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Abstract 

Design Basis Ground Motion is generally defined on rock outcrop because, in general 

safety related nuclear structures are founded on rock. For sites at which the bedrock is 

very deep, these safeties related structures are founded on soil. Consequently, the 

behaviour of the foundation of structures resting on soil is very much different than on 

bedrock. Hence, seismic ground response analysis is required to develop a site-specific 

response spectrum for the design of important superstructures in the region. One-

dimensional ground response analysis is a commonly used method to estimate the ground 

responses under earthquake excitation in both equivalent linear and non-linear domains 

for both low to high strains. To understand the above phenomena, tests on F-55 Ottawa 

sand have been performed in a large scale geotechnical laminar box (GLB) at the Buffalo 

State University, New York. In this study, these tests have been simulated using numerical 

procedures involving equivalent linear and nonlinear time history analysis (using 

hyperbolic stress strain curve) using the author’s in-house code which is limited to low to 

medium strains. The developed code, when tested for high strains, results in response 

accelerations that are lower than the experimental observations. The limitation of the 

model is that it predicts higher damping under larger strains. To match the damping under 

large strains, a modification is introduced in the developed nonlinear model which takes 

into account the above problem. With this modification, the predicted accelerations are in 

line with the experimental observation. Further, a study illustrating the performance of 

hyperbolic and multilinear backbone curves are studied based on the generation of the 

amplitude of high frequency harmonics in the response of nonlinear soil at high degree of 

nonlinearity. It is observed that the amplitude of odd harmonics is dependent on the 

number of parallel springs (or number of points) chosen for generating the multilinear 



 

stress strain curve and it is least (minimum) if a continuous (hyperbolic) backbone curve is 

chosen for conducting the nonlinear analysis of soil column. In addition, the results of the 

dynamic model tests are compared with the results from a plane strain finite difference 

program in terms of acceleration time history at the top and bottom accelerometer 

locations and it is found out that the numerical predictions are in reasonable agreement 

with the experimental observation using hyperbolic nonlinear stress-strain soil model. 

. 
Keywords: Laminar Box, Pure shear boundary, Nonlinear, Equivalent linear. 
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1. INTRODUCTION 

Design Basis Ground Motion is generally defined on rock outcrop because, in general the 
safety related nuclear structures are founded on rock. For sites at which the bedrock is very 
deep, these safety related structures are founded on soil. Consequently, the behaviour of the 
foundation of structures resting on soil at different locations is very much different than on 
bedrock. This is because of irregular soil layering in space which leads to the different free 
field motions at different locations (for example, basin effect, one example of topographical 
effects in site response analysis)is shown in (Fig.1) [27],  

                                                                   

   

Fig.1. Variation of free field ground motion due to irregular topography irregularity in 
soil/rock profile. 

This figure illustrates the point which has been stressed upon that there is a variation in the 
free field motion (and its frequency content) from one location to another. It is observed that 
where the soil depth is more, the response contains more lower frequency contents (or large 
time periods) as compared to the location where the soil depth is shallow. Hence, one 
solution to the problem is to model the entire soil/rock domain in 2D or 3D and get the soil 
amplification at various relevant locations. This requires huge computing space and time 
consuming. Hence, one alternative way is to go for local soil amplification studies near the 
location where we need to construct a plant/building etc. This saves time and cost as well as 
the results obtained are of a reasonable accuracy. In this report, local site amplification 
studies have been performed in one and two dimension to understand the phenomena of soil 
amplification in equivalent linear and nonlinear domain. The one-dimensional ground 
response analysis is commonly used method to estimate the ground responses under 
earthquake excitation in both equivalent linear and non-linear domains. The idea behind 
performing the exercise in both the domains is to study the conditions under which the two 
methods produce consistent estimates of site amplification. To understand the phenomena of 
site response analysis, tests on F-55 Ottawa sand has been performed in a large scale 

Time period(Sec)  Time period(Sec)  Time period(Sec) 
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geotechnical laminar box (GLB) at the University at Buffalo, State University of New York 
[7]. These tests have been further validated by numerical procedures involving equivalent 
linear and nonlinear time history analysis using our own in-house code, the description of 
which is provided in the following sections. 

A2-D plane strain site response analyses have been performed by equivalent linear method 
and it is implemented in the in-house code for simulating the Laminar box tests conducted in 
the University of Buffalo, New York. A lumped mass model and pure shear boundary 
condition in equivalent linear domain, performing time-domain integration of the equations 
of motion step-by-step, has been utilised. It assumes that the soil layers are horizontal and the 
response of a soil site is predominantly due to the horizontally-polarized shear waves that 
propagate vertically from the underlying bedrock. An iterative procedure is used to obtain the 
values of the shear modulus (G) and the damping ratio (D) compatible with the representative 
effective shear strain in each soil layer. Though equivalent linear method is fast and provides 
reasonable estimates for most of the practical problems, it is an approximate solution to the 
actual non-linear seismic ground response. Hence, to compare the equivalent linear results, 
the actual non-linear response has been analysed by developing a 1-D total stress nonlinear 
model in time domain, in authors code for studying the behaviour of the soil column in a 
Laminar box. The method of analysis employed in time-stepping procedures can in some 
respects be compared to the analysis of a structural response to input ground motion [4 & 5]. 
The system is represented by a series of lumped masses or discretized into elements with 
appropriate boundary conditions. The system of coupled equations is discretized temporally 

and a time-stepping scheme, Newmark’s -method [20 & 21] is employed to solve the 
system of equations and to obtain the response at each time step. In addition, Masing rules 
[18] and extended Masing rules [24] are used in conjunction with the backbone curves to 
describe the unloading-reloading behaviour of a soil. For validating the developed nonlinear 
model at higher stains, shake table test was conducted at IIT Kharagpur and it was found that 
a slight modification is required to validate the model at higher strains. A small study 
illustrating the choice of backbone curve intended to be used in the time domain nonlinear 
analysis was performed and it was found out that the performance of hyperbolic backbone 
curve is much better in predicting the responses at all the frequencies than the multilinear 
model, and is recommended to be used in site response studies. 
 
2. EXPERIMENTS CONDUCTED ON LOW STRAINS IN A SOIL COLUMN 

A large scale geotechnical laminar box (GLB) at the Buffalo State University, New York [7] 
have been utilized for conducting experiments on F-55 Ottawa sand. The GLB is composed 
of 40 laminate rings stacked on top of each other and separated by ball bearings. The 
laminates are free to move laterally due to the frictionless bearings thereby allowing shear 
deformation of the soil contained within the box, which is numerically implemented by pure 
shear boundaries in this study. The box is lined with a custom 2.67 mm thick assembly of 
Firestone EPDM rubber. This rubber liner contains the soil material inside the GLB and 
prevents spillage of soil through the bearing-gaps between laminates. A uniaxial motion in 
the form of a sinusoidal wave or actual earthquake motion is applied at the bottom of the 
GLB by actuators. The motion applied to the GLB base propagates up through the soil 
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column within the GLB to the free top surface of the box. The interior dimensions of the 
GLB are 4.97 m in E-W direction, 2.74 m in N-S direction and 6.09 m in height. Each 
laminate including space for the bearings is 0.1524 m in height. There are 40 such laminates 
in the box. The box is filled with the sand up to a depth of 5.2 m. The experimental setup of 
the geotechnical laminar box is shown in (Fig.2). 

 

Fig.2. Geotechnical laminar box test setup (Coleman et al., 2016). 

2.1.  Description of a Laminar Box 

To correctly model a problem of one-dimensional (1D) shear wave propagation through an 
infinite soil layer in a dynamic centrifuge test, the following three criteria for the model 
container are: (1) the container must maintain a constant horizontal cross-section during 
shaking; (2) the container (ideally) must have zero mass and zero stiffness for horizontal 
shearing; and (3) the container must develop complementary shear stresses on the end walls 
of the container that are equal to those present on the horizontal surface. A special type of 
container known as a laminar container is developed which contains stack-ring devices, 
originally developed for simple shear tests, used to simulate free boundary conditions in 
earthquake modelling of soil deposits. The GLB container does not satisfy 2 and 3, which is 
why some boundary effects are to be expected during the test. (Fig.3(a&b)) demonstrates the 
discrepancies between the boundary conditions in a semi-infinite half space and in a model 
within a “rigid smooth wall container” during 1D shaking. 
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Fig.3(a)-(b). Boundary conditions in a 1-D shaking for (a) a semi-infinite half space and 
(b) a rigid wall container. 

The mass of the stacked rings relative to the soil mass in the laminar box is not sufficiently 
small to be neglected (requirements of the 2nd and 3rd criteria). In addition, incompatible 
displacements (strain dissimilarity) between the zigzagged wall face and the soil bed as 
shown in (Fig.4) might cause P-waves among other superfluous wave reflections on both 
sides of container no matter which direction the soil bed moves to.  

 

Fig.4. Incompatible displacement (strain dissimilarity) between the end wall oflaminar 
container and the soil bed during shearing. 

