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Abstract
Electromagnetic properties and nuclear reactions in light nuclei are investigated in different low-energy
ranges applying effective field theories. In particular, two topics with distinct degrees of freedom are
considered: one-neutron halo nuclei in the Halo effective field theory (Halo EFT) and threshold neutral
pion photoproduction employing chiral effective field theory (χEFT).
In Halo EFT, the relevant degrees of freedom are the shallowly bound halo neutron and the tightly
bound core nucleus. We extend the Halo EFT approach to shallow D-wave bound states, where the
strong interaction between the core and the halo neutron is parametrized by contact interactions. We
develop a power-counting scenario for arbitrary partial wave bound states and discuss its implications
for universality. Furthermore, the results for electromagnetic form factors, electromagnetic transitions,
and neutron capture reactions in weakly-bound D-wave states are presented of which we derive several
universal correlations between electric observables. We apply our results to the two carbon isotopes
15C and 17C, that both have shallow bound states with a neutron in a D-wave relative to the core.
Together with ab initio results from the no-core shell model (NCSM) and experimental data for the
neutron separation energies, we obtain predictions for several electric observables in 15C at leading
order (LO), i.e. the quadrupole and hexadecupole moments and radii as well as E1 neutron capture
cross sections, using the experimentally measured E2 transition strength in 15C. The effects of next-to-
leading order corrections for our results are also addressed. We find that additional counterterms, which
are required for the absorption of divergences, become more dominant in higher partial wave bound
states, especially in the magnetic sector. Hence, we discuss the consequences for universality in such
weakly-bound states.
Threshold neutral pion photoproduction off light nuclei is investigated in chiral perturbation theory
(ChPT) at LO in the chiral expansion. We calculate the expectation value of the pion production oper-
ator with nuclear wave functions obtained by the NCSM and apply a density matrix approach for the
evaluation of the appropriate pion production amplitudes. At LO, one-nucleon and two-nucleon effects
contribute to the amplitude. We compare our results for 2H, 3H, and 3He with the literature and find
that we agree on both the one-nucleon contribution and the two-nucleon contribution, with the latter
dominating at this order. The total amplitude is furthermore compared to experimental data of 2H which
reveals that the experimental result is about 11% larger than our prediction. Moreover, we predict the
threshold neutral pion photoproduction amplitude for 6Li in ChPT for the first time.

Parts of this work have been published in:

[1] Electric properties of one-neutron halo nuclei in Halo EFT,
J. Braun and H. W. Hammer,
Few-Body Systems, 58(2), 94 (2017), arXiv: 1612.07689 [nucl-th].

[2] Universal correlations in shallow D-wave systems,
J. Braun, R. Roth, and H. W. Hammer,
arXiv: 1803.02169 [nucl-th] (2018).

[3] Halo structure of 17C
J. Braun, H. W. Hammer, and L. Platter,
Eur. Phys. J. A54(11), 196 (2018), arXiv: 1806.01112 [nucl-th].
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Kurzfassung
Elektromagnetische Eigenschaften und Kernreaktionen in leichten Kernen werden mithilfe von effektiven
Feldtheorien in verschiedenen Niedrigenergiebereichen untersucht. In diesem Zusammenhang werden
zwei Theorien mit unterschiedlichen Freiheitsgraden betrachtet: Ein-Neutron-Halokerne in Halo effek-
tiver Feldtheorie (Halo-EFT) und Neutrale-Pion-Photoproduktion an der Schwelle unter Verwendung der
chiralen effektiven Feldtheorie.
In der Halo-EFT sind die relevanten Freiheitsgrade das schwach gebundene Haloneutron und der
verbleibende, stark gebundene Atomkern. Der Halo-EFT-Ansatz wird auf schwach gebundene D-Wellen-
Zustände erweitert, bei denen die starke Wechselwirkung zwischen dem Kern und dem Haloneu-
tron durch Kontaktwechselwirkungen parametrisiert wird. Ein Power-Counting-Szenario für beliebige
Partialwellen-Zustände wird entwickelt und dessen Auswirkungen auf die Universalität werden disku-
tiert. Darüber hinaus werden die Ergebnisse für elektromagnetische Formfaktoren, elektromagnetis-
che Übergänge sowie Neutroneneinfang in schwach gebundenen D-Wellen-Zuständen präsentiert, aus
denen mehrere universelle Korrelationen zwischen elektrischen Observablen abgeleitet werden. Un-
sere Ergebnisse werden auf die beiden Kohlenstoffisotope 15C und 17C angewendet. Beide Isotope
weisen schwach gebundene Zustände mit einem Neutron auf, das sich in einer D-Welle relativ zum
Kern befindet. Zusammen mit ab initio Ergebnissen aus dem No-Core-Shell-Model (NCSM) und exper-
imentellen Daten für die Neutronen-Separations-Energien werden, mithilfe des experimentell gemesse-
nen E2-Übergangs in 15C, Vorhersagen für mehrere elektrische Observablen für 15C in führender Ordnung
gemacht. Dabei werden Vorhersagen für die Quadrupol- und Hexadecupol-Momente und deren Radien
sowie für E1-Neutroneneinfang-Wirkungsquerschnitte getroffen. Des Weiteren werden die Beiträge der
nächst führenden Ordnung für unsere Ergebnisse besprochen. Zusätzliche Gegenterme, die zur Ab-
sorption von Divergenzen erforderlich sind, werden für höhere Partialwellen-Zustände, insbesondere
für magnetische Observablen, immer wichtiger. Die Folgen, die daraus für die Universalität in solchen
schwach gebundenen Zuständen entstehen, werden diskutiert.
Die Neutrale-Pion-Photoproduktion an der Schwelle wird im Rahmen der chiralen Störungstheo-
rie an leichten Kernen in führender Ordnung der chiralen Entwicklung untersucht. Um die Pion-
Produktionsamplituden zu berechnen, wird der Erwartungswert zwischen der Kern-Wellenfunktion, die
mithilfe des NCSM bestimmt wird, und den Pion-Produktionsoperatoren gebildet. Des Weiteren wird ein
Dichtematrix-Ansatz für die Auswertung verwendet. In führender Ordnung tragen Ein-Nukleon-Effekte
und Zwei-Nukleonen-Effekte zur Pion-Produktion bei. Die erhaltenen Ergebnisse für 2H, 3H und 3He
werden mit Literaturwerten verglichen. Sowohl der Ein-Nukleon-Beitrag als auch der Zwei-Nukleonen-
Beitrag, der in dieser Ordnung dominiert, stimmen mit den Literaturwerten überein. Darüber hinaus
wird die Gesamtamplitude mit den experimentellen Werten der Pion-Produktion an 2H verglichen. Der
experimentelle Wert liegt etwa 11% über unserer Vorhersage. Außerdem wird erstmals die Amplitude
der Pion-Photoproduktion an der Schwelle für 6Li in chiraler Störungstheorie berechnet.

