ase of statistis. Let us write the mixture offermioni and bosoni neutrino state as
|ν〉 = â+|0〉 ≡ cδf̂

+|0〉+ sδ b̂
+|0〉 = cδ|f〉+ sδ|b〉. (6.28)Here |f〉 and |b〉 stand for pure fermioni and bosoni neutrino states, respetively. f̂(f̂+) and b̂ (b̂+) are respetively fermioni and bosoni annihilation (reation) operators.The normalization ondition of mixed neutrino state |ν〉 requires c2δ+s2δ = 1 (cδ ≡ cos δand sδ ≡ sin δ). In order to derive the deay rate of the two-neutrino double β-deaywe need to introdue the ommutation/antiommutation relations with the followingproperties

f̂ b̂ = eiφb̂f̂ , f̂+b̂+ = eiφb̂+f̂+,

f̂ b̂+ = e−iφb̂+f̂ , f̂+b̂ = e−iφb̂f̂+. (6.29)Here φ is an arbitrary phase. The two-neutrino state we then de�ne as
|ν(kν1), ν(kν2)〉 = â+1 â

+
2 |0〉. (6.30)The amplitude of the reation A → A′ + 2ν + 2e an be shematially written as
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The Hamiltonian of weak interation is assumed to have the standard form, e.g.see eq. (5.2). With the ommutation relations we �nd
A2β = Af

[

c4δ + c2δs
2
δ (1− cosφ)

]

+ Ab

[

s4δ + c2δs
2
δ (1 + cosφ)

]

. (6.32)
Af and Ab are fermioni and bosoni parts of the amplitude, respetively. We mayfatorize the amplitude as

A2β = cos2 χAf + sin2 χAb (6.33)by using the notation
cos2 χ = c4δ + c2δs

2
δ (1− cosφ)

sin2 χ = s4δ + c2δs
2
δ (1 + cosφ) . (6.34)By performing the integration over the phase spae of neutrinos intereferene be-tween the fermioni Af and bosoni Ab part of amplitude A2β disappears. We mayunderstand this e�et by basi onsiderations. The wave funtion of idential fermionsis antisymmetri with respet of interhange of two partiles, while for bosons the wavefuntion is symmetri. Assuming the impossibility to distinguish between the two iden-tial partiles the intereferene term onsisting of symmetri and antisymmetri partturns out to be zero. The total deay rate is therefore given as

Γtot = cos4 χΓf + sin4 χΓb. (6.35)Here, Γf and Γb are total deay rates in ases of pure fermioni and pure bosonineutrinos, respetively. We note that deay rates Γf,b are proportional to the orre-sponding amplitudes |Af,b|2. The spei� form of the individual deay rates was givenin setion 6.1 under some speial onditions. These are, i.e. the transitions to the 0+and 2+ nulear �nal states have been onsidered, SSD and HSD hypotheses have beentaken into aount. For the total deay rate of reation we have
Γtot(J

π) = cos4 χΓf (J
π) + sin4 χΓb(J

π). (6.36)The di�erential deay rate normalized to unity is given as
PJπ =

dΓtot(J
π)
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=

cos4 χ dωf(J
π) + sin4 χ r0(J

π)dωb(J
π)

cos4 χ+ sin4 χ r0(Jπ)
, (6.37)80



with
dωf(J

π) ≡ dΓf(J
π)

Γf (Jπ)
, dωb(J

π) ≡ dΓb(J
π)

Γb(Jπ)
. (6.38)Here, ratio r0(J

π) is given in (6.12). The expliit form of the di�erential deayrates for pure fermioni (dΓf(J
π)) and pure bosoni(dΓb(J

π)) neutrinos is given byrelation (6.3). In general, the normalized distributions (6.38) depend on the nulearmatrix elements. Nevertheless, with the approah of SSD hypothesis the normalizeddi�erential deay rate (6.37) is free of nulear matrix elements [74, 88℄.6.5 E�et of bosoni neutrinos in two-neutrino double
β-deay of 100MoIn this setion, we present the harateristis of two-neutrino double β-deay of 100Mowith the assumption of partially mixed bosoni neutrino. Subjet of hoie is theisotope 100Mo due to the high number of events olleted in experiment (see [89, 91℄).The ollaboration of NEMO-3 experiment has deteted 105 events of 100Mo (0+ →

0+) deays to the ground state [89℄. Measured parameters are: the sum of the eletronenergies, the energy of single eletron and the angular distribution / angular orrelationof eletrons. Assumption that the double β-deay is governed mainly throughout the
1+ intermediate nuleus ground state is known as the SSD hypothesis and give a goodapproximation for 100Mo nuleus. This fat is also on�rmed by the measurementsof NEMO-3 experiment [78, 79℄. The advantage of SSD approah is the experimentalestimation of nulear matrix elements from the log ft values of eletron apture andsingle β-deay of intermediate nuleus (100Tc). See setion 5.4 for details of obtainingthese nulear matrix elements from known log ft values for 100Tc. With the use of SSDhypothesis we present herein the half-life of two-neutrino double β-deay of 100Mo forpure fermioni and pure bosoni neutrinos, respetively.

T f
1/2(0

+
g.s.) = 6.8× 1018 years

T b
1/2(0

+
g.s.) = 8.9× 1019 years. (6.39)The ratio of bosoni total deay rate over fermioni one is equal to
r0(0

+
g.s.) = 0.076. (6.40)81
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Figure 6.1: The di�erential deay rates normalized to unity versus the sum of thekineti energies of the outgoing eletrons T for the two-neutrino double β-deay of
100Mo to the ground state (0+) of �nal nuleus. The eletron spetra are presented forthe pure fermioni and pure bosoni neutrinos. The distributions have been alulatedwith the assumption of the SSD hypothesis and the HSD hypothesis, respetively.This ratio gives the weight of the bosoni omponent of di�erential deay rateentering to the normalized di�erential deay rate (6.37). For rather small value of r0 asigni�ant modifation of distribution shall be expeted when sin2 χ beomes lose to1. However, higher lying states an in priniple give some not negligible ontributionindeed and therefore produe a systemati error in our analysis. In order to estimatethe e�et of higher lying states one an assume an extreme ase of HSD hypothesis.Within this assumption the main ontribution to the two-neutrino double β deaymatrix element omes from higher lying 1+ states of intermediate nuleus even fromthe Gamow-Teller resonane region. Within this approah the energy denominatorlosure is introdued. It replaes the lepton energies with an average value equal to thehalf of the reation energy release (∆ = (Ei−Ef )/2). It is worth to mention that thereare di�erent matrix elements assoiated with fermioni and bosoni neutrinos, see eq.(6.20) and (6.21). Tha advantage of the above mentioned proedure is the separationof nulear matrix elements and phase spae of outgoing leptons. Therefore, in study ofnormalized distributions the nulear matrix elements an be fatorized out and leavethe distributions free of any nulear model dependent assumptions. Unfortunately forthe half-life or the ratio r0(J

π) an appropriate nulear model has to be taken into82
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sin2 χ is lose to unity due to the small value of r0.The single eletron energy spetra for various values of the mixing parameter sin2 χ83
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T1/2(2
+
1 ) = 1.7× 1023 years (fermionic νs)

= 2.4× 1022 years (bosonic νs). (6.41)For the ratio of fermioni over bosoni half-life we get
r0(2

+
1 ) = 7.1. (6.42)84
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sin2 χ the eletron spetrum is shifted to higher energies. This e�et is obviously relatedwith the hange of spin between initial and �nal nuleus. Within the transition 0+ → 2+1the system of emitted leptons should arry out the spin 2. Due to the polarization ofoutgoing leptons (determined by V −A type of interation) both eletrons are emitted85
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Figure 6.6: The di�erential deay rates normalized to the unity versus the single ele-tron energy for the two-neutrino double β-deay of 100Mo to the �rst exited state(2+1 ) of �nal nuleus. The results are obtained in the SSD approah. The spetra arepresented for various values of mixing parameter sin2 χ of bosoni omponent. Theonventions used herein are the same as in Figs. 6.2, 6.5.As was already mentioned for transitions 0+ → 0+ holds r0 ≪ 1. In the ase ofsmall r0 the best bound on bosoni part of neutrinos an be obtained from the totaldeay rate, i.e. the half-life. A spetrum distortion due to the presene of bosoni partis rather small. On the other hand the transitions 0+ → 2+1 are harateristi withlarge values of r0. Therefore a very strong modi�ation of spetra are expeted in thisase.In forthoming, we present three omplementary approahes of obtaining the boundson sin2 χ in more detail.6.6.1 The half-lifeWe may obtain the restrition on sin2 χ by omparing theoretially predited and ex-perimentally measured half-life. With the use of relation (6.36) we get
sin2 χ =

1

1 + r0



1−

√

√

√

√

T f
1/2

T exp
1/2

− r0

(

1−
T f
1/2

T exp
1/2

)