But these two effects are quite less in comparison to “rigid smooth wall container” hence, this 
type of container is preferred than the former one. One can use the “rigid smooth wall 
container” but with absorbing materials (thermocol, duxeal, etc.) on the two sides of the 
container to reduce spurious P-wave reflections but with less effectiveness than the laminar 
box. The Ottawa F-55 sand is medium grained sand with the mean particle size (D50) equal to 
0.258 mm and contains less than 1% fines. The sand grains are mainly rounded, colourless 
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pure silica (silicon dioxide) uncontaminated by clay, loam, iron compounds, or other foreign 
substances. The maximum and minimum void ratios of the sand are 0.800 and 0.608, 
respectively [30] and [22]. The Ottawa sand is pumped into the GLB using hydraulic slurry 
processes [7]. Instruments like accelerometers are placed inside the GLB at different depths 
to enable measurement of real time soil shear wave velocity as it propagates through the soil 
column. 

For measurement of real time shear wave velocity of the soil, the accelerometers are placed at 
different depths along the depth of the soil column and the first arrival time of the S-wave at 
each accelerometer is recorded. The time difference between two arrival times for 
accelerometer is noted and is divided by the distance between them to get its shear wave 
velocity. This exercise is repeated at each depth to get the profile of shear wave velocity. A 
schematic diagram illustrating the locations of accelerometers at different depths in the soil is 
shown in (Fig.5) and (Table.1). 

 

Fig.5. A schematic diagram of soil column in laminar box with accelerometer locations. 

Table.1. Locations of the accelerometers within the GLB. 

Accelerometers Height above the base (m) 
ACC 26 4.069 
ACC 22 3.459 
ACC 18 2.849 
ACC 14 2.239 
ACC 10 1.630 
ACC 9 1.020 
ACC 8 0.410 
Base 0 
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2.2.  Estimation of Shear Wave Velocity Profile with Depth of F-55 Ottawa Sand 

To get the average shear wave velocity profile with depth, more than 25 tests have been 
conducted at 9 Hz, 8 Hz and 6 Hz input motions with a PGA of 0.03 g. For illustration 
purpose, the determination of Vs at a depth of 2.849 m is shown below. 

 

Fig.6(a). Recorded time history of ACC 18 and ACC 22 in Laminar Box test. 

The entire time history of ACC 18 and ACC 22 is shown in (Fig.6(a)) above. For finding the 
arrival time of the waves for each of the accelerometer readings, the enlarged view of the 
initial portion of the accelerometer reading is shown in (Fig.6(b)) and the time difference of 
the wave arrival time is found to be 0.005 sec.   

 

Fig.6(b). Enlarged view of the recorded time history of ACC 18 and ACC 22. 

Kindly note here that the sample rate at which the data is recorded is pretty high (1000 
samples/sec). As the sample rate is 1000 Hz, your time difference can only be multiples of 
0.001. So if the real time difference is 0.0043, one can only can only see 0.004 or 0.005, 
which introduces an error in the shear wave velocity calculation. This is a disadvantage of 

6



 

this kind of calculation, and needs to be mentioned here. One could also mention that if such 
a calculation is used, it is advantageous to use sensors with very large sample rate for better 
accuracy. Keeping these things in mind, the corresponding shear wave velocity of the soil is 
found to be Vs= (3.459-2.849)/0.005 =122 m/s. This exercise is repeated for each of the 25 
test and an average value of Vs is taken for this depth of the soil. For getting the entire profile 
of Vs with depth, the entire process is repeated for each depth of recording and the final shear 
wave velocity profile with depth of soil is shown below in (Fig.7). 

 

Fig.7. Shear Wave Velocity of soil with depth of soil in a laminar box test. 

It is observed that the shear wave velocity of soil is smaller near the bottom. This is because 
earlier the the laminar box is filled by mixing the soil with water and pumping it into the box. 
This is the reason there is water in the box and the water was not fully drained from the 
laminar box due to which the degree of saturation was nonzero during the test. It is also 
observed that there is a dip in the shear wave velocity at a depth of 1.5 m which might be due 
to improper compaction. Using the above soil shear wave velocity profile, the numerical 
models developed during this study are validated with one such base motion chosen which 
has a peak amplitude of 0.03 g and a peak spectral acceleration at 9 Hz frequency. The 
recording of the time history has been done for 12 secs (shown upto 4 secs) and is shown in 
(Fig. 8(a&b)) in both time and frequency domains. 
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(a) 

 
(b) 

Fig.8. Applied base motion to the laminar box in both time and frequency domains. 

To capture the strain dependant dynamic properties of F-55 Ottawa sand which will be 
utilised in the equivalent linear and nonlinear soil model described in the next section, 
torsional resonant column laboratory test (RCT) is conducted on the same soil sample for two 
different confining pressures (13.8 kPa and 55.16 kPa). The tests are done on a soil sample of 
10.77 cm in height with an initial diameter of 5.07 cm. The type of sand is SP and its relative 
density is 58%. The specific gravity of sand is 2.65 with an initial void ratio of 0.61. The dry 
unit weight of the sand is 15.90 kN/m3. The experimentally calculated curves of the 
normalised stiffness and its corresponding damping ratio of the Ottawa sand are shown in 
(Fig.9(a&b) below. 
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      (a) 

 

      (b) 

Fig.9. Variation of (a) normalised stiffness and (b) damping ratio versus shear strain for 
F-55 Ottawa sand by torsional resonant column tests (RCT). 

 

3. ANALYSIS AND NUMERICAL SIMULATION OF LOW STRAIN TEST 

An in house finite element program is developed for studying the soil response in a Laminar 
box by performing 2-D equivalent linear analyses in time domain and using Multi-point 
constraint [1] boundary condition. The lateral boundaries of the soil domain should reduce 
the unwanted reflections from the boundaries which is achieved by constraining the 
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boundaries to move in pure shear which in turn simulates a free field conditions. Further, a  
1-D total stress nonlinear analysis of multiple degree of freedom lumped mass, spring and 
dashpot systems with appropriate boundary conditions has also been implemented in authors 
code to compare the results obtained from the equivalent linear analysis. 

In the equivalent linear analysis, an iterative approach is followed [15], in which, the initial 
estimates of the values of the shear modulus, Gi and damping ratio, Di, corresponding to 
small strains, are assumed for each soil layer. The estimated Gi and Di are used to compute the 
ground response, including the time histories of shear strain for each layer. The effective 
shear strain in each layer is determined from the maximum shear strain in the computed shear 
strain time history. From this effective shear strain, new values for Gi+1and Di+1are estimated 
for the next iteration. The above steps are repeated until the difference between the previous 
and the new values is less than 5-10%. The iteration converges within 3 to 4 steps, normally 
[26]. A flowchart illustrating the above approach is shown in (Fig.10(a)). In the equivalent 
linear approach, the following dynamic equation of equilibrium is solved in discrete time 
increments using time domain analysis. 

ሾMሿሼuሷ ሺtሻሽ ൅ ሾCሿሼuሶ ሺtሻሽ ൅ ሾKሿሼuሺtሻሽ ൌ ሾMሿሺIሻሼu୥ሷ ሺtሻሽ            Eq.(1) 

where, (M) is the lumped mass matrix, (K) is the stiffness matrix, (I) is the influence matrix 
(equal to 1 in the direction of the application of motion, and 0 in the direction, where no 
motion is applied) and (C) is the damping matrix of the soil. The above equation is solved 
numerically at each time step using the constant average acceleration method. 

 

Fig.10(a). Flow chart of computational program for soil response analysis using 
equivalent linear method. 
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The base of the soil column is modelled as infinitely stiff. For the ith layer of the soil, the soil 
mass is lumped at each node of an 8-noded, 2-D quadrilateral element (= ρV/8, where ρ is the 
density of soil, V is the volume of the element). The formulation of the stiffness matrix 
requires the following basic definition: 

  ሾKሿ ൌ  ሺBሻ୘ሾDሿሾBሿdv              Eq.(2)׬

which in isoparametric formulation is expressed as: 

ሾKሿ ൌ t∬ ሺBሻ୘ሾDሿሾBሿ|J|dξdη
ଵ

ିଵ
               Eq.(3) 

where, η = y/a, ξ=x/a where ‘a’ is the half of the element size. ‘t’ is the out of plane thickness 
of the element. (D) is the constitutive matrix in plane strain and given by: 

ሾDሿ ൌ
୉

ሺଵା஬ሻሺଵିଶ஬ሻ
቎

1 െ ϑϑ    0
ϑ 1 െ ϑ       0

0  0 
ሺଵିଶ஬ሻ

ଶ

቏               Eq.(4) 

in which, E is the elastic modulus and ϑ is the Poisson’s ratio. For the formulation of the B-
matrix, the following shape functions for an 8-noded element are defined: 

Nଵ ൌ
1

4
ሺ1 െ ξሻሺ1 െ ηሻሺെξ െ η െ 1ሻ 

Nଶ ൌ
1

4
ሺ1 ൅ ξሻሺ1 െ ηሻሺξ െ η െ 1ሻ 

Nଷ ൌ
1

4
ሺ1 ൅ ξሻሺ1 ൅ ηሻሺξ ൅ η െ 1ሻ 

Nସ ൌ
1

4
ሺ1 െ ξሻሺ1 ൅ ηሻሺെξ ൅ η െ 1ሻ 

Nହ ൌ
1

4
ሺ1 െ ξሻሺ1 െ ηሻሺ1 ൅ ξሻ 

N଺ ൌ
1

4
ሺ1 െ ξሻሺ1 െ ηሻሺ1 ൅ ηሻ 

N଻ ൌ
1

4
ሺ1 െ ξሻሺ1 ൅ ηሻሺ1 ൅ ξሻ 

    N଼ ൌ
ଵ

ସ
ሺ1 െ ξሻሺ1 െ ηሻሺ1 ൅ ηሻ         Eq.(5) 

The node numbering in a single element is shown in (Fig.10(b)). 
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Fig.10(b). Node numbering in a 8-noded quadrilateral element. 