Teile dieser Arbeit wurden bereits veröffentlicht in:

[1] Electric properties of one-neutron halo nuclei in Halo EFT,
J. Braun and H. W. Hammer, Few-Body Systems, 58(2), 94 (2017), arXiv: 1612.07689 [nucl-th].

[2] Universal correlations in shallow D-wave systems,
J. Braun, R. Roth, and H. W. Hammer, arXiv: 1803.02169 [nucl-th] (2018).

[3] Halo structure of 17C
J. Braun, H. W. Hammer, and L. Platter, Eur. Phys. J. A54(11), 196 (2018), arXiv: 1806.01112 [nucl-th].
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1 Introduction
A major standing goal in nuclear theory is the fundamental description of static properties and nuclear

reactions of nuclei all over the nuclear chart. This bears the challenge that the strong interaction, de-

scribed by Quantum Chromodynamics (QCD), is non-perturbative at low energies. This energy regime,

however, is relevant for the description of the interaction between two or more nucleons inside the nu-

cleus [4]. To overcome this problem, one applies chiral effective field theory (χEFT), which establishes a

direct connection to QCD and leads to a systematic description of the nuclear force in chiral perturbation

theory (ChPT). In ChPT, the relevant degrees of freedom are pions and nucleons instead of quarks and

gluons as in QCD.

In principle, the derived interactions can be employed in ab initio methods that solve the nuclear

many-body problem, e.g., the no-core shell model [5], coupled cluster theory [6] or in-medium similarity

renormalization group [7]. However, the ab initio methods have difficulties in describing exotic nuclei

such as halo nuclei since they are limited by the computational complexity of the nuclear many-body

problem. These exotic nuclei are important for the understanding of nuclear structure and demonstrate

the occurrence of new degrees of freedom away from the valley of stability [8, 9].

The emergence of halo states near the drip lines was first observed by Tanihata et al. [10, 11], who

measured the nuclear radii of neutron-rich nuclei in the light p-shell region and found for 11Li and 6He a

remarkably large value. Hansen and Jonson [12] related the large matter radius of 11Li to the small two-

neutron separation energy of about 378 keV [13] and concluded that 11Li is surrounded by a two-neutron

halo which extends to several times the nuclear radius. The halo structure can be explained by quantum

mechanics since the weakly-bound halo nucleons can tunnel out of the effective potential of the core to

the classically forbidden region. The deuteron is the lightest neutron halo nucleus [14], consisting of

one halo neutron and a proton core, with a binding energy of about 2.22 MeV [15]. Similarly, neutron

halo structures occur in heavier neutron-rich nuclei near the drip line such as 11Be or 19C [9]. Because

of the Coulomb barrier, which confines the protons to a small region around the core, neutron halos are

more common than proton halo nuclei near the proton drip line such as 8B or 17Ne [9].

In this thesis, two different topics are investigated: the electromagnetic properties of one-neutron

halo nuclei and the threshold neutral pion photoproduction off light nuclei. For the description of one-

neutron halo nuclei, we apply the Halo effective field theory (Halo EFT), which is motivated by the new

degrees of freedom, the tightly bound core and the weakly-bound halo neutron, close to the neutron

drip line [16, 17]. In Halo EFT, the separation of scales between the small neutron separation energy of

the halo nucleus and the large excitation energy of the core nucleus is exploited to derive a systematic

expansion of low-energy observables in powers of the small over the large energy scale. Thus, predic-

tions made in Halo EFT can be improved systematically through the calculation of additional orders

in the low-energy expansion. In this energy regime, the long-range part of the nucleon-nucleon force

from χEFT due to one-pion exchange cannot be resolved so that pions are no longer explicit degrees

of freedom in Halo EFT. The interaction between the core and halo neutron is parametrized by contact

1



interactions tuned to reproduce a few low-energy observables. Halo EFT can be regarded as a comple-

mentary approach to ab initio methods. It provides insights into universal correlations of such shallowly

bound systems while it also requires experimental or theoretical input for numerical predictions.