 . (6.43)Here, the quantity r0 = T f
1/2/T

b
1/2 was already introdued in (6.12). T f

1/2 and T b
1/2are theoretially alulated half-lives for pure fermioni and pure bosoni neutrinos,87



respetively. T exp
1/2 is the experimentally measured half-life. If there exist an agreementbetween the measured and predited (for ase of pure fermioni neutrinos) half-lives,we may introdue the upper bound on sin2 χ by use of (6.43) as follows
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 . (6.44)
T f−min
1/2 is the minimal theoretially predited value of the two-neutrino double

β-deay half-life alulated with appropriate nulear model (e.g. QRPA or NSM).
T exp−max
1/2 is the maximal experimentally measured value of the two-neutrino double

β-deay half-life. If r0 ≪ 1 and r0 is small with respet to the relative auray of
T f
1/2/T

exp
1/2 , simultaneously, then we may omit terms proportional to r0 in (6.44) and get

sin2 χ < (1−
√

T f−min
1/2 /T exp−max

1/2 ). (6.45)Unfortunately, this approah requires knowledge of nulear matrix elements, i.e. isdependent on hoie of proper nulear system desription. Nevertheless, an adequateestimation of nulear matrix elements an be obtained for some nulei, e.g. 100Mo and
116Cd with the use of the SSD hypothesis. For the ase of 100Mo we an take alulatedvalue of the half-life T f

1/2 = (6.84±3.42)×1018 years from [88℄. This half-life well agreeswith the experimental value of T exp
1/2 = (7.11±0.54)×1018 years [89℄ obtained from theNEMO-3 experiment. We then get r0(0+g.s.) = 0.086 and for the restrition we obtain
sin2 χ < 0.34. (6.46)It is worth to note that the auray of estimated half-life T f

1/2 depends ruiallyon the auray of half-life of eletron apture on intermediate nuleus 100Tc [72℄.Unfortunately, there does not exist more reliable experimental data on the half-lifevalue for eletron apture on 100Tc, therefore the obtained limit on sin2 χ shall bereonsidered in future when more preise data will be available.However, stronger bound an be obtained by exploring the two-neutrino double
β-deay of 116Cd. The advantage is the fat that log ft values may be ahieved frombeta strengths obtained with harge exhange reations. Then for the value of half-lifewe obtain T f

1/2 = (2.76± 0.12)× 1019 years [92℄. For the bound we get
sin2 χ < 0.06. (6.47)88



6.6.2 The energy distributionsThe preise measurement of di�erential harateristis of the two-neutrino double β-deay an probe more preisely bosoni or partly bosoni neutrinos. Suh harate-ristis are measured with NEMO-3 experiment for 100Mo,116Cd,150Nd,82Se,96Zr and
48Ca isotopes.The aim is to ompare the theoretially predited shape of spetra with the experi-mentally measured ones. A �t an be performed onsidering sin2 χ as a free parameter.As was already mentioned this method is useful mostly in ases with large r0. There-fore, it is suitable to analyze 100Mo deay to the ground state 0+ → 0+.From the analysis of available experimental data the ase of pure bosoni neutrinos(sin2 χ = 1) an be exluded [92℄. By omparing the spetra (see Fig. 6.3) with theexperimental data, namely the shift of maximum to higher energies, we an estimatea bound sin2 χ < 0.6. It is noteworth that there is not perfet agreement between theexperimental data and theoretial spetrum.We make a omment on single eletron energy spetrum of 100Mo double β-deayalso. Generaly it is assumed that SSD approah is adequate in ase of 100Mo buta small disrepany exist between the predited and measured spetra. However, itwas pointed out that SSD is more likely realized in this ase as HSD approximation[78, 79℄. The spetra for partly bosoni neutrinos (see Fig.6.4) ompared with datagive a restrition sin2 χ < 0.7 [92℄. We note that the theoretially predited spetrain SSD approah are not in an ideal agreement with data. This is mostly obvious inlow energy region (E = 0.2− 0.4 MeV). From our point of view a natural explanationours that it is an e�et of partly bosoni neutrinos with parameter sin2 χ ∼ 0.5 -0.6. Only with progress in data analysis of NEMO-3 experiment we may get a betterbound on sin2 χ hopefully in near future.6.6.3 Ratios of half-lives to exited and ground stateWe de�ne the ratio of half-lives to the exited and ground state

r∗f,b(J
π) ≡

T f,b
1/2(J

π)

T f,b
1/2(0

+)
(6.48)for fermioni and bosoni neutrinos, separately. The advantage of introduing theratio (6.48) is the fat that nulear matrix elements that are for some ases knownwith poor auray are aneled in ratio with SSD (or HSD) approah. Therefore, theunertainty of logft values does not have any impat on preision of the ratio (6.48).89



In ase of 100Mo transitions to 0+ and 0+1 were already experimentally observed byNEMO-3 [89, 90℄. So we have
r∗exp.(0

+
1 ) ≃ 80. (6.49)On the other hand the theoretially alulated values within the SSD approah are

r∗(0+1 ) ≃ 61 (fermionic νs)

≃ 73 (bosonic νs). (6.50)One may onlude that bosoni neutrinos �t data somehow better. Let us remarkthat the involved SSD approah may not be enough satisfatory. The statistis oftransitions to 0+1 exited state need to be improved also.Unlike the ase of transition to 0+1 state the transition to 2+1 appears to be a bettertool for study of bosoni neutrinos. For the two-neutrino double β-deay of 100Mo inthe SSD approah we obtain
r∗(2+1 ) ≃ 2.5× 104 (fermionic νs)

≃ 2.7× 102 (bosonic νs). (6.51)These values are substantially di�erent for fermioni and bosoni neutrinos. Unfor-tunately the deay to 2+1 of 100Mo has not been measured yet. Inserting only the limiton half-life [94℄ to the 2+1 exited state of 100Ru into (6.48) we get
r∗exp(2

+
1 ) > 2.2× 102. (6.52)We see that this bound is too lose to the value for bosoni neutrinos. Therefore,experimental evidene on the deay of 100Mo to 2+1 state is highly required in order toexlude pure bosoni neutrinos and to study partly bosoni neutrinos.ConlusionsWe summarize here brie�y the ahieved results of analysis of partly bosoni neutrinosin the two-neutrino double β-deay.Double β-deay is a unique proess that provide a test of the Pauli exlusion prini-ple and statistial feature of neutrinos. It is worthmentioning that statistis of neutrinos90



and violation of Pauli exlusion priniple is still an open question. Appearane of evensmall bosoni omponent in neutrino states an lead to a remarkable hange of totaldeay rates as well as the energy distributions.We de�ned ratio r0 of the total deay rates for bosoni to fermioni neutrinos.The nulear systems with higher r0 are preferred due to higher sensitivity to bosoniomoponent of neutrinos. For 100Mo deay to the ground state we found r0(0
+) =

0.076. However, for 100Mo deay to the exited state we found rather large value
r0(2

+
1 ) = 7.1. We have to note that the 100Mo double β-deay to the exited state 2+1has not been measured until now.The introdued parameter sin2 χ desribes the ase of mixed statistis of neutrinos,i.e. the ase of partly bosoni neutrinos. The upper limit on sin2 χ an be obtainedby omparing theoretially predited and experimentally measured total deay rates.However, the small auray of nulear matrix elements involved in the deay rateslowers the reliability of this method. The onservative bound of sin2 χ < 0.5 is foundfor 100Mo, i.e. the ase of pure bosoni neutrinos an be exluded. Muh betterrestrition sin2 χ < 0.06 is obtained from 116Cd deay studies. Nevertheless, thesebounds need to be veri�ed in future with new experiments.The transitions with large r0(Jπ) value are worthwhile beause of higher sensitivityto spetrum distortions aused by bosoni omponent of neutrinos. By use of availableexperimental data on the transition 0+ → 0+ for 100Mo a bound sin2 χ < 0.6 isobtained. From transition 0+ → 2+1 to the nulear exited state of 100Ru a stronger limitan be ahieved in priniple due to relatively high value of r0(2+1 ) ≃ 7. Unfortunately,more experimental results are needed for this hannel. We found that the distortionof the energy spetra aused by bosoni part of neutrinos is opposite for 0+ → 0+ andfor 0+ → 2+1 transitions. The presene of bosoni part of neutrinos shifts the energyspetrum of outgoing eletrons to low energy region for 0+ → 0+ transition, while forthe 0+ → 2+1 transition spetrum is shifted to higher energies.A rather strong restrition on sin2 χ might be obtained from ratios of half-lives tothe exited (2+1 ) and ground (0+) state of �nal nuleus, where the disrepany betweenthe bosoni and fermioni neutrino ases is quite large. However, further experimentalprogress in the deays to the exited states (2+1 ) is neessary.We note that there exist no restrition on bosoni omponent of neutrinos obtainedfrom the Big Bang Nuleosynthesis. The main aim is to put a qualitative boundon the mixing parameter sin2 χ. From the two-neutrino double β-deay we found aonservative bound sin2 χ < 0.6 that exludes pure bosoni neutrinos. These �ndingswere published in Ref. [X℄ give in the List of publiations.