The (C) matrix is a combination of elemental mass and stiffness matrices and is of the form 
[25]  

ሾCሿ ൌ αୖሾMሿ ൅ βୖሺKሻ                 Eq.(6) 

The values of αR and βR are calculated by considering the predominant frequencies of input 
motion or soil column. In the equivalent linear analysis, the damping ratio is calculated with 
the variation of shear strain for a soil. For a frequency independent damping ratio, the 
formulation of damping for a multi-layered soil is followed as per [10]. The soil column is 
modelled using 2-D, plane strain, 8-noded, quadratic, quadrilateral element with two degrees 
of freedom (horizontal and vertical displacements) at each node. A rigid element is utilized to 
impose a multi-point constraint. A rigid element is a 2-D, bar element with high axial 
stiffness (AE/L=w) and two degrees of freedom at each node. It is connected to the two nodes 
of the lateral boundaries of the soil column. The axial stiffness is made high so that there is 
negligible axial strain in the bar element which implies that the deflection of the end nodes is 
same. One node acts as the “master” and another node acts as a “slave”. The constraint 
equation that ties the horizontal and vertical degree of freedom is written in the following 
form [6]:  

ሾBሿሾuሿ ൌ ሾAሿ                  Eq.(7) 

where, B and A are constants. For homogeneous constraints, the value of (A) is equal to zero. 
The equation may be written in a modified form as: 

ሾQሿ ൌ ሾBሿሾuሿ െ ሾAሿ                 Eq.(8) 

(Q)=0 implies the satisfaction of the constraints. “Penalty augmentation” [6] is used for 
implementation of the constraints at the boundary degrees of freedom. Each multi-point 
constraint is viewed as the presence of a fictitious elastic structural element called penalty 
element (w) that enforces it approximately. This element is parametrized by a numerical 
weight.  The multi-point constraints are imposed by modifying the assembled stiffness matrix 
which is submitted to the equation solver as: 

ሾK୫୭ୢ୧ϐ୧ୣୢሿ ൌ ሾKሿ ൅ ሾBሿ୘wሾBሿ              Eq.(9) 

If w =0, then the constraints are ignored, hence the selection of the appropriate weights are 
necessary to minimize ill-conditioned solution (with respect to inversion of the stiffness 
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matrix) as well as to avoid mesh locking. For instance, if we choose the horizontal nodal 
displacements at nodes 4 and 8, u4x= u8x, then it may be written as u4x-u8x=0, which is a 
homogeneous constraint. It may be written in the matrix form as: 

ሾ1 െ 1ሿ ቂ
uସ୶
u଼୶

ቃ ൌ 0                    Eq.(10) 

Where,  ሾBሿ ൌ ሾ1 െ 1ሿ and ሾBሿ୘wሾBሿ ൌ w ቂ
1 െ 1
െ1    1  

ቃ 

The above matrix is incorporated into the assembled stiffness matrix at the appropriate 
locations of the degree of freedom. It generally implies the addition of an axially rigid bar 
element with axial stiffness (w) to the two tied nodes. The trade-off value of weights is 
difficult to find, which will encompass all the problems. A rule is followed in which the 
weights are chosen typically on the order of 106 to 107 for double precision (64-bit processor) 
to avoid numerical difficulty [6]. At the bottom of the model, “rigid” base is assumed and the 
formulation is done in terms of total displacements. It may be noted that this traditional 
approach assumes that the total motion at the foundation base is known in terms of 
acceleration and the boundary degrees of freedom for the relative displacements are 
constrained to zero [37].  

The present nonlinear model in the authors code is based on total stress analysis of multiple 
degree of freedom lumped mass systems with appropriate boundary conditions. The system 
of coupled equations, as shown in (Eq.1), is discretized temporally and a time-stepping 
scheme such as the “Newmark Average Acceleration” method [20] is employed to solve the 
system of equations and to obtain the response at each time step. The formulation of stiffness 
and damping matrix for lumped mass systems is the same as the one given in DEEPSOIL 
[11]. In this formulation for the viscous damping matrix, the value of stiffness matrix (K) is 
not updated at each time step which implies that the viscous damping matrix is not updated at 
each time step. To capture the hysteretic damping in the system, the rules of loading-
unloading cycles are followed as proposed by [18] and [34]. As the extended Masing rules 
[24] and [31] cannot be converted into simple functional form, hence in this model, a 
modified dynamic stress-strain relationship is used which simplifies the modelling of the 
extended Masing rules. The stiffness matrix (K) is assembled at each time step using the 
incremental properties of soil layers obtained from a constitutive model that describes the 
cyclic stress-strain characteristics (backbone curves) of the soil layer. The modulus reduction 
curves, whereby the dynamic modulus of soil decreases with strain, is used to define the 
backbone curves. In this model, the equation of backbone curve is given by (Eq.11). 

τ ൌ
ஓ

୅ା୆|ஓ|౩
                 Eq.(11) 

Where, τ is the shear stress, γ is the shear strain, γref is the reference shear strain, ‘s’ is a curve 
fitting parameter (=1.0 for low to medium strains), A=1/Gmax and B=1/γref/Gmax. The value 
of γref is used to adjust the shape of the backbone curve to get a proper match with the 
modulus reduction and damping ratio curves of a soil. The rules followed for hysteresis 
loading-unloading behaviour of a soil to satisfy the Masing rules for irregular loadings is 
given in [34].  
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The base of the soil column is assumed to be infinitely stiff. Each individual soil layer is 
assumed to have a nonlinear spring (which considers for hysteretic damping), and a dashpot 
for simulating small strain damping in soil (which is optional to use in this model). The 
lumping the mass at each node of the soil column based on the adjacent upper and lower soil 
properties are used for the formation of mass matrix. The formulation of stiffness matrix is 
such that it is updated at each time increment, and the stiffness ki for ith soil layer is given as 
ki=Gi/hi = (τ(γi)-τ(γi-γi-1))/(hi(γi-γi-1)), which shows that the value of tangent modulus, G is 
used to update the stiffness matrix at each solution step. The time step for solving the 
nonlinear program is decided by the results obtained by choosing different time steps and the 
optimum time step is selected for the problem in which the results (in terms of acceleration, 
shear strain, etc.) does not differ by more than 1% from the previous one. Generally, the 
solution time step depends on the integration algorithm, time step of the input motion, etc. 
and hence a time step of 0.001 sec is taken for this study since the prediction of soil behavior 
is quite accurate at this time step.  The discretization of the soil column within the laminar 
box test for the numerical analyses in DEEPSOIL [11] and the authors code program for both 
equivalent linear and nonlinear analysis is shown in (Fig.11). The soil layer thicknesses are 
selected by considering the maximum frequency (fmax) of the shear wave that the model could 
logically respond to during earthquake loadings [16].One such calculation for element size is 
shown below in which the maximum frequuency of propagation through an element is taken 
to be 25 Hz. The element size calcualted as per the speed of the propagation of shear wave: 
Vs=fλ, where λ is the wavelenegth of the propagating wave. The wavelength λ,is calculated to 
be λ=74.3/25=2.92 m. For proper capturing of a harmonic wavelength, minimum of 3 points 
are required but in this study 10 points (or nodes) is utilised for capturing a wavelength of 
frequency 25 Hz, hence the corresponding element size os 2.92/10=0.292m (or ~0.3 m). The 
above procedure is followed for calculation of element size of the GLB soil column.  

 

 

Fig.11. Numerical discretization of soil column in GLB test. 
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3.1.  Calibrating the Backbone Curve of Soil From Strain Dependent Properties of Soil 

 
In order to perform 1-D nonlinear time domain analysis, the strain dependant shake down 
strength (normalised stiffness) as well as damping ratio needs calibration and equations are fit 
for the experimental data for both normalised stiffness and damping ratio as given in       
(Eq.12 -15) for two different confining pressures. 