In recent decades, meson photoproduction off nuclei has been used as a probe for gaining further

insights into nuclear structure and for studying the strong interaction in the non-perturbative low-energy

regime in order to test ChPT. On the experimental side, the photoproduction of mesons almost completely

replaced meson induced reactions such as pion elastic scattering due to the large progress in the mea-

surement of cross sections of electromagnetically induced reactions [18]. The pion production off light

nuclei was experimentally investigated, e.g. at Saskatoon [19, 20] for 2H, 4He and 12C and at MAMI [21,

22] for 7Li and H, respectively. On the theoretical side, the study of photon- and pion-nucleon interac-

tions to quantitatively test ChPT has a long history in hadron physics [23–25]. The threshold neutral

pion photoproduction off light nuclei is motivated by the work of Lenkewitz et al. [26]. They computed

the S-wave pion production amplitude at threshold for 3He and demonstrated that 3He can be assumed

to be a neutron-like target. Hence, 3He can be used to check the counterintuitive ChPT prediction that

the threshold neutral pion photoproduction amplitude off the neutron is larger in magnitude than the

amplitude off the proton [23, 27]. In nuclear physics, the ab initio approaches aim for the theoretical

calculation of nuclear structure observables based on chiral effective field theory. The nuclear wave

functions obtained from ChPT by ab initio methods such as the no-core shell model give good results

of the energy spectrum as well as spectroscopic observables of light nuclei [28, 29]. Therefore, the

computation of the pion photoproduction within the framework of ChPT represents a further tool to get

insights into nuclear structure and to study ChPT in nuclear physics. Moreover, it can be regarded as an

additional test of the nuclear wave functions.

The goal of this work is to extend the neutral pion photoproduction to a broad range of light nuclei.

The relevant degrees of freedom are pions and nucleons and thus, we employ ChPT for the derivation

of the relevant Feynman diagrams. The expectation value of the pion production operators from ChPT is

calculated applying nuclear wave functions from the no-core shell model (NCSM). These wave functions

are provided by the group of Robert Roth1. Since the ChPT operators are represented in the plane wave

basis and the wave functions from the NCSM are in harmonic-oscillator representation, a basis transfor-

mation between these two representations is required. For the explicit evaluation of the pion production

amplitudes, we apply a density matrix approach. This allows us to calculate the pion production operator

only once and then trace it with the appropriate density matrix to obtain the pion production amplitude

for arbitrary nuclei.

This thesis is organized as follows: We start with a general discussion of the basic concepts of

effective field theories in Chapter 2. In particular, we introduce the chiral effective field theory and the

Halo EFT, which are relevant for this thesis. The NCSM is utilized especially in the pion production but

also in the Halo EFT sector and thus, its basic idea is explained in Chapter 3.

In Chapter 4, we extend the Halo EFT approach to shallow D-wave bound states and develop a

power-counting scheme for arbitrary partial wave bound states. Furthermore, we present our results for

electromagnetic form factors, electromagnetic transitions as well as neutron capture reactions and apply

them to the two carbon isotopes 15C and 17C. That way, we derive universal correlations between electric

1 TU Darmstadt, Institut für Kernphysik
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observables and predict electromagnetic properties of both carbon isotopes numerically. Eventually, we

discuss universality of higher partial wave bound states.

The neutral pion photoproduction at threshold is presented in Chapter 5. We explain the derivation

of the relevant Feynman diagrams and outline the density matrix approach for the evaluation of pion

production amplitudes. After the proof of principle calculation of the magnetic moment and the intrinsic

kinetic energy, the one-nucleon and two-nucleon contributions to the pion production amplitude are

computed. Finally, we compare our results with the literature and experimental data.

In the appendix, we present the explicit evaluation of selected Feynman diagrams in the Halo EFT

sector. In App. A, the self energy of the D-wave propagator is derived and the Feynman rules for the

inclusion of photons via minimal substitution are deduced. Moreover, we calculate the relevant Feynman

diagrams that contribute to the B(E2) transition from the S-to-D-wave state and to the electric form

factors of the D-wave. The incorporation of P-waves in the Halo EFT approach is explicitly addressed

with the example of 11Be in App. B.

1. Introduction 3





2 Effective Field Theories
Physical phenomena in nature take place at different length or energy scales. To be able to describe these

phenomena for a certain energy range, it is convenient to apply effective field theories (EFT) [30–34].

In other words: An EFT is a low-energy approximation to some underlying, more fundamental theory

that is only valid in a specific energy range.

A crucial requirement is a separation of scales in our physical description so that we are able to focus

on the appropriate degrees of freedom in our EFT. Consider, for example, the Newtonian mechanics. If

the relevant velocities are small compared to the speed of light, the inclusion of relativity is not required,

which simplifies our calculations. Nevertheless, if we used the full theory and included relativity, we

would derive the same result with very small corrections. This means our EFT is only valid in a specific

regime and breaks down if we are in the range of or even beyond the high energy scale.