91



SummaryIn this thesis the absolute sale of the neutrino masses and the statistis of neutrinoshave been investigated. The fous was set on the determination of the neutrino massfrom the single β-deays of tritium, rhenium and indium. A possible violation of thePauli exlusion priniple for neutrinos was studied in the ase of the two-neutrino dou-ble β-deay.Absolute mass sale of neutrinos in the ontext of the single β-deayTritium β-deay (see Chapter 3)
• By taking use of the analogy between the 3H and 3He nulei and neutron andproton partiles the super-allowed β-deay of tritium has been desribed withinthe Elementary Partile Treatment (EPT) of Kim and Primako�.
• A relativisti form of the eletron energy spetrum in the EPT approah has beenderived. It was found that the nulear reoil shifts the kinematial endpoint tolower value by about 3.4 eV . In addition, it is onluded that the e�ets of higherorder terms of hadron urrents are negligible.
• The relativisti Kurie funtion for the tritium β-deay has been de�ned andpresented in a simple form suitable for the neutrino mass determination from theshape of the endpoint spetrum. A onnetion with the ommonly used Kuriefuntion was established.
• The role of weak interations beyond the SM in the tritium β-deay near theendpoint spetrum has been studied. We showed that the e�etive salar andtensor interations annot produe a signi�ant e�et near the endpoint and,therefore, annot interfere with that produed by the neutrino mass.Rhenium and indium β-deay (see Chapter 4)
• The theoretially unknown eletron energy spetrum of the �rst unique forbidden
β-deay of rhenium has been presented.92



• By a detailed analysis it was found that the partiular deay rate assoiated withthe p-wave emission of eletron dominates over the s-wave ontribution to deayrate by a fator ∼ 104.
• The Kurie funtion for the �rst unique forbidden β-deay of 187Re has beenintrodued. The analysis of the Kurie funtion for the rhenium β-deay showedthat within a good auray it oinides up to a fator to the Kurie funtion ofthe super-allowed transitions.
• The eletron energy spetrum of the seond unique forbidden β-deay of 115Into the �rst nulear exited state has been derived. It was showed that in thistransition eletrons are predominantly emitted in d partial waves. There is ageneral onlusion that the Kurie funtion for the unique forbidden β-deayswith low Q-value is undistinguishable with the Kurie funtion of superallowed
β-transitions.Statistis of neutrinos in the ontext of the 2νββ-deayA detailed desription of the 2νββ-deay (see Chapter 5)

• A general expression for the deay-rate of the 2νββ-deay to the ground (0+)and exited (2+) state of the �nal nuleus has been derived by onsidering inaddition to eletron s-waves also the emission of p-wave eletrons assoiated withtransitions through 1−-states of the intermediate nuleus.
• For 2νββ-deay of 150Nd the half-life has been alulated in a phenomenologialSSD approah by using the log ft values of single β-transitions of the groundstate of the intermediate nuleus. By performing a omparison with measuredhalf-life it was onluded that SSD hypothesis is not realized in the ase of the
2νββ-deay of 150Nd.

• Normalized energy distributions of the 2νββ-deay of 150Nd to the ground (0+)and exited (2+) state of the �nal nuleus has been presented by onsidering boththe Single State Dominane and Higher States Dominane hypotheses.Statistis of neutrinos (see Chapter 6)
• By assuming neutrinos to ful�ll Bose-Einstein statistis the di�erential harate-ristis and half-life of the 2νββ-deay have been determined. Both, transitionsto the ground (0+) and the exited (2+) states of �nal nuleus were onsidered.93



• Qualitative onlusion is that the pure bosoni neutrino is exluded by measuredhalf-life of the 2νββ-deay of 100Mo.
• Parameter sin2 χ that desribes the ase of mixed statistis, i.e. partly bosonineutrinos, has been introdued. The energy distribution dependene on the mix-ing parameter was studied. A onservative bound sin2 χ < 0.6 was obtained fromdata of the NEMO3 experiment.The results and �ndings presented in this thesis are important for the KATRIN tritium

β-deay experiment, whih is under onstrution and for the planned MARE rhenium
β-deay experiment as well as for the next-generation double β-deay experiments likeSuperNEMO, EXO, SNO+, et.
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Résumé
ÚvodNeutrína zohrávali d�leºitú úlohu v rannýh fázah Vesmíru. V sú£astnosti vieme, ºeiba 4% z hmoty vo Vesmíre tvorí oby£ajná baryónová hmota. Zvy²nýh 96% hmotyVesmíru, ktorá je nám neznáma, sa nazýva tzv. tmavá hmota. Zastúpenie neutrín vtejto komponente je stále otázkou ²pekuláií. D�leºité je poznamena´, ºe neutrína,ktoré sa oddelili od primordiálnej hmoty, tzv. reliktné neutrína, sú dodnes poprifotónoh druhými najpo£etnej²ími £astiami. Navy²e, experimenty s osiláiami neu-trín [23, 24, 25℄ dokazujú, ºe existujú najmenej 2 hmotné neutrína. Aj dodnes sú námmnohé základné vlastností neutrín stále neznáme.Cie©om tejto práe je skúmanie fundamentálnyh vlastností neutrín: i) absolútna²kála hmotností neutrín a ii) ²tatistiké vlastnosti neutrín.Priame ur£enie absolútnej ²kály hmotností neutrín je moºné pomoou ²túdia konaspektra elektrónov emitovanýh v oby£ajnom β rozpade. Efekt nenulovej hmotnostíneutrín sa prejavuje deformáiou spektra pri jeho koni a posunom maximálnej energieelektrónov k niº²ím hodnotám.Priame skúmanie ²tatistikého harakteru neutrín je prevedené v rámi analýzyenergetikýh harakteristík dvojneutrínového dvojitého β rozpadu.�túdium hmotnosti neutrína v β premene tríiaV sú£astnosti je pozornos´ k β spektru tríia venovaná najmä v rámi experimentuKATRIN v Karlsruhe, ktorý by mohol urobi´ objav hmotnosti neutrín na úrovni ∼ 0.35eV alebo dosiahnu´ horný limit hmotnosti neutrín na úrovni ∼ 0.2 eV [31℄.Z tohto h©adiska rezonuje poºiadavka na preízny teoretiký popis kona spektraelektrónov emitovanýh v β premene tríia a preverenia inýh vplyvov na konie spektraneº zo samotnej hmotnosti neutrín.
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Relativistiké spektrum elektrónov v β premene tríiaRelativistiké spektrum elektrónov je odvodené v rámi prístupu Elementary PartileTreatment (EPT), ktorým zavádzame analógiu medzi β premenou tríia
3H →3 He+ e− + νe (6.53)a rozpadom vo©ného neutrónu
n → p+ e− + νe. (6.54)V rámi tohto prístupu je zahrnutý spätný ráz jadier v kinematike danej reakie,ktorý sp�sobuje, ºe maximálna energia elektrónov,

Emax
e =

1

2Mi

(

M2
i +m2

e − (Mf +mν)
2
)

, (6.55)je o 3.4 eV men²ia neº hodnota získaná konven£ným odvodením Emax
e = (Mi−Mf−

mν). Mi a Mf je hmotnos´ 3H a 3He. me je hmotnos´ elektrónu a mν je hmotnos´neutrína. Pre spektrum elektrónov emitovanýh v beta premene tríia po úpraváhdostávame
dΓ

dEe
≃ 1

2π3
G2

βF (Z,Ee)peEe(g
2
V + 3g2A)

√

y (y + 2mν) (y +mν) . (6.56)
pe a Ee sú hybnos´ a energia elektrónu. Fermiho funkia F (Z,Ee) berie do úvahyCoulombovskú interakiu medzi emitovaným elektrónom a konovým jadrom. �alejde�nujeme relativistiký tvar Kurieho funkie nasledovne