ୋ

ୋౣ౗౮
ൌ

ଵ.଴଴ହ

ሺଵାୣ୶୮ ሺሺିሺ୪୭୥భబ ஓሻାଵ.ସ଻ଽሻ/ି଴.ସସଽଶሻ
, for confining pressure of 13.8 kPa      Eq.(12) 

 

ୋ

ୋౣ౗౮
ൌ

ଵ.଴଴ହ

ሺଵାୣ୶୮ ሺሺିሺ୪୭୥భబ ஓሻାଵ.ଶଶଽሻ/ି଴.ସସଽଶሻ
, for confining pressure of 55.16 kPa     Eq.(13) 

 

Dሺ%ሻ ൌ 0.1514 ൅
଴.ଶ଻ଷଷସହଵ

ሺଵ.଼ହାୣ୶୮ ሺቀିଷ.଼ହଽ଻∗൫ሺ୪୭୥భబ ஓሻାଵ.ଶ଼଼ଶ൯ቁሻ
, for confining pressure  

of 13.8 kPa               Eq.(14) 

 

Dሺ%ሻ ൌ 0.15014 ൅
଴.ଶ଼ଷଷସହଵ

ሺଷ.଴ହାୣ୶୮ ሺቀିଷ.଼ହଽ଻∗൫ሺ୪୭୥భబ ஓሻାଵ.ଵ଴଼ଶ൯ቁሻ
, for confining pressure  

of 55.16 kPa                 Eq.(15) 

These equations are useful for the calibration of backbone curve which will be utilised for 
nonlinear analysis of soil. The hysteretic form of the Kelvin-Voigt model consists of a spring 
(of stiffness k) and a dashpot (of viscosity η) connected in parallel (Kramer, 2005). Thus, the 
strain, γ, is imposed equally on the two elements and the corresponding stress, τ, has two 
components, one acting on the spring, τspr = G u(t) and another one on the dashpot, τdamper 

= ηuሺtሻሶ , where u(t) is the shear strain of the soil. Combining these two resistances, the final 
expression for stress is given as: 

τሺtሻ ൌ Guሺtሻ ൅ ηuሺtሻሶ                Eq.(16) 

For a harmonic excitation of the form,Fሺtሻ ൌ F୭ sin ሺωtሻ, the response (in terms of 
displacement) is also of the form uሺtሻ ൌ u୭ sin ሺωtሻ and the velocity is  

 uሺtሻሶ ൌ ωu୭ cos ሺωtሻ. The final expression may be expressed as: 

൬
uሺtሻ

u୭
൰
ଶ

൅ ቆ
uሺtሻሶ

ωu୭
ቇ

ଶ

ൌ  1 

Or,  ቀ
୳ሺ୲ሻሶ

ன୳౥
ቁ
ଶ

ൌ  1 െ ቀ
୳ሺ୲ሻ

୳౥
ቁ
ଶ
 

Or,       ቀ
୳ሺ୲ሻሶ

ன୳౥
ቁ ൌ േට1 െ ቀ

୳ሺ୲ሻ

୳౥
ቁ
ଶ
 

15



 

Or,        uሺtሻሶ ൌ േωඥu୭
ଶ െ uሺtሻଶ            Eq.(17) 

Substituting, (Eq.17) into (Eq.16), the following expression for shear stress may be obtained. 

τሺtሻ ൌ Guሺtሻേηωඥu୭
ଶ െ uሺtሻଶ
ሶ              Eq.(18)     

where, ‘+’ is for the re-loading and ‘-’ is for the unloading.  

In the above equation, the term ‘ηω’ is replaced by ‘2Gξ’to make the expression frequency 
independent. Thus (Eq.18) may be expressed as: 

τሺtሻ ൌ Guሺtሻേ2Gξඥu୭
ଶ െ uሺtሻଶ
ሶ              Eq.(19)     

The above expression will give an ellipse for a value of shear modulus (G) and damping ratio 
(ξ). To incorporate strain dependency of shear modulus and damping ratio into (Eq.19), the 
equation may be modified as: 

 τሺtሻ ൌ Gሺu୭ሻuሺtሻേ2Gሺu୭ሻξሺu୭ሻඥu୭
ଶ െ uሺtሻଶ

ሶ              Eq.(20) 

where, u୭ is the amplitude of the shear strain. G(u୭) and D(u୭) are obtained from the curves 
of modulus reduction and damping ratio with shear strain. This equation gives the equivalent 
hysteretic hypothesis using the strain dependant Kelvin-Voigt model. (Eq.20) is used to 
define an appropriate linear soil column model of 1m height with a value of small strain shear 
modulus. An authors code is developed in which the base of the soil column is fixed and at 
the top of the soil, a sine wave of constant amplitude of strain is applied. The response is in 
the form of shear stress which produces an inclined ellipse with amplitude of strain. The 
exercise is repeated for all the shear strain amplitudes (ranging from 10-4% to 1%). (Fig.12) 
shows the hysteresis loops for each model data point based on the equivalent linear model 
data. (Fig.12) also shows the backbone curve which is used for the nonlinear model shear 
stress versus shear strain curve. 

 

Fig.12. Variation of shear stress with shear strain in soil in a strain dependent linear 
Kelvin-Voigt model. 

Backbone curve 
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The equation of backbone curve (Modified MKZ model as per (Hashash and Park, 2002) to 
be used in the non-linear analysis of sandy soil is given by (Eq.21). 

τሺtሻ ൌ
ୋ୳ሺ୲ሻ

ଵାஒሺ
౫ሺ౪ሻ

౫౨౛౜
ሻ౩

            Eq.(21) 

where, β = 1.59, s = 0.66 and uref = 0.00092 for a sandy soil. Using the equation of the 
backbone curve with the above parameters, an authors code is developed which considers the 
unloading and reloading portions of the non-linear loops using the first two Masing rules 
[18]. Essentially, these state that (1) a new (but inverted) function is started upon reversal, 
implying that the initial unload modulus is G, and (2) the first quarter-cycle of loading is 
scaled by one-half relative to all other cycles [12]. The stress strain curves are generated by 
appliying a series of constant strain amplitde strain time histories at the top of the soil column 
of 1m in height as before. The stress-strain curve following the Masing rules is shown in 
(Fig.13). 

 

Fig.13. Variation of shear stress with shear strain in soil following first two Masing 
rules. 

The material properties for the nonlinear model are defined to match the equivalent linear 
material properties (shown in (Fig.14(b)) as close as possible in terms of modulus reduction. 
The energy absorption for the lowest strain value (shown in (Fig.14(b)) is approximated by 
adding a low-strain (viscous) damping to the nonlinear model material properties. The 
calibration of the model in terms of the modulus reduction of a sandy soil with strain is 
shown in (Fig.14(a)). Though the match with modulus reduction curve is good, a deviation 
may be noticed in the damping ratio at higher strain levels (refer to (Fig.14(b)). It may be 
noted that a better match for damping is obtained at low strains, but for higher strains, the 
damping is overestimated. This may be also seen in (Fig.14(b)). This leads to an 
underestimation of shear strains as well as surface intensities in the form of PGA at the 
ground surface.  
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Fig.14(a). Comparison of shear modulus reduction with strain obtained from the 
authors code and that found in F-55 Ottawa sand. 

 

Fig.14(b). Comparison of damping ratio with strain obtained from the authors code and 
that found in F-55 Ottawa sand. 

The energy absorbed per cycle for the soil column is calculated as the area of the hysteresis 
loop for each amplitude of shear strain. (Eq.22) shows a simple trapezoid rule for numerical 
integration that may be used if the shear stress and the shear strain are in tabular form          
[28 & 29], 

E୪୭୭୮ ൌ ∑
தౠାதౠషభ

ଶ

୒
୨ୀଵ ሺu୭୨ െ u୭୨ିଵሻ             Eq.(22) 

The final parameters of the modified MKZ backbone curve for the F-55 Ottawa sand is given 
in (Table.2). 
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Table.2. The curve fit parameters for F-55 Ottawa sand (refer to (Eq.21)). 

Type of Soil Β VALUE S VALUE UREF 

F-55 Ottawa Sand (CF=13.8 kPa) 1.52 0.976 0.000515 
F-55 Ottawa Sand (CF=55.16 kPa) 1.46 0.975 0.00088 

 

3.2.  Results of the Numerical Simulation 

After calibration with the stiffness degradation only disregarding the mismatch with the 
damping values at higher strains, the value of γref (the reference shear strain) used for the 
hyperbolic model in (Eq.11) is found to be 0.059% and 0.0345% for confining pressures of 
13.8 and 55.16 kPa, respectively. These backbone curves are used for the nonlinear analysis 
of F-55 Ottawa sand in laminar box tests. It is also validated against the results obtained from 
DEEPSOIL [11]. The small strain damping used for the non-linear analysis is taken to be 5%. 
The value of damping is taken on a bit higher side, usually a small strain damping of 1-1.5% 
is sufficient. The experimental validation of the  model is shown in terms of variation of 
acceleration with depth for the specified base motion in (Fig.15(a)). The model predictions 
(equivalent linear and nonlinear) are compared with the test results and results obtained from 
DEEPSOIL [11] program. In addition, the numerical validation of shear strain with depth 
obtained from DEEPSOIL is compared with the authors code which is shown in (Fig.15(b)) 
below. 

 

(a) 
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(b) 

Fig.15. Comparison of the (a) peak accelerations and (b) Maximum shear strain with 
soil column depth in the GLB test for equivalent linear and nonlinear analysis. 