We want to explain the concept in more detail with the example of Fermi’s theory of beta decay [32,

33]. In the standard model, the beta decay is described by the exchange of a W boson. For energies or

momenta q that are much smaller compared to the mass of the exchange boson MW ≈ 80 GeV, we can

describe the interaction by a local contact interaction with an unknown low-energy constant (LEC) G f

that has to be matched to data instead of an exchange of a virtual W boson. Hence, the massive bosons

are integrated out in our EFT and the boson propagator can be replaced at leading order (LO) by

1
q2 −M2

W

→ − 1
M2

W

∼ G f . (2.1)

Accordingly, the relevant degrees of freedom differ from those of the underlying theory since the heavy

bosons are excluded. The small scale is the momentum q and the break-down scale of this theory is the

boson mass MW .

To derive a more accurate approximation to the standard model, we have to expand the boson prop-

agator in powers of q2/M2
W . In principle, we get infinitely many terms with infinitely many unknown

LECs, which means that our EFT is non-renormalizable. However, we restrict ourselves to a finite accu-

racy and stop at a certain order in our expansion. Accordingly, we only have a finite number of terms and

LECs that have to be matched. This shows the systematic characteristic of an EFT. By writing down the

most general Lagrangian consistent with the assumed symmetries of the underlying theory, we ensure

that the observables calculated with this Lagrangian are related to those of the underlying theory [35].

In this thesis, we aim for the theoretical description of electromagnetic properties and nuclear reac-

tions in light nuclei. Depending on the considered system, we apply two different effective field theories

with distinct degrees of freedom. We first discuss the commonly used chiral effective field theory, which

we will employ later in the derivation of the relevant Feynman diagrams for the pion photoproduction

at threshold. In this effective theory, the relevant degrees of freedom are pions and nucleons.
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Second, we elaborate the Halo effective field theory (Halo EFT) approach, which exploits the sep-

aration of scales between a tightly bound core and a shallowly bound halo nucleon. In Halo EFT, the

pions are integrated out and the relevant degrees of freedom are the core and the halo nucleons.

2.1 Chiral Effective Field Theory

Chiral effective field theory (χEFT) has proven to be a very useful tool in the derivation of the nuclear

force in the low-energy regime [4, 36]. By exploiting the symmetries in Quantum Chromodynamics

(QCD), especially the chiral symmetry, χEFT establishes a direct connection to the underlying theory of

nuclear interactions. A major requirement for the development of an EFT is the separation of scales. In

χEFT, this separation of scales is given by the large gap in the hadron spectrum between the pion mass

mπ ≈ 140 MeV and the rho mass mρ ≈ 770 MeV. The pion mass sets the soft scale and the break-down

scale (Λχ) is given by the rho mass. Hence, the soft scale can be expanded over the break-down scale

to obtain a systematic description of the nuclear force with pions and nucleons as relevant degrees of

freedom.

2.1.1 Chiral Symmetry

The separation of scales is a consequence of the chiral symmetry breaking in QCD [4, 33, 36]. QCD is

a non-abelian SU(3)color gauge theory with six flavors of quarks, three of them being light (u, d, s) and

the other three heavy (c, b, t). The Lagrangian of QCD including the light quarks is written as

LQCD =
∑

f

q̄ f iγµDµq f −
1
2

Tr GµνG
µν − q̄ f m f q f =L 0

QCD −
∑

f

q̄ f m f q f , (2.2)

where q f denotes the quark Dirac fields of the light quark flavors (u,d,s) with masses [37]

mu = 2.15(15) MeV, md = 4.70(20) MeV, ms = 93.5(2) MeV . (2.3)

In the Lagrangian above, the gluons are introduced by eight gauge potentials Aµ,a, which denote the

gluon fields and preserve the invariance of the Lagrangian under local transformations

Aµ =
8
∑

a=1

λa

2
Aµ,a , (2.4)

with the Gell-Mann-matrices λa. The gauge-covariant derivative is given by Dµ = ∂µ + i gAµ, where g is

the quark-gluon coupling constant and the gluon field strength tensor is Gµν = ∂µAν−∂νAµ+ i g
�

Aµ, Aν
�

.

Restricting ourselves to the two lightest quarks (u, d), we can discuss the QCD Lagrangian (2.2) in

the limit of vanishing quark masses where only L 0
QCD contributes. In the case of massless quarks, L 0

QCD
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is invariant under separate unitary global transformations of the left- and right-hand quark fields, the

so-called chiral rotations, qI → UIqI and I ∈ L, R, with

UI = exp
�

−iΘI
i

τi

2

�

, (2.5)

and the usual Pauli isospin matrices τi. By applying Noether’s Theorem, this yields six conserved cur-

rents, three right-handed and three left-handed currents

Rµi = q̄Rγ
µτi

2
qR , Lµi = q̄Lγ

µτi

2
qL , (2.6)

with ∂µRµi = ∂µLµi = 0.

This implies that the right- and left-handed components of massless quarks do not mix. Using group

theory, this can be expressed as SU(2)R×SU(2)L symmetry, which is also referred to as chiral symmetry.