K(y) = B
(

√

y (y + 2mν) (y +mν)
)1/2

, (6.57)kde B = Gβ

√

g2V + 3g2A/
√
2π3. Tu, Gβ je Fermiho kon²tanta slabej interakie. gV a

gA sú kon²tanty renormalizáie vektorového a axiálneho toku a nezávislá premenná je
y = Ee−Emax

e . Priebeh Kurieho funkie (6.57) pri koni spektra je znázornený na obr.(3.3) pre r�zne hmotnosti neutrín. M�ºeme vidie´, ºe pre nulovú hmotnos´ neutrína jeKurieho funkia lineárna, kým pre nenulovú hmotnos´ je linearita naru²ená.
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Slabé interakie za �tandardnýmModelom v β premenetríiaD�sledky efektívnyh skalárnyh a tenzorovýh slabýh interakií, ktoré majú p�vod vteóriáh idúih za ráme �M sú ²tudované v β premene tríia. Existujúe ohrani£e-nia na hodnoty väzbovýh kon²tánt skalárnej a tenzorovej interakie (gS a gT [62℄) súzískané z energetikého spektra konovýh jadier v β premene, meranýh na experi-mente WITCH na ISOLDE v CERNe. V rámi prístupu EPT je odvodené spektrumelektónov emitovanýh v tríiovom β rozpade s prímesami exotikýh interakií v hamil-toniáne slabýh interakií nasledovne: i) ²tandardná V − A a skalárna (S) interakia.ii)²tandardná V − A a tenzorová (T ) interakia.Výsledkom je aditívny £len v spektre elektrónov, ktorý pohádza z interferen-ie V − A a skalárnej (tenzorovej) interakie. Numerikou analýzou pre prípad trí-ia prihádzame k záveru, ºe efekt exotikýh interakií, ktorýh hodnoty väzbovýhkon²tánt uvaºujeme z experimentu WITCH [62℄ je omnoho slab²í ako ²tandardnej
V − A, a preto m�ºe by´ pri analýze kona spektra zanedbaný.�túdium hmotnosti neutrína v zakázanýh β premenáhrénia a indiaPredmetom záujmu experimentu MARE je kalorimetriké meranie energie vyletujú-ih elektrónov v réniovom β rozpade (Q ∼ 2.47 keV) s presnos´ou merania hmotnostineutrína na úrovni 200 meV. Preto je d�raz kladený na preíznu znalos´ teoretikéhopriebehu spektra elektrónov vylietajúih v réniovom β rozpade. Nedávne meraniahmotností izotopov pomoou Penningovýh pasí objavili, ºe energia reakie v β roz-pade 115In do prvého exitovaného stavu dérskeho jadra dosahuje najniº²iu hodnotu
Q = 155 eV spomedzi v²etkýh jadrovýh systémov. Z tohto d�vodu je predmetomna²íh ²túdií spektrum elektrónov emitovanýh v β premene india.Teoretiký popis prvej zakázanej β premeny réniaV prvom zakázanom β rozpade rénia,

187Re(5/2+) →187 Os(1/2−) + e− + ν, (6.58)je zmena spinu a parity medzi po£iato£ným a konovým jadrom ∆Jπ = 2−. Tása realizuje bu¤ i) emitovaním elektrónu v s1/2 vlne a neutrína v p3/2 vlne, alebo97



ii) emitovaním elektrónu v p3/2 vlne a neutrína v s1/2 vlne. Príspevky od vy²²íhpariálnyh v¨n m�ºu by´ zanedbané kv�li nízkej hodnote Q danej reakie.Energetiké spektrum vyletujúih elektrónov, ktoré doposia© nebolo teoretikyznáme je dané nasledovne
N(Ee) =

dΓ

dEe

=
1

2π3
G2

βBR2peEe(E0 − Ee)
√

(E0 − Ee)2 −m2
ν

× 1

3

(

F1(Z,Ee)p
2 + F0(Z,Ee)((E0 −Ee)

2 −m2
ν)
)

. (6.59)
E0 je maximálna energia elektrónu v prípade nulovej hmotnosti neutrína. R jepolomer jadra. Fermiho funkie F0(Z,Ee) a F1(Z,Ee) berú do úvahy Coulombikúinterakiu medzi konovým jadrom a vyletujúim elektrónom v s a p vlne. Pol£asrozpadu je ur£ený len jedným matiovým elementom

B =
g2A
6
| < Os−1/2||

√

4π

3

∑

n

τ+n
rn
R
{σ1(n)⊗ Y1(n)}2||Re+5/2 > |2, (6.60)ktorý je len multiplikatívnym faktorom, t.j. nemení tvar priebehu spektra. Z ex-perimentálne známeho pol£asu rozpadu (T exp
1/2 = 4.35 × 1010y) je potom moºné ur£i´hodnotu matiového elementu (B = 3.573× 10−4). τ+n a σ1(n) sú izospinový zvy²ovaíoperátor a Pauliho spinový operátor n-tého nukleónu.Dominania elektrónovej p vlny v β premene réniaRozpadová ²írka β premeny rénia sa dá napísa´ ako suma dvoh príspevkov, Γ =

Γs1/2 + Γp3/2. Γs1/2 a Γp3/2 sú jednotlivé £asti rozpadovej ²írky zodpovedajúe tomu,ke¤ sú elektróny emitované v s a p vlnáh. Z numerikej analýzy týhto partikulárnyhrozpadovýh ²írok vyplýva, ºe ∼ 104 via elektrónov je emitovanýh v p vlne ako v svlne. Vysvetlenie tejto dominanie elektrónovej p vlny spo£íva v dvoh prí£ináh:
• Ve©mi nízka hodnota energie danej reakie (Q ∼ 2.47 keV ), ktorá sp�sobuje, ºeelektrón je nerelativistiký.
• Funk£ná závislos´ Fermiho funkií F0(Z,Ee) a F1(Z,Ee) v oblasti energií preréniový β rozpad.Za ú£elom pohopenia dominanie elektrónovej p vlny z h©adiska kinematiky danéhoproesu prejdeme k limite rovinnýh v¨n emitovanýh elektrónov, t.j. Fk(Z,Ee) ≈ 1(k = 0, 1). Príspevok elektrónovej p (s) vlny je násobený kvadrátom hybnosti elektrónu98



(neutrína). Hmotnos´ neutrína je zanedbate©ná v porovnaní s hodnotou Q a preto jemaximálne dosiahnute©ná hybnos´ neutrína ∼ 2.47 keV. Na druhej strane maximálnedosiahnute©ná hybnos´ elektrónu je ∼ 49 keV. To znamená, ºe samotná kinematikaproesu umo¬uje vklad elektrónovej p vlny do elkovej ²írky rozpadu.Numeriká analýza ukazuje, ºe F0(Z,Ee) ≪ F1(Z,Ee) v oblasti energií pre réniový
β rozpad.Kurieho funkia pre prvý zakázaný β rozpad réniaZanedbaním príspevku od s vlny elektrónov de�nujeme Kurieho funkiu v prípadeprvého zakázaného β rozpadu rénia podobne ako pre prípad tríia:

K(y,mν) = BRe

(

(y +mν)
√

y(y + 2mν)
)1/2

, (6.61)kde BRe = Gβ

√
B/

√
2π3
√

(R2 p2e/3)(F1(Z,Ee)/F0(Z,Ee)) je s dobrou presnos´oukon²tanta. D�vodom je nízka hodnota energie reakie vzh©adom na pokojovú hmotnos´elektrónu.Druhý zakázaný β rozpad indiaNedávne merania pomoou Penningovej pase [64℄ ukázali, ºe druhý zakázaný β rozpadindia do prvého exitovaného stavu dérskeho jadra (115In(9/2+) →115 Sn(3/2+) +

e− + νe) je β prehod z doposia© najniº²ou známou Q hodnotou reakie ∼ 155 eV.Zmena medzi základným stavom jadra 115In(9/2+) a prvým exitovaným stavom jadra
115Sn(3/2+) je ∆Jπ = 3+. Daná zmena spinu a parity je splnená ak sú elektrón aneutríno emitované vo vlnáh v tomto poradí: d5/2 a s1/2, p3/2 a p3/2, s1/2 a d5/2. Nízkahodnota energie danej reakie a F2(Z,Ee) ≫ F1(Z,Ee) ≫ F0(Z,Ee) sp�sobujú, ºedominantný vklad do rozpadovej ²írky je z d vlny elektrónov. Zanedbaním s a p vlnytak de�nujeme Kurieho funkiu ako
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Zhrnutím výsledkov dosiahnutýh pre zakázané β rozpady rénia a india sme pri²lik záveru, ºe pre ©ubovo©ný n-tý β rozpad s dostato£ne nízkou hodnotu energie reakiebude závislos´ Kurieho funkie totoºná s tou, ktorá je pre povolené β prehody.Hypotéza dominanie jedného stavu v 2νββ rozpadeHypotéza dominanie jedného stavu (Single State Dominane - SSD) bola navrhnutáv prái Abad, et al. [68℄. SSD hypotéza postuluje pre 2νββ aktívne jadrá, ktorýhzákladný stav medzijadra je 1+, ºe matiový element 2νββ premeny je daný matiovýmielementnmi dvoh β prehodov: i) β prehod spájajúi základný stav (0+) po£iato£néhojadra so základným stavom (1+) medzijadra a ii) β prehod spájajúi základný stav(1+) medzijadra so základným stavom (0+) konového jadra. Predmetom ná²ho záujmuje skúma´ platnos´ SSD hypotézy pre 2νββ rozpad jadra 150Nd s 1− základným stavommedzijadra 150Sm, nako©ko existenia nízko leºiaih 1+ stavov jadra 150Sm nie jeexperimentálne vylú£ená. To je moºné pomoou difereniálnyh harakteristík, ktorésú merané v experimente NEMO3.V rámi odvodenia rozpadovej ²írky dvojneutrínového dvojitého β rozpadu,
(A,Z) → (A,Z + 2) + 2e− + 2ν, do 0+ základného a 2+ exitovaného stavu jadra smevzali do úvahy s1/2 a p1/2 vlnu elektrónov a iba s1/2 vlnu neutrín. Tým m�ºe by´ tentoprehod realizovaný iba ez 0+, 1+, 0− a 1− stavy medzijadra.Zo známeho pol£asu premeny β rozpadu medzijadra a hodnoty energie uvo©nenej vdanej reakii Q je moºné ur£i´ hodnotu matiového elementu tohto β prehodu nasle-dovne