From (Fig.15(a)), it is observed that there is a drop in the peak acceleration value around 3 to 
4m depth. This is because of an interference of second mode of vibration in the soil column 
during the test which has a lesser amount of mass participation in comparison to its 
fundamental mode. This observation is also supported by comparing the acceleration time 
history in the frequency domain, both numerically and experimentally, for ACC 8 and ACC 
14 (refer to (Fig.16)). Moreover, in comparison to equivalent linear analysis, the nonlinear 
analysis predicts closer results in terms of PGA with depth with the experimental 
observations [19]. 
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Fig.16. Fourier spectrum of ACC8 and ACC14 from GLB experiments, AUTHORS and 
DEEPSOIL(Hashash et al., 2012). 

From the Fourier spectrum of ACC8 and ACC 14, it may be seen that there are three 
predominant peaks, the first one at 4.26 Hz, second one at 9Hz and the final one at 12.56 Hz. 
Out of these, the peak at 9 Hz is the frequency of the input motion, and the peaks at 4.26 Hz 
and 12.76 Hz are the two fundamental modes of vibration of the soil column. Hence the 
notion that the higher modes are occurring during the experiment is supported by these 
findings which also supports the fact of the de-amplification of peak accelerations as 
observed in (Fig.15(a)). The results obtained from the numerical analysis are in reasonable 
agreement to the experimental observations and demonstrate the numerical predictive 
capability of the developed model in equivalent linear and nonlinear domain. There are subtle 
differences in the frequency content especially between 10 and 11 Hz obtained from the 
responses of soil column in equivalent linear analysis from the authors code and DEEPSOIL. 
This may be due to the solution alogrithm followed by DEEPSOIL which does it in 
frequency domain and the authors code follows time domain. The deformations of the soil 
column at two instants of time obtained from the authors code for equivalent linear analysis 
are shown in (Fig.17), 
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Fig.17. Deformations of the soil column at two time instants predicted by AUTHORS 
program. 

From the deformed mesh at 0.15 sec, it may be observed that there is an influence of higher 
modes along with the fundamental modes of the soil column, which is dominant at a height of 
around 3-4.5 m. This is not observed in the deformed mesh at 0.075 sec in which the entire 
soil column is moving in its fundamental mode. This is also a supportive evidence of the    
de-amplification of peak acceleration at the concerned zone as shown in (Fig.15(a)). The 
small differences are due to the frequency domain technique utilized in DEEPSOIL [11] and 
the time domain technique (Newmark’s β-method) utilized in authors code to solve the same 
problem in equivalent linear domain. 

To validate the correctness of the stress-strain rules for nonlinear analysis, the shear stress vs. 
shear strains have been compared with DEEPSOIL and authors code at depths of 5 m and   
1.3 m from the top of the soil surface (refer to (Fig.18)). 
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(a) 

 

(b) 

Fig.18. Comparison of stress-strain loops for soil column at a depth of (a) 1.3m, (b) 5.0m 
from the top of the soil surface. 

It is seen that the stress-strain loops match reasonably well for depths of 1.3 m and 5 m. Thus, 
these results benchmark the nonlinear code. In a nutshell, it is seen that the nonlinear time 
domain analysis gives better results in comparison to equivalent linear analysis although it is 
time consuming hence, this methodology is preferred. 
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4. EXPERIMENTS CONDUCTED ON HIGH STRAINS IN A SOIL COLUMN 
 

For validation of the developed model with “higher strains (>1%)”, a uniaxial shake table 
test was conducted on dry Kasai river sand. The shake table essentially comprises of a 1m by 
1m steel table mounted on rails. The load carrying capacity of the table is 5 ton. The table is 
attached to an actuator which vibrates the table in a uniaxial horizontal direction. The servo 
hydraulic actuator has a capacity of +/- 50 kN. It has a stroke length of +/-100mm. The 
actuator is driven by a controller which has a capability of accepting an actual earthquake 
(random, cyclic) loading as input and generating it between the frequencies range of 0.01 Hz 
and 50 Hz. The actuator has the capability to hold and restart the loading during a test. It has 
the facility to increase the base load, frequency and amplitude during a test. The model tests, 
reported here, are performed in a rigid plexiglass container of dimensions 0.8 m x 0.85 m x 
1.0m (length x breadth x height) with top open. The plexiglass sheets are  16 mm thick and 
glued to each other as well as fixed in a steel frame consisting of steel angles.  

The setup consists of dynamic shake table test of the 0.65 m high sand bed. In this case, the 
test container is filled with the dry sand at a uniform density of 1600 kg/m3 (unit weight = 
15.7 kN/m3) up to the top, maintaining a 50 mm gap between the top of the test container and 
the top of the sand layer. Three accelerometers, one at the top of the soil, one near the bottom 
of soil and another one on the shake table, are placed as shown in (Fig.19), 

 

Fig.19. Test setup for dry sand testing under harmonic excitation. 

One of the important challenges in the laboratory scale dynamic soil performance studies is to 
replicate the infinite boundary condition in the small test chamber. In a soil within a test 
chamber, as in this experimental study, the finite dimension of the soil layer does not allow 
the complete dissipation of the energy induced by the wave propagation. Moreover, the 
presence of the artificial boundaries induces the generation of P-waves which may add 
inaccuracies in the expected responses. The past studies by [3], [17] have demonstrated that 
the presence of foam sheets at the boundaries enables the dissipation of a certain amount of 
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energy. They have also demonstrated that higher absorption may be achieved using thicker 
sheets of foam. In the present study 32 mm thick thermocol sheets are pasted on the inner 
walls of the test container to reduce the reflection and the refraction of waves at the 
boundaries. 

In this figure, the pore pressure transducers which are shown in the figure are removed before 
the commencement of the test. The front plexiglass wall of the container is lightly greased 
instead to allow viewing of the behavior of the foundation soil during the tests. The bottom of 
the container is made rough by gluing sand grains on the bottom to allow the generation of 
shear stresses at the bottom of the tank and to prevent any slippage [17]. The PGA 
amplification is found out by taking the ratio of the measured maximum (absolute) value of 
accelerations from the top and the bottom time history (motions applied to the shake table). 
The amplification of the motions through the sand is found to be 1.514 for the dry sand. 

4.1.  Properties of Kasai River Sand 

A local uniform grained sand (Kasai River sand) is used in this study. The grain size 
distribution of the sand is shown in (Fig.20).  

 

Fig.20. Grain Size Distribution of dry Kasai River sand. 

It is classified as poorly graded sand (SP), according to the Unified Soil Classification 
System (USCS). The specific gravity of the sand is 2.72. The maximum dry unit weight 
γd(max) is 16.7 kN/m3, and the minimum dry unit weight γd(min) is 14.03 kN/m3. The uniformity 
coefficient (cu) and coefficient of curvature (cc) of the sand are found to be 2.84 and 0.87, 
respectively. In all the model tests, the bulk unit weight of the sand is maintained at 15.7 
kN/m3 and a relative density, Dr, of 67%. The drained triaxial shear tests are performed on 
the sand to find its shear strength parameters. The effective cohesion (c’) and the effective 
angle of friction (φ’) obtained from triaxial tests are 0.0 kPa and 320, respectively. Some of 
the previous studies [27] have shown that the shear wave velocity (or shear modulus) of a 
sand increases with depth because of an increase in the confining pressure. Hence, in this 
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study, a parabolic variation of the elastic modulus of Kasai River sand, as given below, has 
been assumed [12]: 

E଴ ൌ p୰ୣ୤ Kୋሺ
୮ᇲ

୮౨౛౜
ሻ୬               Eq.(23) 

Where pref is the reference pressure (=100 kPa), p’ is the mean effective stress and KG is a 
stiffness multiplier (=133.26, in the present case) and n is an exponent parameter (=0.45 in 
this case). The values of pref and KG are obtained from the drained triaxial tests on the sand. 
(Table.3) shows all the material properties for the foundation sand. 

Table.3. Material properties of Kasai river sand. 

Parameters for the foundation sand Value 

Mass density(kg/m3) 1600 

Cohesion(Pa) (c’) 0 

Angle of internal friction, φ’ 
32

o
 

Stiffness Multiplier, KG 133.26 

Exponent, n 0.45 

Poisson’s ratio,  0.3 

 

For studying the performance of dry Kasai river sand under high strains, the input motion of 
PGA 0.3503 g is applied for 7 sec. The acceleration time history recorded at the table top is 
shown in (Fig.21) for a predomainant input frequency of 2 Hz which is seen in the plot of 
frequency domain, 

      

Fig.21. Input motion for dry sand on a shake table in time and frequency domain. 

4.2 .  Free vibration characteristics of Kasai River sand 

Often the properties of a medium may be identified by letting waves propagate through the 
medium and studying the decrease in amplitude of the waves as the system is set into a state 
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of free vibration. A reduction in the amplitude of the wave is caused due to the internal 
damping of a soil within the mass of the material. Hence, the natural frequency of the soil 
column is also found experimentally from the free vibration portion of the accelerometer 
readings near the top surface of the sand bed as shown in (Fig.22(a)),   

 

Fig.22(a). Acceleration time history near the top of sand bed and (b) close view of free 
vibration response of dry sand. 

A close view of the free vibration portion of the motions is shown in (Fig.22(b)). (Fig.23(a)) 
shows the accelerometer readings in the frequency domain from where the natural frequency 
of the soil is obtained.  