The chiral symmetry of the Lagrangian of QCD is spontaneously broken down to its vector subgroup

SU(2)V=L+R in the ground state of the system. Evidence of the spontaneous breakdown of the chiral

symmetry comes from the hadron spectrum. The isospin symmetry is well observed in experimental

data, e.g., the masses of protons and neutrons are approximately equal. However, two hadrons with the

same mass but different parity do not appear in the hadron spectrum.

Due to the spontaneously broken symmetry, there exist three massless Goldstone bosons, the pions,

which interact weakly at low energies. Since the quarks are not massless, the mass term in Eq. (2.2)

breaks the symmetry explicitly and therefore, the pions are not massless either. Furthermore, the isospin

symmetry is not exact because mu 6= md .

2.1.2 Chiral Perturbation Theory

For the derivation of the nuclear interaction using χEFT, the most general Lagrangian including the

symmetries of QCD is constructed and nucleons are included in our theory [4, 36, 38–40]. The relevant

degrees of freedom are pions and nucleons and an expansion can be done in terms of
�

Q/Λχ
�ν

, where

Q ≈ mπ is the momentum, Λχ ≈ mρ the break-down scale, and ν the power [41]. Thus, a systematic

description of the nuclear force can be obtained considering only the most important contributions of

the infinitely many terms of our Lagrangian up to a specific order ν.

In principle, our effective Lagrangian consists of three different parts: pion-pion dynamics, nucleon-

pion interactions and nucleon contact terms

Leff =Lππ +LπN +LNN + · · · , (2.7)
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where the ellipsis stands for terms that involve two nucleons plus pions and three or more nucleons

with or without pions. The three different parts can be expanded in powers of derivatives or pion mass

insertions that are denoted by the superscripts in the following

Lππ =L (2)ππ +L (4)ππ +L (6)ππ + · · · , (2.8)

LπN =L (1)πN +L (2)πN +L (3)πN + · · · , (2.9)

LNN =L (0)NN +L (2)NN +L (4)NN + · · · , (2.10)

where nucleon contact interactions come only in even powers of derivatives due to parity. Since Gold-

stone bosons can interact only when they carry momentum, only even powers of Lππ are allowed be-

cause of Lorentz invariance.

The nucleon-pion interactions describe the long- and medium-range potential of the nuclear force.

The short-range potential is parametrized by contact terms. Such contact terms are needed to renormal-

ize loop integrals and to obtain results that are reasonably independent of regulators. Moreover, they

imitate the high-energy states that are integrated out and contain low-energy constants to parametrize

the unresolved short-range dynamics. The LECs are obtained by low-energy fits to experimental data.

Treating the baryons relativistically leads to the problem that the time derivative of a relativistic

hadron field generates a factor E ≈ mN , which is about the same size as our χEFT breaking scale Λχ .

This can be solved by considering the baryons as heavy static sources [42], the so-called heavy baryon

formalism, such that only the baryon momenta which are small relative to their rest mass are relevant.

The expansion is then carried out in terms of these small momenta over the large baryon mass. A more

detailed description of this approach can be found in Ref. [36].

As pointed out before, we can construct infinitely many diagrams involving nucleons and pions

from our effective Lagrangian (2.7). To be able to analyze the diagrams in terms of powers of
�

Q/Λχ
�ν

and such to sort them order by order, we need to establish a power-counting scheme. By applying

dimensional analysis, we obtain Q−1 for a nucleon propagator, Q−2 for a pion propagator, Q for each

derivative in any interaction, and Q4 for each four-momentum loop integration. Combined with some

topological identities, Weinberg derived a power-counting scheme for arbitrary diagrams [41, 43]. This

yields for a given connected irreducible diagram [4]

ν= −4+ 2N + 2L +
∑

i

Vi∆i and ∆i = di +
ni

2
− 2 , (2.11)

where N denotes the number of nucleons, L the number of pion loops, ni is the number of nucleon field

operators at the vertex Vi of type i and di the number of derivatives and/or insertions of mπ. We refer to

Refs. [4, 36, 40] for more details.

Analyzing the different terms of the Lagrangian with the power-counting scheme in (2.11) leads

to a hierarchy of nuclear forces in chiral perturbation theory (ChPT), which is shown in Fig. 2.1. The

two-nucleon interactions are present at leading order (LO) and

ν= −4+ 2× 2+ 2× 0+ 0= 0 , (2.12)
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Figure 2.1.: Hierarchy of nuclear forces in ChPT from Ref. [36]. Solid lines denote nucleons and dashed
lines pions. Small dots, large solid dots, solid squares, and solid diamonds represent different
vertices.

where only vertices with ∆i = 0 contribute. At LO, the only contributions are from tree level diagrams,

cf. Fig. 2.1. They can be constructed from the LO Lagrangian, which has the following form in the

heavy-baryon formalism [4]

L (0)ππ =
F2
π

4
Tr
�

∂µU∂ µU† + 2B(MU† +M †U)
�

, (2.13)

L (0)πN = N̄ (iv · D+ gAu · S)N , (2.14)

L (0)NN = −
1
2

CS(N̄N)(N̄N) + 2CT (N̄SN) · (N̄SN) , (2.15)

where N , vµ and Sµ ≡ (1/2)iγ5σµνv ν denote the large component of the nucleon field, the nucleon

four-velocity and the covariant spin vector, respectively. Moreover, Tr denotes the trace in flavor space,
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while Fπ and gA refer to the chiral-limit values of the pion decay and the nucleon axial vector coupling

constants. The unitary 2× 2 matrix U(π) = u2(π) in the flavor space collects the pion fields