∣

∣< 0+f ||O(J π)||1±i >
∣

∣ =

√

3D

fβ(Z ′, Ei −Ef )T1/2
. (6.64)

D = (2π3 ln 2)/(G2
βm

5
e) je kon²tanta. fβ(Z

′, E0) je integrál ez fázový priestorzávislý na Q hodnote danej reakie a T1/2 je pol£as rozpadu. Operátory O(J π) súdané ako
O(0+) =

∑

m

τ+m , Ok(1
+) = gA

∑

m

τ+m (~σm)k

O(0−) = −gA

(

αZ ′

2

)

∑

m

τ+m

(

~xm · ~σm

R

)

,

Ok(1
−) =

(

αZ ′

2

)

∑

m

τ+m
1

R
(~xm − gA~xm × ~σm)k . (6.65)100



Z ′ je protónové £íslo konového jadra a α je kon²tanta jemnej ²truktúry. Podobnepre elektrónový záhyt vieme ur£i´ hodnotu β sily prehodu, B(1±)
EC =

∣

∣< 0+f ||O(J π)||1±i >
∣

∣

2,zo známeho pol£asu
[

TEC
1/2 (1

±
i → 0+f )

]−1
=

me

2π3 ln 2
(Gβm

2
e)

2 1

2Ji + 1
B

(1±)
EC fEC−KI ,LII

(Z,Ei −Ef ).(6.66)Funkia fEC−KI ,LII
(Z,Ei − Ef) zodpovedá integrálu ez fázový priestor. Z týhtohodn�t matiovýh elementov potom vieme ur£i´ pol£as 2νββ rozpadu ako

(

T 2ν−SSD
1/2 (0+f )

)−1

=
me(Gβm

2
e)

4

8π7 ln 2
I2ν−SSD(0+f )

×| < 0+f ||O(1−)||1− > |2| < 1−||O(1−)||0+i > |2. (6.67)
I2ν−SSD(0+f ) je integrál ez fázový priestor emitovanýh leptónov. Pre jadro 150Nd jehodnota pol£asu 2νββ rozpadu za predpokladu realizáie SSD hypotézy T 2ν−SSD

1/2 (0+) =

4.02 × 1024r, pri£om experimentálna hodnota je T 2ν−exp
1/2 (0+) = 8.2 × 1018r. Z ihporovnania je o£ividné, ºe hypotéza SSD sa nerealizuje pre prípad 2νββ rozpadu 150Nd.V prái [74℄ bola vyslovená hypotéza dominanie vy²²íh stavov ( Higher StatesDominane - HSD ), ktorá predpokladá, ºe dominantný vklad do matiového elementupohádza z vy²²ie leºiaih 1+ stavov.Platnos´ oboh hypotéz (SSD i HSD) je moºné veri�kova´ pomoou spektra energiejedného elektrónu normalizovaného elkovou rozpadovou ²írkou,

P2ν−N

J+
f

(Ee1) =
1

Γ2ν−N

J+
f

dΓ2ν−N

J+
f

dEe1
(N = SSD, HSD). (6.68)Výhodou tohto prístupu je, ºe v prípade SSD hypotézy je spektrum nezávislé namatiovýh elementov. V prípade hypotézy HSD zavedením aproximáie energetikýhmenovate©ov (Eei + Eνj ≈ (Ei − Ef )/2. i, j = 1, 2) sa stane normalizované spektrumnezávislé od jadrovýh matiovýh elementov. Pre prípad 2νββ rozpadu jadra 150Ndza predpokladu SSD a HSD hypotéz je spektrum jedného elektrónu normalizované najednotku znázornené na obr. (5.5).
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�tatistiké vlastnosti neutrín v rámi dvojneutrínovéhodvojitého β rozpaduPredpoklad moºného naru²enia Pauliho vylu£ovaieho prinípu bol uº diskutovaný voviaerýh £lánkoh [80℄, no zatia© ºiaden konzistetný mehanizmus nebol navrhnutý. Jemoºné, ºe v¤aka unikátnym vlastnostiam neutrín (neutralita, ve©mi nízka ²kála hmot-ností) je naru²enie Pauliho prinípu silnej²ie v neutrínovom sektore ako v sektorohostatnýh £astí. Moºnos´ bozónovýh neutrín bola uº ²tudovaná v rámi astrofyzikál-nyh a kozmologikýh proesov [84, 85℄. Dvojneutrínový dvojitý β rozpad je unikátnyproes z toho h©adiska, ºe sa ho zú£ast¬ujú dve neutrína. Skúmaním harakteristík
2νββ rozpadu tak moºno priamo ²tudova´ ²tatistiké vlastnosti neutrín.Bozónové neutrína v 2νββ premenePre krea£né operátory neutrín zavedieme komuta£né vz´ahy (d†(kν1)d†(kν2) = d†(kν2)d

†(kν1)),kým pre elektróny predpokladáme ²tandardné antikomuta£né vz´ahy ako pre fermióny.Ukazuje sa, ºe zmena znamienka v komuta£nýh vz´ahoh sa prejaví do znamienkavýrazov
Kf,b

m =
1

Em − Ei + Ee1 + Eν1

± 1

Em − Ei + Ee2 + Eν2

Lf,b
m =

1

Em − Ei + Ee1 + Eν2

± 1

Em − Ei + Ee2 + Eν1

. (6.69)Kombináie Kf,b
m + Lf,b

m a Kf,b
m − Lf,b

m vstupujú do rozpadovej ²írky 2νββ premenydo základného 0+ stavu konového jadra. Pri 2νββ premene do exitovaného 2+ stavuvstupuje iba kombináia Kf,b
m − Lf,b

m do rozpadovej ²írky. Pre analýzu bozónovéhoneutrína je vhodné zavies´ pomer rozpadovýh ²írok pre bozónové a fermiónové neutrína
r0(J

π) ≡ Γb(J
π)/Γf(J

π) do základného (0+) a vzbudeného (2+) stavu konového jadra.Výhodou v rámi hypotézy SSD je to, ºe v danom pomere r0 sa matiové elementy
β rozpadu a elektrónového záhytu medzijadra vykrátia. Preto je vhodné obráti´ po-zornos´ na jadro 100Mo, u ktorého je relizáia SSD hypotézy uº potvrdená [94℄. Pre
2νββ rozpad 100Mo do základného 0+ stavu dostávame

T
1/2
f (0+g.s.) = 6.8× 1018 r

T
1/2
b (0+g.s.) = 8.9× 1019 r. (6.70)Tak máme r0(0

+
g.s.) = 0.076. Pre prípad 2νββ rozpad 100Mo do vzbudeného 2+stavu dostávame 102



T
1/2
f (2+1 ) = 1.7× 1023 r

T
1/2
b (2+1 ) = 2.4× 1022 r. (6.71)Dostaneme tak r0(2

+
1 ) = 7.1. Rozdiel medzi fermiónovými a bozónovými neutrí-nami je najvia evidentný pri rozpade do 2+1 exitovaného stavu konového jadra.6.2 Prípad £iasto£ne bozónovýh neutrín v rámi 2νββ rozpaduPre prípad £iasto£ne bozónovýh neutrín pí²eme neutrínový stav ako kombináiu fer-miónového a bozónového neutrína |ν〉 = cosδ|f〉+ sinδ|b〉. Amplitúda 2νββ rozpadu,

A2β = cos2 χAf +sin2 χAb , je daná ako lineárna kombináia amplitúdy 2νββ rozpadudaná pre £isto fermiónové a bozónové neutrína. Parameter sin2 χ vyjadruje ve©kos´bozónovej komponenty neutrín. Rozpadová ²írka je potom daná Γtot = cos4 χΓf +

sin4 χΓb. Nie je tu interferenie medzi fermiónovou a bozónovou £as´ou. D�vodom jefakt, ºe pri zámene dvoh nerozlí²ite©nýh £astí fermióny dávajú znamienko mínus,kým bozóny znamienko plus v danej amplitúde. Nako©ko v²ak integrujeme ez fá-zový priestor, kaºdý antisymetriký £len vo£i zámene ν1 ↔ ν2 vymizne. Preto nieje interferenia medzi fermiónovou a bozónovou £as´ou amplitúdy. Pre elkovú roz-padovú ²írku 2νββ premeny do základného aj vzbudeného stavu dostávame Γtot(J
π) =

cos4 χΓf (J
π) + sin4 χΓb(J

π).Normalizovaná difereniálna rozpadová ²írka je daná ako
PJπ =

dΓtot(J
π)