 

Fig.23(a). Fourier transform of the free vibration response and (b) Transfer function of 
the dry sand found experimentally. 

From (Fig.23(a)) it may be observed that the natural frequency of the sand comes out to be 
around 8.64 Hz. To double check the natural frequency of the soil obtained by free vibration 
analysis, transfer function (i.e., the ratio of Fourier amplitudes of the top and bottom 
acceleration time histories) has been found out experimentally shown in (Fig.23(b)) and it is 
observed that the natural frequency of the soil is 8.14 Hz (corresponding to the highest peak) 
which is close to the value obtained by the free vibration response which validates the 
frequency of the soil column. The damping ratio of the sand is estimated by approximating 
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the free vibration response of the acceleration time history at the end of the motion as given 
by (Eq.2) [5]:  

uሺtሻሷ ൌ  Aeିଶ஠୤౤୲ஞ               Eq.(24) 

where fn is the natural frequency of the sand (=8.14 Hz) which is identified from the transfer 
function, ξ is the damping ratio of the sand. Therefore, approximating the decay by (Eq.24), 
the damping ratio of the sand is found to be around 2.27% as shown in (Fig.24), 

 

Fig.24. Free vibration response of dry sand and its exponential decay curve. 

4.3.  Response of Nonlinear Soil to Harmonic Waveforms 

Frequency harmonics are typically generated as waves propagate in nonlinear media . As the 
wave propagates through the material, the wave will become distorted as the result of several 
sources of nonlinearity within the material . For an induced monochromatic wave excitation, 
the distortion of the wave results in the generation of harmonics of the main frequency. 
However, we hereby present an intuitive description of the generation of harmonics in terms 
of stress waveforms resulting from the excitation of a nonlinear soil material experimentally 
and numerically. The response of the soil column obtained from the bottom and top 
accelerometers of the test is shown in (Fig.25) along with a close up view of the asymmetric 
response of the soil response acceleration. Hence, it is seen from the mathematics, that if a 
stress/acceleration wave has half wave symmetry, one can expect odd harmonics in its fourier 
spectrum.  
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Fig.25. Acceleration time history near the top and bottom of sand bed, and the close 
view which shows the amplification of acceleration response. 

 

The shear stress time history is found out from the observed acceleration record as per 
(Eq.25) [36], 

τ୧ሺtሻ ൌ ∑ ሺuሷ ୩ሺtሻ ൅ uሷ ୩ାଵሺtሻ
୧ିଵ
୩ୀଵ ሻρ∆z୧/2           Eq.(25) 

where, ρ is the density of the soil, ∆z୧ is the spacing interval between the two accelerometer 
readings.Following the above procedure, the shear stress time history for the soil is plotted in 
(Fig.26), 

 

Fig.26. Time history of shear stress on the soil. 
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The Fourier spectrum of the shear stress time history for the same time window is plotted in 
(Fig.27),  

 

Fig.27. Fourier transform of the shear stress response for a time window of 4 to 6 secs. 

From this Fourier spectrum, it is seen that there are higher harmonics generated which are 
odd ratios of input frequencies as expected previously. The described waveforms, which are 
associated to hysteretic non-linear behaviour, correspond to functions of time having half-
wave symmetry: F (t + π) = −F (t). The Fourier series of such functions contains only odd 
harmonics of the fundamental excitation frequency f1 (nf1; n = 1, 3, 5, ...) [33]. A series of 
numerical simulation were performed to simulate the stress response of soil materials 
experiencing different levels of nonlinearity. For each simulation, a sinusoidal cyclic shear 
strain with a certain amplitude and an excitation frequency f1 = 2 Hz was introduced into the 
adopted cyclic stress-strain model as given in (Eq.11) with s=1.0 or 0.73. A single soil 
element of 1m in height with mass density of 1600 kg/m3, Gmax=20000 kPa is tested for 
various levels of shear strain amplitudes keeping the value of γref as 0.1%. The unload-reload 
portions follow the first two Masing rules which is meant for constant amplitude of cyclic 
loading.  
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(a) 

 

 

 

 

(b) 
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(c) 

Fig.28. Shear stress-strain hysteresis and associated frequency spectra of the shear 
stress responses for strain amplitude of (a) 0.01%, (b) 0.1% and (c) 1%. 

For a soil having a small non-linear behaviour with strain amplitude of 0.01%, the associated 
stress response is approximately proportional to the imposed strain (Fig.28(a)) which can be 
confirmed with the plot of shear stress which is approximately sinusoidal in nature. If we see 
the frequency spectrum of the shear stress time history, it is observed that the amplitude of 
the harmonics is having a very small value. As the hysteretic nonlinearity increases (due to 
the increase in the strain amplitude from 0.1% to 1%), the resulting shear stress time history 
has a “shark fin” waveform behaviour. The frequency spectrum plot has a considerable 
amplitude of the odd harmonics which is seen in (Fig.28(b)-(c)). Thus, it can be concluded 
that if the shear stress is anything other than a sine wave, high frequency harmonics of the 
input motion are likely to be present on the shear stress (or acceleration) responses [32]. This 
study also proves the explanation of the existence of high frequency content                        
(or multifrequency output). 
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5.  ANALYSIS AND NUMERICAL SIMULATION (1-D) FOR HIGH STRAIN TEST: 
EFFECT OF STRAIN DEPENDANT DAMPING RATIO IN THE RESPONSE OF 
SOIL COLUMN 

The numerical algorithm created are validated with the experimental results conducted at 
high strains using the same lumped mass formulation as described previously, except that 
there is a slight modification (s<0, > 0, but not equal to 1.0) in (Eq.11) in the backbone curve 
to match the damping ratio at high strains which is an essential parameter to be calibrated for 
validating the results at larger strains. The numerical discretization is shown in (Fig.29) 
below, 

 

Fig.29. Numerical discretization of soil column in a shake table test. 

The element size is chosen to be 0.05 m with due regards to the maximum frequency that an 
element can propagate (after [16]). It is assumed that the cyclic soil behaviour used for 
modelling the nonlinearity and the shake down of the strength of the foundation dry Kasai 
River sand during the dynamic loading conditions follows the relationship shown in (Fig.30), 
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(a)  

 

(b) 

Fig.30. Calibration of the (a) shake down strength and (b) damping ratio dependency of 
sand with shear strain. 

For low to medium strains, the hyperbolic model is good to predict the responses, but for 
higher strains there is a significant difference in the damping values which is seen from the 
plots of calibration program, (γref=0.00074 used for the match). Due to high strain mismatch 
in the damping ratio based on Masing rules leads to an underestimation of shear strains 
and/or surface intensities at the ground surface [23] which is also observed in the developed 
model below (With 1% small strain damping) as is seen in (Fig.31), 
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Fig.31. Experiment and numerical comparison of acceleration time history near the top 
surface of sand. 

This mismatch is expected because of the mismatch in the damping ratio at higher strain 
levels. This can be fixed if there is a way to calibrate in such a way that there is a reasonable 
fit of shear modulus degradation and damping ratio for the entire strain range. Hence, for 
high strains, the value of ‘s’ (refer to (Eq.11)) is not equals 1 to match the damping ratio 
curves with a mismatch for the modulus reduction curves as shown in (Fig.32), 

 
 

Fig.32. Modified calibration of the shake down strength and damping ratio dependency 
of sand with shear strain. 
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In this curve, the curve fit parameters (refer to (Eq.11)) are γref=0.0088, s=0.73 are used for 
the match. The calibration code is attached in the Appendix. Thus, there is a reasonable 
match with the damping ratio curve for higher strains. Using this model, the response 
acceleration at the top and the bottom surface of sand is plotted in (Fig.33) below, 

 

Fig.33. Experiment and numerical comparison of acceleration time history near the top 
surface of sand. 

It is seen that there is a drastic improvement in the results of acceleration time history 
obtained by modifying the backbone curve. Improved match for damping ratio curve has led 
to improvement in the acceleration prediction from the developed model (with 1% small 
strain damping). The shear strains are on the order of more than 8%. For illustration, a sample 
shear stress-strain loop at a depth of 0.4m from the top surface of soil is shown in (Fig.34) 
below, 

 

Fig.34. Stress-strain hysteresis loops of sand at a depth of 0.4m from the top surface. 
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It is to be noted that the mismatch in the acceleration seen in (Fig.31) is also because the 
experiment is not vertically propagating shear waves. This is an important limitation. In the 
simplified lumped mass approach, it is simulating exactly vertically propagating shear wave 
which is not the actual case. Hence, the numerical model is not representative of the 
experimental model because the boundary conditions are not simulated as in the experiment. 
Hence the results obtained from this model cannot be relied upon since we are not simulating 
the exact wave nature of wave propagation in a rigid tank. The match may be good from this 
model in this case which maybe due to less boundary effects in the recorded acceleration time 
history, but this might not work well for other cases. This exercise is done only to illustrate 
the importance of matching the strain dependant damping ratio of soil and what effect it can 
have on the behavior of intensities near the ground surface. For representing the exact 
boundary condition of this experiment, a full nonlinear 2D or 3D model is required to be 
performed with free field boundary conditions at the sides of the soil column [2] and [9] 
which has been done in the forthcoming section.  