U = exp
�

i
π ·τ
Fπ

�

, (2.16)

which can be expanded in numbers of pion fields and τi being the isospin Pauli matrices. The constant B

is related to the value of the scalar quark condensate in the chiral limit, 〈0|ūu|0〉 = −F2B, and connects

the pion mass mπ to the quark mass mq via mπ = 2Bmq + O (m2
q). Furthermore, M = diag(mu, md)

contains the quark masses due to the explicit chiral symmetry breaking. The covariant derivatives of the

nucleon and pion fields are defined by

Dµ = ∂µ +
[u†,∂µu]

2
and uµ = i(u†∂µu− u∂µu†) . (2.17)

The LO NN Lagrangian has no derivatives and CS and CT are unknown LECs, which are determined by a

fit to the NN data.

From this effective Lagrangian at LO it follows that the only possible connected two-nucleon dia-

grams are the one-pion exchange and the contact tree diagram as depicted in Fig. 2.1. They yield the

following two-nucleon potential in the center-of-mass system (CMS) [4]

V (0)2N = −
g2

A

4F2
π

σ1 · qσ2 · q
q2 +m2

π

τ1 ·τ2 + CS + CTσ1 ·σ2 , (2.18)

where σi denote the Pauli spin matrices and q = p′ − p is the nucleon momentum transfer of the initial

(p) and final nucleon momenta (p ′) in the CMS. Furthermore, Fπ = 92.4 MeV and gA = 1.267 denote

the pion decay and the nucleon axial coupling constants, respectively.

Taking a closer look at Fig. 2.1, we find that two-nucleon forces show up at LO, whereas the three-

nucleon interactions which contribute to the nuclear interaction emerge first at next-to-next-to leading

order (N2LO) and ν = 3, four-nucleon forces at (N3LO) and ν = 4, et cetera. This indicates that two-

nucleon forces are more important than three-nucleon forces and explains the dominance of two-nucleon

interactions observed in nuclear physics.

To calculate phase shifts and NN observables, we need to insert the nuclear potentials from χEFT in

the Lippmann-Schwinger equation to obtain the T -matrix. As described above, ChPT is a low-momentum

expansion for Q� Λχ . Therefore, the potentials require a cutoff Λ ≈ 0.5 GeV regularization to exclude

high momenta. This is realized by multiplying the derived potentials with a regulator function [36, 44]

f (p′, p) = exp

�

−
� p
Λ

�2n
−
�

p′

Λ

�2n�

, (2.19)

where p and p′ denote the magnitudes of the initial and final nucleon momenta in the CMS and the

exponent 2n is chosen sufficiently large such that only the desired orders of ν are affected. Since the
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results of the T -matrix can depend sensitively on the choice of the cutoff, we need the contact terms to

account for the excluded high-momentum effects and to remove systematically the dependence of the

cutoff or in other words, to renormalize our EFT.

2.2 Halo Effective Field Theory

In the previous sections, we have discussed the nuclear interaction derived from χEFT, where the con-

sidered momenta are comparable to the pion mass. We now consider momenta that are even smaller

than the pion mass Q � mπ. In this energy regime, even the longest-ranged part of the NN force, due

to the one-pion exchange, appears short-ranged and dynamical pions are integrated out in this pionless

EFT [32, 34, 45]. Since the explicit pion exchange cannot be resolved, the only degrees of freedom

are nucleons and only local contact interactions between nucleons remain. These contact interactions

account not only for the unresolved pion exchange but also for the unresolved short-distance physics for

which they already exist in χEFT.

First, we outline the pionless EFT approach for the two-nucleon system and then extend it to halo

nuclei and discuss its implications.

2.2.1 Pionless Effective Field Theories

In this section, we introduce the Lagrangian for a two-nucleon S-wave system, calculate the scattering

amplitude and match the unknown LECs to the effective range expansion (ERE). The LO Lagrangian for

such a two-nucleon S-wave system is written as [34, 45]

L = N †

�

i∂0 +
∇2

2MN
+ · · ·

�

N − C0,s

�

N T P̂sN
�† �

N T P̂sN
�− C0,t

�

N T P̂t N
�† �

N T P̂t N
�

+ · · · , (2.20)

where N denotes the nucleon field, the ellipses stand for terms with higher number of derivatives that

contribute at higher orders and the projectors of the 1S0 and 3S1 NN channels are given by

�

P̂s

�λ
=

1p
8
σ2τ2τ

λ and
�

P̂t

�i
=

1p
8
σ2σ

iτ2 , (2.21)

respectively. The Pauli matrices for the spin space are denoted by σ and for the isospin space by τ. The

unknown coupling constants C0,s and C0,t also refer to the 1S0 and 3S1 NN channels, respectively. The

first term in Eq. (2.20) denotes the kinetic part of the Lagrangian. Since the nucleon momenta in our

EFT are smaller than the pion mass and therefore, much smaller than their rest mass MN , the nucleons

are treated non-relativistically.
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The nucleon-nucleon scattering amplitude reads

T (k) =
4π
MN

1
k cotδ0(k)− ik

, (2.22)

=
4π
MN

1

− 1
a0
+ r0

2 k2 + · · · − ik
, (2.23)

with the S-wave phase shift δ0. In the second step of the equation above, k cotδ0(k) is replaced by the

effective range expansion for small k with corresponding ERE parameters a0, r0, and the ellipsis indicates

further ERE parameters with higher powers of k [46].