Γtot(Jπ)
=

cos4 χ dωf(J
π) + sin4 χ r0(J

π)dωb(J
π)

cos4 χ+ sin4 χ r0(Jπ)
, (6.72)kde dωf(J

π) ≡ dΓf(J
π)/Γf (J

π) a dωb(J
π) ≡ dΓb(J

π)/Γb(J
π). Vidíme, ºe pomer

r0(J
π) váhuje bozónovú komponentu neutrín v difereniánej rozpadovej ²írke. To zna-mená, ºe pre ve©ké r0 sta£í aj malá komponenta bozónovýh neutrín na to, aby saprejavila v spektre.Na obrázkoh (6.1,6.2) sú ilustrované sumárne energetiké spektrum dvoh vyletujú-ih elektrónov a energetiké spektrum jedného vyletujúeho elektrónu za predpokladurealizáie hypotéz SSD i HSD pre £isto fermiónové a £isto bozónové neutrína do základ-ného stavu (0+) konového jadra. �alej, na obrázkoh (6.6,6.5) sú ilustrované sumárneenergetiké spektrum dvoh vyletujúih elektrónov a energetiké spektrum jednéhovyletujúeho elektrónu za predpokladu realizáie SSD hypotézy do exitovaného stavu(2+1 ) konového jadra pre prípad £iasto£ne bozónovýh neutrín.Efekt bozónového neutrína je slabo závislý na vo©be danej hypotézy (SSD/HSD) aprejavuje sa v spektre elektrónov tým, ze maximum sa posúva k niº²ím hodnotám.103



Ohrani£enia na bozónovú komponentu neutrínExistujú tri r�zne sp�soby akými m�ºeme získa´ ohrani£enie na bozónovú komponentuneutrín (sin2 χ). Prvý sp�sob je porovnanie teoretiky ur£eného pol£asu rozpadu sexperimentálne nameraným. Horné ohrani£enie je
sin2 χ < (1−

√

T f−min
1/2 /T exp−max

1/2 ). (6.73)
T f−min
1/2 je minimálna teoretiky ur£ená hrania pre pol£as a T exp−max

1/2 je maximálnahodnota, ktorá je experimentálne nameraná. Toto ohrani£enie platí za predpokladu
r0 ≪ 1, £o je v²ak ve©mi dobre splnené pre prehody 0+ → 0+. Nevýhoda je potrebavýpo£tu jadrovýh matiovýh elementov.Pre prípad 100Mo a 116Cd je moºné ur£i´ pol£asy zo známyh logft hodn�t v rámihypotézy SSD. Získané ohrani£enia sú sin2 χ < 0.34 (100Mo) a sin2 χ < 0.06 (116Cd).�a©²ou moºnos´ou je zavies´ sin2 χ ako �tovaí parameter, t.j. ur£i´ jeho hodnotupomoou dostupnýh dát zo spektier energie jedného elektrónu a sumárnej energieoboh elektrónov. Táto metóda je vhodná pre ve©ké r0. Z dostupnýh dát (NEMO3)plynie ohrani£enie sin2 χ < 0.7 [92℄, t.j. prípad £isto bozónového neutrína je vylú£ený.Tretia moºnos´ je de�nova´ pomer pol£asov rozpadov do exitovaného a základnéhostavu

r∗f,b(J
π) ≡

T f,b
1/2(J

π)

T f,b
1/2(0

+)
(6.74)separátne pre fermiónové a bozónové neutrína. Za predpokladu SSD hypotézy pre

100Mo máme
r∗f(0

+
1 ) ≃ 61

r∗b (0
+
1 ) ≃ 73. (6.75)Prehod do 0+1 bol nameraný experimentom NEMO 3 [89, 90℄ a teda r∗exp.(0

+
1 ) ≃ 80.Na prvý poh©ad sa zdá, ºe bozónové neutrína lep²ie vyhovujú experimentálnym dátam.Rozdiel m�ºe by´ zaprí£inený samotným prepodkladom SSD hypotézy.Prehod do 2+1 stavu sa javí by´ vhodnej²ím nástrojom na ²túdium bozónovýhneutrín. Za predpokladu SSD hypotézy pre 100Mo máme

r∗f(2
+
1 ) ≃ 2.5× 104

r∗b (2
+
1 ) ≃ 2.7× 102. (6.76)104



Pre 2νββ rozpad jadra 100Mo do 2+1 stavu existuje iba dolné ohrani£enie na pol£asrozpadu [94℄, s ktorým dostaneme r∗exp(2
+
1 ) > 2.2× 102. Sú£asná experimentálna hod-nota je teda blízko prahu vylú£enia £isto bozónovýh neutrín. Progres v meraní 2νββrozpadu jadra 100Mo do 2+1 stavu konového jadra by umoºnil urobi´ závery aj preprípad £iasto£ne bozónového neutrína.ZáverV danej prái boli diskutované fundamentálne vlastnosti neutrín. Menovite absolútn²kála hmotností neutrín a naru²enie Pauliho vylu£ovaieho prinípu pre neutrína vkontexte oby£ajného a dvojitého β rozpadu. Originálne výsledky, ktoré boli prezento-vané v danej prái zazneli na viaerýh medzinárodnýh konfereniáh a workshopoha tkatieº boli opublikované v zahrani£nýh karentovanýh ºurnáloh. Dané výsledkya zistenia sú d�leºité pre tríiový experiment KATRIN, ktorý je vo fáze spú²tania apre plánovaný experiment merajúi réniový β rozpad MARE, ako aj pre pripravovanéexperimenty merajúe dvojitý β rozpad ako napr. SuperNEMO, EXO, SNO+ a pod.
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Appendix APhase spae integrals evaluationwithin the relativisti treatment oftritium β-deayWe present here details of alulation of the phase spae integrals neessary for theeletron energy spetrum in tritium β-deay. We reall the integrals that need to bealulated.
K =

∫

d3pf
Ef

d3pν
Eν

δ(4)(Q− Pf − Pν)

(Lv)
ρ =

∫

d3pf
Ef

d3pν
Eν

δ(4)(Q− Pf − Pν)(Pν)
ρ

(Nνf)
ρσ =

∫

d3pf
Ef

d3pν
Eν

δ(4)(Q− Pf − Pν)(Pν)
ρ(Pf)

σ, (A.1)with Q = Pi − Pe. The notation is the same as in se. 3.2.Integration of KThe integral is indeed a salar funtion of the four-momentum Q. Most apparent salaronsisting of four-momentum Q is Q2. Then the Lorentz invariane of Q2 allow us toperform the alulation in a partiular frame, where Q = (Q0, 0), i.e., the rest frameassoiated with the enter of mass of the system ontaining the �nal nuleus and theantineutrino.
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K =

∫ ∫

d3pf
Ef

d3pν
Eν

δ(4)(Q− Pf − Pν)

=

∫

dEfdΩf
1

Eν

δ(Q0 −Ef − Eν) pf (A.2)Here, for the energy of neutrino we have Eν =
√

m2
ν + E2

f −M2
f . We shall take theadvantage of the expression

δ(f(x)) =
δ(x− x0)

|f ′(x0)|
. (A.3)For the sake of simpliity here we assume that funtion f(x) has only one zero-point,i.e. the x0, what is for the ase of tritium β-deay true so far. Then we have

∣

∣

∣

∣

∂(Q0 − Eν − Ef)

∂Ef

∣

∣

∣

∣

=

∣

∣

∣

∣

−Ef

Eν

− 1

∣

∣

∣

∣

=
Q0

Eν

. (A.4)The argument of the delta funtion is zero for
E0

f = (Q2
0 +M2

f −m2
ν)/(2Q0). (A.5)For the K integral we get

K = 4π

∫

dEf

√

E2
f −M2

f

Eν

Eν

Q0
δ(Ef − E0

f)

= 2π

√

[Q2
0 − (Mf +mν)2][Q

2
0 − (Mf −mν)2]

Q2
0 (A.6)Taking the advantage of Lorentz invariane of the K integral we may replae Q2

0with Q2 and get the integral in general form
K = 2π

√

[Q2 − (Mf +mν)2][Q2 − (Mf −mν)2]

Q2
. (A.7)We notie that in the laboratory frame, whih is the subjet of hoie for almostall ases, Q2 = M2

i +m2
e − 2EeMi.
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Integration of Lρ
νWe onsider the integral

(Lν)
ρ =

∫

d3pf
Ef

d3pν
Eν

δ(4)(Q− Pf − Pν)(Pν)
ρ (A.8)as a vetor funtion of the four-momentum Q that may be written in a general wayas

Lρ
ν = BQρ, (A.9)where the funtion B = B(Q2) might be the salar funtion of the Q at most. Bymultiplying (Lν)