6.  INFLUENCE OF THE MULTILINEAR NATURE OF THE BACKBONE CURVE 
ON THE NONLINEAR SOIL RESPONSE 

A series of numerical simulation were performed to simulate the shear stress response of soil 
material with two types of backbone curves namely hyperbolic [34] and multilinear [13 & 14] 
model (based on distributed elements). A single soil element of 1m in height is subjected to a 
cyclic shear strain (or displacement) of amplitude 5% with an excitation frequency fi = 2.0 Hz 
(chosen arbitrarily). The soil column is fixed at the base and the shear strain is applied on the 
top of the soil column which nullifies the inertial effect of the soil and the problem reduces to 
a simple shear test. As the applied strain is of constant amplitude, hence the unload-reload 
portions follow the first two Masing rules [18]. In the hyperbolic model, the equation of a 
backbone curve which has gradual stiffness transition is utilized is shown in (eq.11). As the 
numerical study is conducted at higher strains, if there is a mismatch between the damping 
ratio at higher strains, then it leads to an under-prediction of the intensities near the surface 
such as the free surface acceleration as well as the maximum shear stress experienced by the 
soil [23] which is also seen from (Fig.30). Hence, the calibration is done for the damping 
ratio curve which leads to a mismatch for the modulus reduction (or the shake down strength) 
of the soil as seen in (Fig.31). For running the simulation, the hyperbolic backbone curve 
parameters are calibrated such that it complies with the damping ratio curve proposed by 
[27]. An in-house code has been developed following a modified hyperbolic backbone curve 
as shown in (Eq.11) for calibration of the modulus reduction and damping ratio curves, 
following the procedure of [29]. For a reasonable match for the damping ratio curves which 
in turn leads to a mismatch for the modulus reduction, the value of γref and s is found to be 
0.0088 and 0.73 respectively. The corresponding curves are shown in (Fig.31). Using this 
backbone curve parameters, the multilinear backbone curve is fitted up to a shear strain 
amplitude of 5.0% with varying number of parallel springs namely 4 and 9. The procedure of 
fitting the multilinear backbone curve is proposed by [14] and an in-house program has been 
developed for the same. This procedure is based on overlay modelling concept in which N 
number of parallel elastoplastic springs are operating in tandem. The parallel spring elements 
are having equal displacements (or strains), hence the total stress of each springs is added to 
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get the final stress corresponding to the applied strain. This multilinear model represents 
Bauschinger effect and extended Masing behaviour in a straightforward manner [14]. The 
total shear stress for a given shear strain γ is represented by the sum of elastic and plastic 
components as shown in (Eq.26): 

τ ൌ ∑ G୨γ
୬
୨ୀଵ ൅ ∑ τ୷୨

୒
୨ୀ୬ାଵ               Eq.(26) 

, in which n is the number of springs which are in elastic state and the rest have already gone 
into plastic state with yield strength τY. The procedure of obtaining the individual shear 
modulus (Gj) of each spring is already described in detail in the methodology proposed by 
[14] and hence is not elaborated in this study. Following the above methodology, a fit of 
multilinear curve with hyperbolic (continuous) stress strain curve with  4 number of parallel 
springs is shown in (Fig.35).  
 

 
Fig.35. A fit of multilinear curve with hyperbolic (continuous) stress strain curve with 4 

number of parallel springs. 
 
To understand the effect of the sharp change in slope in the high frequency harmonics, two 
types of backbone curve was selected namely hyperbolic and multilinear (with distributed 
elements 4 and 9 in numbers). The soil element was subjected to shear strain in each of the 
models and its corresponding stress-strain loops are plotted in (Fig.36).  
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Fig.36. Shear stress strain loops obtained from the hyperbolic, multilinear (4 points) 

and multilinear (9 points) model. 
 
The shear stress time history for the hyperbolic model is also plotted in (Fig.37) which shows 
asymmetricity in the peaks (deviation from pure sinusoid) which is caused due to pointed 
nature of the hysteresis loops at the ends.  
 

 
Fig.37. Shear stress time history obtained from the hyperbolic model. 

 
The Fourier spectrum of the shear stress time histories obtained from the hyperbolic and 
multilinear models are plotted in (Fig.38) in which a closer look reveals that the predominant 
frequency is 2.0 Hz which is the input frequency. In addition, there are other harmonics 
which are odd multiples of the input frequency in which peaks are observed namely at 6 Hz, 
10 Hz etc., which continues till infinity. The observed phenomena is termed as Gibbs 
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phenomena [8], in which an infinite sum of harmonic (sine or cosine) waves are required to 
represent a piecewise differentiable waveform (i.e., waveforms with asymmetricity).  
 

 
Fig.38. Fourier spectrum of the shear stress time history obtained from the hyperbolic 

and multilinear model. 
 
Another thing is to be noted that there is a sharp change in the slope during the loading 
process for multilinear loops which is one of the cause for the increase in the amplitude of the 
already existing high frequency harmonics. As the number of parallel springs are increased, 
the slope changes become gradual during loading and the amplitude of the high frequency 
harmonics comes close to the values predicted by hyperbolic model. In addition to these, 
during the loading/unloading it is seen that the introduction of sharp points in the hysteresis 
loops corresponds to a sudden change in the stiffness of the soil which was identified by [35] 
and is one of the reason for the higher frequencies in a nonlinear analysis. Thus, these results 
provide a reasonable explanation to the origin of the high frequency (odd) harmonics in the 
frequency content of the response histories both experimentally as well as numerically. It is 
also clear that the high frequency content is also related to the shape of the hysteresis loops as 
identified by [32]. From the experimental observation, presence of asymmetricity in the top 
acceleration response history confirms that the stress-strain loops are not rounded at the edges 
hence there is a subtle reason to believe that the loops might be pointed at the edges which 
might be a reason for the origin of the high frequency harmonics, although there are no 
concrete experimental evidence for the actual nature of the hysteresis loops.  
 
7.  SIMULATION OF HIGH STRAIN TEST BY 2-D PLANE STRAIN ANALYSIS 

The sand bed in the foundation (1.00 m in width and 0.65 m in height for dry sand) is 

discretized by 20 x 13 numbers of quadrilateral elements of sizes 0.05 m0.05 m. The 
locations of the side and the bottom boundaries in the numerical analyses are chosen to 
satisfy the dimensions of the sand bed in the shake table model tests. The plexiglass test 
chamber, within which the laboratory model tests are conducted, is not modelled in the 
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numerical analyses. In the static analysis, the soil-structure system is under gravity loading 
only. The bottom boundary is fixed in all directions and the side boundaries are fixed in the 
horizontal (x) direction only. It may be noted that during the static analysis, the flow 
calculation option in the program is turned off, as no water is involved in these tests and the 
sand is in dry condition. After performing the initial static analysis, the dynamic analysis is 
performed. In the dynamic modelling, the wave propagation through the soil (media) is of 
considerable importance. The finite difference grid dimensions are selected by considering 
the maximum frequency (f) of the shear wave that the model could logically respond during 
earthquake loadings. The element size is chosen to be 0.05 m with due regards to the 
maximum frequency that an element can propagate (after [16]). As the experiment is 
conducted on a tank with rigid walls, the shear waves are not vertically propagating hence 
there may be considerable reflection from the boundaries although there are 32 mm 
thermocols present. This boundary condition is simulated by applying free field on the sides 
of the soil domain. It is not recommended to use pure shear boundaries at the sides of the soil 
column because of the behaviour of the soil is not similar to that inside the laminar box. The 
lateral boundaries of the main grid are coupled to the free-field grid by viscous dashpots to 
simulate a quiet boundary (see (Fig.39)), and the unbalanced forces from the free-field grid 
are applied to the main-grid boundary. The free-field model consists of a one-dimensional 
“column” of unit width, simulating the behavior of the extended medium. The acceleration-
time histories (Fig.21) as applied to the shake table model tests, is assumed to be acting at the 
bottom of the soil domain. The numerical model (with the discretization) along with the 
boundary conditions are shown in (Fig.39). The soil behavior under the dynamic loading is 
described by a nonlinear hysteretic behaviour available in the finite difference program. It is 
assumed that the cyclic soil behavior used for modelling the nonlinearity and the shake down 
of the strength of the foundation dry Kasai River sand during the dynamic loading conditions 
follows the relationship proposed by [27], Upper Range. This curve is used as an input of the 
hysteretic behavior (“sigmoidal” model) in the numerical simulation. The “sigmoidal” curves 
are monotonic within the defined range, and have the appropriate asymptotic behaviour. 
Hence these functions are well suited for representing modulus degradation curves. The 
“sigmoidal” model in the finite difference program (namely, sig3) is defined as follows: 

)
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exp(1
b

xL
a

M
o

s 


                         Eq.(27)

 

Where, L is the logarithmic strain, )(log10 L , a, b and xo are the curve fitting parameters 

whose values are 1.0, -0.5692 and -0.854, respectively for the curve shown in (Fig.32). In the 
numerical computation at each calculation step, the hysteretic model is used to update the 
tangent shear modulus (Mt) of the nonlinear  soil model. To suppress the high frequency 
noise in the obtained acceleration time history, 3.00% viscous damping with minimum 
frequency (fmin) of 3.162 Hz has been added in addition to the hysteretic damping of the soil.  
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Fig.39. The numerical model (with the discretization) along with the boundary 
conditions. 