The relevant diagrams which are generated by the Lagrangian in Eq. (2.20) and contributing to the

NN scattering amplitude are shown in Fig. 2.2.

Figure 2.2.: Feynman diagrams contributing to the NN scattering amplitude. Figure taken from Ref. [45].

Every additional loop adds one extra loop integration, two additional nucleon propagators, and one

further C0 vertex. Hence, each NN bubble contains a linearly divergent part. By resumming all bubble

diagrams and using dimensional regularization, i.e. the power divergence subtraction (PDS) [47, 48]

with scale µ, we derive for the scattering amplitude [32]

T (k) = − 4π
MN

1
4π

MN C0
+µ+ ik

. (2.24)

After matching the equation above to the amplitude of the ERE in Eq. (2.23), we deduce

1
a
=

4π
MN C0

+µ . (2.25)

We will give a more detailed description of the regularization and renormalization procedure of such a

shallowly bound two-body system in Sec. 4.3, where we discuss one-neutron halo nuclei.

As a first application, the deuteron is such a shallowly bound two-nucleon system. It consists of

a neutron and a proton and can be considered the lightest halo nucleus. Applying pionless EFT to

the deuteron system, Chen et al. calculated low-energy observables such as electric and magnetic form

factors as well as the neutron capture cross section [49, 50]. This demonstrates the usefulness of the

pionless EFT approach.
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2.2.2 Halo Nuclei

Halo nuclei are weakly-bound states of a few valence nucleons and a tightly-bound core nucleus [8, 9,

51–54]. They demonstrate the occurrence of new degrees of freedom close to the neutron and proton

drip lines and away from the valley of stability. Halo nuclei were discovered at radioactive ion beam

facilities [55] and are characterized by a long tail in the density distribution of the nucleus and the

decoupling of the halo wave function from the core [9]. As shown in Fig. 2.3, halo nuclei can be found

for various isotopes near the drip line. Because of the Coulomb barrier, neutron halos are more common

than proton halos.

Figure 2.3.: Confirmed and suggested halo nuclei. Neutron halo nuclei are represented by green squares
and candidates of neutron halos are depicted by light green. Orange squares show the pro-
ton halos. Figure taken from Ref. [9].

In this thesis, we focus on one-neutron halo nuclei and use the Halo EFT approach [14] to calculate

static properties and reactions of such shallowly bound systems. As mentioned before, the deuteron can

be considered as the simplest example of a halo nucleus, consisting of one halo neutron with a proton

core, since its root-mean-square charge radius is about three times as large as the size of the constituent

proton. A more complex one-neutron halo nucleus is 11Be. It has two bound states, a J P = 1/2+ S-

wave ground state and a 1/2− P-wave first excited state, with the one-neutron separation energies of

500 keV and 180 keV [56], respectively. Compared to that, the first excitation of the 10Be core is 3.4

MeV above the ground state. Since exotic nuclei close to the drip line are difficult to describe in ab initio

approaches, e.g., coupled cluster theory [57, 58] or the no-core shell model [5, 59], we employ the Halo

EFT approach to study halo nuclei [16, 17].

Halo EFT is a systematic approach to these systems that exploits the separation of scales between

the small nucleon separation energy of the halo neutron and the large excitation energy of the core

nucleus. The small separation energy of the halo nucleus is directly connected to the large radius of the
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system. For this reason, we can convert the energy separation into a length scale separation between the

large halo radius Rhalo and the short core radius Rcore. Halo EFT provides a systematic expansion of low-

energy observables in powers of Rcore/Rhalo. Therefore, predictions made in Halo EFT can be improved

systematically through the calculation of additional orders in the low-energy expansion. Since the core

and the halo neutron are the relevant degrees of freedom, Halo EFT is an extension of pionless EFT for

few-nucleon systems. The strong interaction between the core and the valence nucleons is parametrized

by contact interactions tuned to reproduce a few low-energy observables.

To adapt the Lagrangian in Eq. (2.20) to the two-body halo system, we introduce independent field

operators for the halo neutron (n) and the core (c)

L = c†

�

i∂t +
∇2

2M

�

c + n†

�

i∂t +
∇2

2m

�

n , (2.26)

where M , m denotes the mass of the core and the neutron, respectively. Furthermore, we employ an aux-

iliary dimer field for the nc system to include the strong interaction in the Lagrangian. We demonstrate

this for a dimer field (σ), where the halo neutron is in an S-wave relative to the core

Lnc = σ
†

�

η0

�

i∂t +
∇2

2Mnc

�

+∆0

�

σ− g0

�

[nc]†s,βσs,β +σ
†
s,β[nc]s,β

�

, (2.27)

with the residual mass ∆0 of the σ field, the mass of the nc system Mnc = M + m, η = ±1 gives the

appropriate sign to the S-wave effective range, and g0 denotes the S-wave dimer coupling constant.

The notation [nc]s,β represents the spin coupling of the core and halo neutron through Clebsch-Gordan

coefficients to total spin s and appropriate projection β . As outlined in App. B for P-waves and in Sec. 4

for D-waves, higher partial wave states can be incorporated in a similar way.