ρ with Qρ we get
BQ2 =

∫

d3pf
Ef

d3pν
Eν

(Pν ·Q) δ(4)(Q− Pf − Pν). (A.10)The salar produt (Pf ·Q) we evaluate using the four-momentum onservation law.
P 2
f = (Q− Pν)

2

M2
f = Q2 − 2(Pν ·Q) +m2

ν

(Pν ·Q) =
1

2
[Q2 +m2

ν −M2
f ]. (A.11)Then we have

BQ2 =
1

2
[Q2 +m2

ν −M2
f ]

∫

d3pf
Ef

d3pν
Eν

δ(4)(Q− Pf − Pν)

=
1

2
[Q2 +m2

ν −M2
f ] K. (A.12)Eventually, we have

(Lν)
ρ =

(Q · Pf )

Q2
K Qρ

=
(Q2 +m2

ν −M2
f )

2Q2
K Qρ. (A.13)108



Integration of N ρσ
νfThe integral

(Nνf)
ρσ =

∫

d3pf
Ef

d3pν
Eν

δ(4)(Q− Pf − Pν)(Pν)
ρ(Pf )

σ (A.14)takes the form of the seond rank tensor. We may express the integral with the useof Q vetor as follows
(Nνf)

ρσ = Cgρσ +DQρQσ, (A.15)where C = C(Q2) and D = D(Q2) are salar funtions of Q2 at most. By multi-plying N ρσ with the metri tensor gρσ we get
4C +DQ2 = (Pν · Pf)K. (A.16)By multiplying N ρσ with QρQσ we �nd

CQ2 +DQ2Q2 = (Q · Pν) (Q · Pf)K. (A.17)By solving the set of these two equations we �nd
C =

1

3

(

(Pν · Pf)−
(Q · Pν) (Q · Pf)

Q2

)

K

D = − 1

3Q2

(

(Pν · Pf)− 4
(Q · Pν) (Q · Pf)

Q2

)

K (A.18)The integral (Nνf )
ρσ then takes the form

(Nνf)
ρσ =

1

3

(

(Pν · Pf)−
(Q · Pν) (Q · Pf )

Q2

)

K gρσ

−1

3

(

(Pν · Pf)− 4
(Q · Pν) (Q · Pf)

Q2

)

KQρQσ

Q2
. (A.19)
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Salar produts of four-momentaEventuallly, we need to evaluate the salar produts of four-momenta of partiles in-volved in the tritium β-deay. They are given as follows:
Q2 = M2

i +m2
e − 2MiEe ≡ (m12)

2

Q2 = (Pi − Pe)
2 = M2

i +m2
e − 2(Pe · Pi)

Pei = (Pe · Pi) =
1

2
[M2

i +m2
e −Q2] = MiEe (A.20)

Q2 = M2
i +m2

e − 2MiEe

= 2(Emax
e − Ee)Mi +M2

i +m2
e − 2MiE

max
e

= 2yMi + (Mf +mν)
2 (A.21)

Q2 = (Pf + Pν)
2 = M2

f +m2
ν + 2(Pf · Pν)

Pνf = (Pf · Pν) =
1

2
[Q2 −M2

f −m2
ν ] = Mi

(

y +
mνMf

Mi

) (A.22)
PQi = (Q · Pi) = (Pi · Pi)− (Pe · Pi) = M2

i − 1

2
[M2

i +m2
e −Q2]

=
1

2
[Q2 +M2

i −m2
e] = Mi (Mi −Ee) . (A.23)

PQe = (Q · Pe) = (Pi · Pe)− (Pe · Pe) =
1

2
[M2

i +m2
e −Q2]−m2

e

=
1

2
[M2

i −m2
e −Q2] = MiEe −m2

e (A.24)
PQν = (Q · Pν) = (Pf · Pν) + (Pν · Pν) =

1

2
[Q2 −M2

f −m2
ν ] +m2

ν

=
1

2
[Q2 −M2

f +m2
ν ] = Mi

(

y +
mν(Mf +mν)

Mi

) (A.25)
PQf = (Q · Pf) = (Pf · Pf) + (Pν · Pf) = M2

f +
1

2
[Q2 −M2

f −m2
ν ]

=
1

2
[Q2 +M2

f −m2
ν ] = Mi

(

y +
Mf (Mf +mν)

Mi

) (A.26)110



(Pe · Lν) =
(Q2 +m2

ν −M2
f )

2Q2
(Q · Pe)K

=
Mi(MiEe −m2

e)

(m12)2

(

y +
mν(Mf +mν)

Mi

)

K (A.27)
P ρ
e P

σ
i (Nνf)ρσ =

1

3

(

(Pν · Pf)−
(Q · Pν) (Q · Pf )

Q2

)

K (Pe · Pi)

−1

3

(

(Pν · Pf)− 4
(Q · Pν) (Q · Pf)

Q2

)

K(Q · Pe) (Q · Pi)

Q2
.(A.28)We simplify with result

P ρ
e P

σ
i (Nνf)ρσ =

K
3Q2Q2

(

(Pν · Pf)Q
2 − (Q · Pν) (Q · Pf)

) (

(Pe · Pi)Q
2 − (Q · Pe) (Q · Pi)

)

+
K

Q2Q2
(Q · Pe) (Q · Pi) (Q · Pν) (Q · Pf)

=
K

3(m2
12)

2
M2

i

(

m2
e − E2

e

)

M2
i y

(

y +
mνMf

Mi

)

+
K

(m2
12)

2

(

MiEe −m2
e

) (

M2
i −MiEe

)

Mi

(

y +
mν(Mf +mν)

Mi

)

× (yMi +Mf(Mf +mν)) (A.29)
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Appendix BDistorted relativisti eletron wavefuntion with Coulomb �eldThe reation of eletron and antineutrino takes plae simultaneuosly in the bulk of thenuleus in the nulear β-deay. Unlike the antineutrino, the eletron arries an eletriharge. It is worth to mention that the Coulombi interation between the eletronand the �nal nuleus is not negligible in the β-deay. The eletron wave funtion isdistorted in presene of the eletromagneti �eld of the �nal nuleus and the overlapof the eletron wave funtion with the bulk of the nuleus is enhaned.For the emphasis of nulear β-deay desription, it is very onvenient to expandthe eletron wave funtion into the terms of partial waves. A few terms are presentedexpliitly.The eletron wave funtion is expanded into spherial waves
Ψ(E,~r) = ΨS(E,~r) + ΨP (E,~r) + ΨD(E,~r) + ... (B.1)in similarity with atomi physis notation of S, P and D being the eletron wavefuntions with orbital angular momentum l = 0, l = 1 and l = 2, respetively.We reall that a free spin 1/2 partile is desribed by the Dira equation

(−iγµ∂µ +m)Ψ(p, r) = 0, (B.2)where the solutions are given as
Ψs(p, r) = us(p)e

ipr, us(p) =

√

E +m

2E

(

χs

~p.~σ
E+m

χs

)

. (B.3)112



Here, us(p) denotes the Dira spinor with four-momentum p and spin projetion
s. However, in order to desribe the real situation we have to take into aount theCoulomb interation between the emitted eletron and �nal nuleus.

(−iγµ∂µ +m+ eγµAµ)Ψ(p, r) = 0. (B.4)The eletromagneti four-potential takes the form Aµ = (V (~r),~0) in the frameassoiated with the �nal nuleus with V (~r) being the Coulomb potential of �nal nuleus.For the purpose of our alulations presented in this thesis we assume the eletri hargedistribution inside the nuleus to be of the homogenious form
V (r) =

{

−(αZ
2R

)(3− ( r
R
)2) r < R

−αZ
r

r ≧ R
(B.5)

R stands for the nulear radius R = 1.1A1/3fm and α = 1/137 is the �ne strutureonstant. We adpot here the approah from [95℄ to �nd solutions of the equation (B.4)in a form
Ψs(p, r) =

∑

κ,µ

aκµ(p̂, s)Ψκµ(p, r). (B.6)Here, κ denotes the prinipal quantum number of the total angular momentum ofeletron that onsists from the orbital angular momentum l and spin s(= 1/2) and µis the z-th omponent of this total angular momentum. κ is de�ned as
κ =

{

l j = l − 1/2

−l − 1 j = l + 1/2
(B.7)We see that κ takes either positive or negative integers. In the notation familiar tothe atomi physis we have κ = −1, 1,−2, 2, ...(s1/2, p1/2, p3/2, d3/2, ...).Partial wave funtions are de�ned as

Ψκµ(p, r) =

(

g̃κ(E, r)χκµ(r̂)

if̃κ(E, r)χ−κµ(r̂)

)

. (B.8)The weight fator aκµ(p̂, s) in (B.6) desribes the eletron with ertain four-momentum
p̂ and polarization s. We mention that for the limit ase r → ∞ for the weight fatorholds 113



aκµ(p̂, s) = 4πilκC(lκ,
1

2
, jκ;µ− s, s)Y µ−s

lκ
(p̂). (B.9)The angular part of the eletron wave funtion is expressed as

χκµ(r̂) =
∑

σ=±1/2

C(lκ,
1

2
, jκ;µ− σ, σ)Y µ−σ

lκ
(r̂)χσ. (B.10)Here, χσ is the two-omponent Pauli spinor with polarization σ and Y µ−σ

lκ
are thespherial harmonis.Modi�ed radial funtions are given by

(

g̃κ(E, r)

f̃κ(E, r)

)

= e−i∆C
κ

(

gκ(E, r)

fκ(E, r)

)

. (B.11)The overall phase shift e−i∆C
κ is introdued for the sake of the ful�ling the boundaryondition at r → ∞ and in our alulations an be omitted (e−i∆C

κ = 1). The subjetof our interest is the radial wave funtions near the origin, therefore we may expressthem in terms of power series
(

gκ(E, r)

fκ(E, r)

)

= Aκ

(

g
(i)
κ (E, r)

f
(i)
κ (E, r)

)

=

= Aκ
(pr)k−1

(2k − 1)!!