 
 
7.1.  Results of Numerical Simulation 

The results of the numerical analysis are compared with the results of the corresponding 
shake table model tests as seen in (Fig.40(a&b)). The frequency content of the experiment 
and the numerical prediction is compared for a time window of 4.0-7.0 secs which is also 
shown in the figures. 
 

  
 

(a) 
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(b) 

 
Fig. 40(a)-(b). Acceleration time histories obatined from experiment and numerical 

analysis for bottom and top soil for dry sand test. 

It is seen from the results that the time histories for the acceleration match well for nonlinear 
hysteretic model both in top and bottom location of the sand. A shear stress-strain loop at a 
depth of 0.55m from the top of the sand layer is obtained numerically which is shown in  
(Fig.41) and it is seen that the shear strain experienced by the soil is beyond 3%. 

 
 

Fig.41. Hysteresis loops obtained from nonlinear model at a depth of 0.4m & 0.55m 
from the top of sand layer. 
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The entire study has been conducted based on the actual strain dependant strength (G/Gmax) 
of the soil where there is an “implied shear strength of the sand” (based on the static soil 
properties measured at shear strains well above 1.0%) which does not change with the 
function of confining pressure. This impled shear strength may or maynot be realsitic, thus 
potentially underestimating or overestimating the actual strength depending on the depth. 
This happens because the G/Gmax curves are simply extrapolated to more than 1.0% shear 
strain following a hyperbolic trend without consideration for the shear strength impled by the 
large strain portion of the curve. This problem is to be addressed in the future studies by 
modifying the target G/Gmax curve manually or by nonlinear curve fitting procedure beyond 
shear strains greater than 0.1% so that the shear stresses better approximate the target static 
shear strength at a shear strain range of 3.0-5.0%.  
 
8.  CONCLUSIONS 

The purpose of this study is to understand the behaviour of the structures resting on soil 
layers above the bedrock. Hence, seismic ground response analysis is required to develop the 
site-specific response spectrum for the design of important superstructures in the region. Site 
response analysis is performed in both equivalent linear and nonlinear time domains. In this 
study, both equivalent linear and nonlinear ground response analyses have been utilised for 
validating the experiments conducted on F-55 Ottawa Sand in GLB conducted at the 
University at Buffalo, State University of New York. The observation of this study is that the 
nonlinear time domain analysis is more time consuming than the equivalent linear analysis, 
but in terms of prediction of the results, nonlinear analysis is better than the equivalent linear 
analysis (because of its inherent limitations [11] and hence, this methodology is preferred. 
For validating the developed nonlinear model at higher stains, shake table test was conducted 
at IIT Kharagpur and it was found that a slight modification in terms of introduction of a 
power ‘s’ (nonzero) (refer in (Eq.11)) is required to validate the model at higher strains. This 
study also addresses the issues for the generation of high frequency harmonics other than the 
input motion in a nonlinear analysis of soil. The high frequency harmonics are observed 
experimentally in the free surface acceleration/shear stress in a shake table test conducted for 
large strain on a dry Kasai river sand subjected to a sinusoidal excitation of 0.35g with a 
frequency of 2 Hz. It is observed that the harmonics of the input frequencies are observed on 
the frequency spectrum of the time histories of acceleration/shear stresses. This observation is 
supported by numerical explanation by conducting a nonlinear site response analysis of a 
single soil element using hyperbolic and multilinear stress strain models, which is subjected 
to a harmonic shear strain (or displacement) of a single frequency which is used to study the 
frequency content of the response histories in terms of free surface acceleration, stresses etc. 
It is also observed that the amplitude of harmonics is dependent on the number of parallel 
springs chosen for generating the multilinear stress strain curve. In addition, the results of the 
dynamic model tests are compared with the results from a plane strain finite difference program in 
terms of acceleration time history at the top and bottom accelerometer locations and it is found out that 
the numerical predictions are in reasonable agreement with the experimental observation using 
hyperbolic nonlinear stress-strain soil model. Although the numerical predictions are well in agreement 
with the experimental datas, but shear strength correction for strain dependant G/Gmax must be 
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performed before conducting any site response analysis study so that the soil doesnot experience 
unrealistic shear strength at any depth under large strains (>0.1%). 
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APPENDIX 

clear all 
clc 
  
%---------------Seed and Idriss (G/max and Damping ratio)-------------- 
G_Gmax=[1;  1;  0.99;   0.96;   0.85;   0.64;   0.37;   0.18;   0.08;   0.05;   0.035]; 
  
Am=[0.0001; 0.0003; 0.001;  0.003;  0.01;   0.03;   0.1;    0.3;    1;  3;  10]; %Amplitude of 
shear strain for each cycle(in %) 
  
dr=[0.0024; 0.0042; 0.008;  0.014;  0.028;  0.051;  0.098;  0.155;  0.21;   0.25;   0.28]; 
  
Gmax=811152.4096;  %shear modulus of soil 
  
%shear modulus of soil 
F=2;            %frequency of loading 
T=1/F; 
t=0:0.005:(1.25*T);    %time of loading sine wave (displacement) 
w=2*3.14*F; 
h=1;  %height of soil column 
Am=Am*0.01; 
L=length(Am); 
g_ref=0.0088; %reference strain(Curve fit parameter (refer eq. (11)) 
A=1/Gmax; 
B=1/g_ref/Gmax; 
s=0.73;   (Curve fit parameter (refer eq. (11)) 
%tauy=Gmax*g_ref; %For Cundall-Pyke rules 
for j=1:L 
    for i=1:length(t) 
        u(i,j)=Am(j)*sin(2*3.14*F*t(i));    %displacement time history 
    end 
end 
  
for j=1:L        %shear stress calculation (backbone curve nonlinear) 
    Flag1=0; 
        tau(1,j)=(u(i,j)/(A+(B*(abs(u(i,j)))^s))); 
for i=2:length(t) 
    du(i,j)=u(i,j)-u(i-1,j); 
  if (u(i,j)-u(i-1,j)>=0 && Flag1==0) 
        tau(i,j)=(u(i,j)/(A+(B*(abs(u(i,j)))^s))); 
        D(i,j)=u(i,j); 
        uns=u(i,j); 
        Pun=tau(i,j); 
  elseif(u(i,j)-u(i-1,j)<=0) 
        Flag1=1; 
        c=2;%abs(-1-(Pun/tauy)); %For Cundall-Pyke rules 
        tau(i,j)=Pun+((u(i,j)-uns)/(A+B*(abs((u(i,j)-uns)/c))^s)); 
        D(i,j)=u(i,j); 
        uns1=u(i,j); 
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        Pun1=tau(i,j); 
    elseif (u(i,j)-u(i-1,j)>=0) 
        c=2;%abs(1-(Pun1/tauy)); %For Cundall-Pyke rules 
        tau(i,j)=Pun1+((u(i,j)-uns1)/(A+B*abs(abs((u(i,j)-uns1)/c))^s)); 
        D(i,j)=u(i,j); 
        uns=u(i,j); 
        Pun=tau(i,j); 
    end 
end 
end 
  
%-----------calculating unloading-reloading protion(excluding backbone curve)--------- 
for j=1:L                 
 for i=27:length(t)         %After 27 steps, the first unloading starts 
     u1(i-26,j)=(D(i,j))/h;     %shear strain 
     tau1(i-26,j)=tau(i,j);      %shear stress 
 end 
end 
  
%-----------plotting unloading-reloading protion(excluding backbone curve)--------- 
    klp=1; 
for j=1:1:L                %steps after which the loops are to be plotted 
 for i=27:length(t)          
     u1p(i-26,klp)=(D(i,j))/h;     %shear strain 
     tau1p(i-26,klp)=tau(i,j);      %shear stress 
 end 
 klp=klp+1; 
  plot(u1p,tau1p,'r')           %Hysteresis loops 
 hold on; 
end 
grid on; 
hold off; 
 
%-----calculation and comparison of damping ratio and shear modulus------ 
for j=1:L 
delW=0; 
for i=1:(length(t)-26-1) 
    delW=delW+(((tau1(i,j)+tau1(i+1,j))*0.5)*(u1(i+1,j)-u1(i,j))); 
end 
G(j)=(max(tau1(:,j)))/(max(u1(:,j))); 
G_Gmaxd(j)=G(j)/Gmax;            %calculating G_Gmax from hysteresis loops 
Ami(j)=(max(u1(:,j))); 
W=(0.5*G(j)*max(u1(:,j))*max(u1(:,j))); 
D_R(j)=(delW/W/4/3.14)+0.005014;     %with addition of small strain damping  
end 
  
figure(2); 
semilogx(Ami,G_Gmaxd,'r'); 
hold on; 
semilogx(Am,G_Gmax,'o--'); 
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hold off; 
  
figure (3); 
semilogx(Am,dr,'b'); 
hold on; 
semilogx(Ami,D_R,'o'); 
hold off; 
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