∞
∑

l=0

(

bκ,l

aκ,l

)

( r

R

)l

. (B.12)Here, the oe�ients aκ,l, bκ,l are the same as in [95℄. The onstants of normalizationare evaluated from the ontinuity ondition at r = R and are estimated up to terms of
(αZ)2 as

Ã±k
∼=
√

E ±m

2E

√

Fk−1(Z,E), (B.13)where k = 1, 2, ... and the Fermi funtions Fk−1(Z,E) are given by
Fk−1(Z,E) =

[

Γ(2k + 1)

Γ(k)Γ(2γk + 1
)

]2

(2pR)2(γk−k)|Γ(γk + iy)|2eπy. (B.14)Here, γk =√k2 − (αZ)2 and y = αZE/p.For the purpose of our alulations we shall rewrite the expansion (B.1) as114



Ψ(E,~r) = Ψs1/2(E,~r) + Ψp1/2(E,~r) + Ψp3/2(E,~r) + ... . (B.15)It is worth to note that partiular terms of expansion orrespond to the situationwhen spin s(= 1/2) is parallel or antiparallel with respet to the orbital angular mo-mentum l. This turns out to be an advantage in the derivation of the deay rate offorbidden β-deays when the hange of spin and parity between the initial and �nal nu-leui has to be arried out by leptons. The fat, whether the individual term from theexpansion (B.15) ontribute to the deay rate or not, is easily seen from the seletionrules for the hange of angular momentum and parity in β-deay.For the purpose of our alulation it is su�ient to have an expliit form of theeletron wave funtion expanded up to the d5/2-wave of eletrons. From [95℄ we have
ΨS =

(

g̃−1χs

~σ.p̂ f̃1χs

)

, (B.16)
ΨP = i

(

(g̃1(~σ.r̂)(~σ.p̂) + g̃−2[3(r̂.p̂)− (~σ.r̂)(~σ.p̂)])χs

(−f̃−1(~σ.r̂) + f̃2[3(r̂.p̂)(~σ.p̂)− (~σ.r̂)])χs

)

, (B.17)
ΨD = −

(

g+2 [+3(p̂.r̂)(~σ.r̂)(~σ.p̂)− 1]χs

f−2 [−3(p̂.r̂)(~σ.r̂) + (~σ.p̂)]χs

)

+

(

g−3

[

−15
2
(p̂.r̂)2 + 3(p̂.r̂)(~σ.r̂)(~σ.p̂)− 1

]

χs

f+3

[

−15
2
(p̂.r̂)2(~σ.p̂) + 3(p̂.r̂)(~σ.r̂)− (~σ.p̂)

]

χs

)

. (B.18)In order to have more onvenient form of the eletron wave funtion, i.e. expressedin terms of the Dira spinors, it is neessary to do some algebra. After alulation forthe eletron wave funtions we get
Ψs1/2 =

(

g̃−1χs

~σ.p̂ f̃1χs

)

=
√

F0(Z,E) us(p), (B.19)
Ψp1/2 = i

(

g̃1(~σ.r̂)(~σ.p̂)χs

−f̃−1(~σ.r̂)χs

)

= i
αZ

2

r

R

√

F0(Z,E) γ0 ~γ.r̂ us(p), (B.20)115



Ψp3/2 = i

(

g̃−2[3(r̂.p̂)− (~σ.r̂)(~σ.p̂)]χs

f̃2[3(r̂.p̂)(~σ.p̂)− (~σ.r̂)]χs

)

= i
√

F1(Z,E)

(

~r.~p+
1

3
(~γ.~r)(~γ.~p)

)

us(p), (B.21)
Ψd3/2 = −

(

g+2 [+3(p̂.r̂)(~σ.r̂)(~σ.p̂)− 1]χs

f−2 [−3(p̂.r̂)(~σ.r̂) + (~σ.p̂)]χs

)

=
1

5

√

F1

[

(~p.~r) (~γ.~r) (~γ.~p)− (~p.~r)
3

2
αZγ0

(

~γ.
~r

R

)

+
(pr)2

3
+

1

3

r2

R

3

2
αZγ0 (~γ.~p)

]

us(p), (B.22)
Ψd5/2 =

(

g−3

[

−15
2
(p̂.r̂)2 + 3(p̂.r̂)(~σ.r̂)(~σ.p̂)− 1

]

χs

f+3

[

−15
2
(p̂.r̂)2(~σ.p̂) + 3(p̂.r̂)(~σ.r̂)− (~σ.p̂)

]

χs

)

= −
√

F2

[

(~p.~r)2

2
+

(pr)2

15
+

1

5
(~p.~r) (~γ.~r) (~γ.~p)

]

us(p). (B.23)
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Appendix CFierz transformationThe Fierz transformation is presented here. The aim of the Fierz transformation isto reouple the eletron and neutrino wave funtions together in order to make thealulation of traes easier and more transparent. We assume the expression to be infollowing form,
Ψ̄(pe1, ~x) γµ(1− γ5) Φ

c(kν1, ~x) . Ψ̄(pe2, ~y) γν(1− γ5) Φ
c(kν2, ~y). (C.1)Here, the following term,

Ψ̄(pe1, ~x) γµ(1− γ5) Φ
c(kν1, ~x) . Φ̄(kν2, ~y) γν(1 + γ5) Ψ

c(pe2, ~y), (C.2)is expressed in salar omponents in the form,
(Ψ̄(pe1, ~x))ρ′ (γµ(1− γ5))ρ′ρ(Φ

c(kν1, ~x))ρ.(Φ̄(kν2, ~y))σ′ (γν(1 + γ5))σ′
σ(Ψ

c(pe2, ~y))σ.(C.3)For the sake of simpliity we establish the matrix notation
Aρ′ρ = (γµ(1− γ5))ρ′ρ

Bσ′σ = (γν(1 + γ5))σ′σ. (C.4)Here, we expand the matries A,B into the omplete set of unitary matries Oi.
Aρ′ρBσ′σ =

∑

i,j

aijO
i
ρ′σ

Oj

σ′ρ
(C.5)117



Multiplying the equation by Oi
σρ′O

j
ρσ′ we obtain for the oe�ients aij the following,

aij =
TrA Oj B Oi

Tr(Oi)2(Oj)2
. (C.6)For the speial ase of our interest, i.e. A = γµ(1 − γ5) and B = γν(1 + γ5), thenon-zero ontribution give only the terms:

aij Oi
ρ′σ

Oj

σ′ρ

1/2 (1 + γ5) γνγµ(1− γ5)

1/8 σαβ(1 + γ5) γνσαβγµ(1− γ5) (C.7)Summing these results we �nally obtain the neessary relation as follows,
Ψ̄(pe1, ~x) γµ(1− γ5) Φ

c(kν1, ~x) Ψ̄(pe2, ~y) γν(1− γ5) Φ
c(kν2, ~y) =

=
1

2
Ψ̄(pe1, ~x)(1 + γ5) Ψ

c(pe2, ~y)Φ̄(kν2, ~y)γνγµ(1− γ5) Φ
c(kν1, ~x)

+
1

8
Ψ̄(pe1, ~x)σαβ(1 + γ5) Ψ

c(pe2, ~y)Φ̄(kν2, ~y)γνσαβγµ(1− γ5) Φ
c(kν1, ~x)

= −1

2
Ψ̄(pe1, ~x)(1 + γ5) Ψ

c(pe2, ~y)Φ̄(kν1, ~y)γνγµ(1− γ5) Φ
c(kν2, ~x)

+
1

8
Ψ̄(pe1, ~x)σαβ(1 + γ5) Ψ

c(pe2, ~y)Φ̄(kν1, ~y)γνσαβγµ(1− γ5) Φ
c(kν2, ~x)(C.8)This reoupling make it easy to evaluate the traes in the alulation of the non-polarized double β-deay half-life presented in Chapter 5.
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