The fact that the core neutrons are no active degrees of freedom means that the halo nucleons are

not antisymmetrized with nucleons in the core. This is illustrated by the example of 11Be in Fig. 2.4.

n

Rcore Rhalo

n

n
n

n

n

n

Figure 2.4.: Illustration of the antisymmetrization of neutrons in the halo nucleus 11Be. Figure from
Ref. [14] adapted to 11Be.

The hypothetical exchange of a neutron from the core with the valence neutron depends on the overlap of

the wave functions of the core and the halo neutron, which is determined by Rcore and Rhalo, respectively.
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Therefore, these effects are subsumed in low-energy constants and included perturbatively in the expan-

sion of Rcore/Rhalo.

For proton halos with two or more charged particles, the repulsive Coulomb interaction between the

core and the halo proton has to be additionally incorporated in the Halo EFT. Furthermore, the extension

to two-neutron halos is straightforward [14]. Naturally, the three-body system is more complex and new

universal few-body correlations such as the Efimov effect [60] emerge. Similar EFT approaches can be

used for systems of atoms and nucleons at low energies [61, 62].

In order to be able to make numerical predictions, Halo EFT needs additional experimental and/or

theoretical input to tune the contact interactions and additional counterterms [63]. The benefit of this

approach is the reduction of the complexity of the system in terms of degrees of freedom, i.e. from an

A-body to a two-body system. This reduction simplifies the search for universal correlations between

observables since the separation of scales is not explicit in the parameters of the ab initio methods,

which employ interactions from χEFT. The structure of such correlations is universal in the sense that

it is independent of the specific neutron separation energies and applies to all states with the same

quantum numbers. As a consequence, Halo EFT can be considered a complementary approach to ab

initio calculations. On the one hand, Halo EFT requires theoretical or experimental input to predict halo

properties. On the other hand, the universal correlations derived from Halo EFT can be used to test ab

initio calculations of different observables for their consistency.

In Halo EFT, electromagnetic interactions can be straightforwardly included via minimal substitution

and local gauge invariant operators in the effective Lagrangian. That way, electric properties of the two

S- and P-wave bound states in 11Be were studied in detail in Ref. [64] using Halo EFT. The Halo EFT

approach is not limited to static electromagnetic properties or electromagnetic transitions, but can be

applied in the same way to calculate radiative neutron/proton capture [65–68]. Moreover, Halo EFT

has been used to study various reactions and properties of halo systems. Initial studies in the strong

sector have mainly focused on the universal properties of halo nuclei with S-wave [69, 70] and P-wave

interactions [71, 72], including matter form factors and radii. For general reviews of Halo EFT and

applications to other halo nuclei see Refs. [14, 73, 74]. In this thesis, we focus on shallowly bound

D-wave states. Because of the angular momentum barrier, the probability to find a halo bound state for

large relative angular momentum is decreased and thus, low relative angular momentum states occur

more frequently in nature. We also find proof for that principle in our Halo EFT results in Sec. 4.5.

A more detailed discussion concerning the Halo EFT approach for one-neutron halos is presented

in Sec. 4, where we explicitly derive electromagnetic observables and universal correlations for weakly-

bound D-wave states.
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3 No-Core Shell Model
Parts of this chapter have been taken from the author’s Master’s thesis [75].

Before we present our Halo EFT and pion photoproduction results, we discuss the no-core shell

model as an example for an ab initio many-body approach to the nuclear many-body problem [5, 59].

It will be used later for the derivation of the nuclear wave function for the pion photoproduction in

Chapter 5. Moreover, we consider the importance-truncated no-core shell model [76] as an extension of

the no-core shell model to heavier nuclei, which will be employed to generate input data for our Halo

EFT in Section 4.10.2.

Given an interaction, we aim for the solution of the nuclear many-body problem

H |Ψn〉= En |Ψn〉 . (3.1)

There are several ab initio methods with different advantages and drawbacks to solve the Schrödinger

equation, e.g., coupled cluster theory [57, 58], in-medium similarity renormalization group [7, 77] or

the no-core shell model (NCSM) [5, 59]. In this chapter, we focus on the latter. The NCSM is based on

the configuration interaction idea, which plays an important role in the description of quantum many-

body systems in various areas of modern physics, e.g., the many-electron problem in molecular physics

and quantum chemistry [78]. The common purpose of all configuration-interaction methods is the

calculation of the eigenstates of the Hamiltonian for a particular model space spanned by a set of many-

body states. To obtain the eigenstates, the large-scale matrix eigenvalue problem is solved numerically,

where the matrix dimension is the computationally limiting factor.

The NCSM is an ab initio approach applicable to light nuclei [5, 59], where all A nucleons are active

degrees of freedom. The model space is spanned by Slater determinants constructed from harmonic-

oscillator (HO) single-particle states [59, 76]. The Hamiltonian is given in a generic form by

HA =
1
A

∑

i< j

�

pi − p j

�2

2m
+

A
∑

i< j

VNN ,i j +
A
∑

i< j<k

VNNN ,i jk , (3.2)

and contains the intrinsic kinetic energy and two- plus three-body interactions. First, the interaction be-

tween the nucleons is derived from χEFT. In a second step, the potentials are “softened” via the similarity

renormalization group (SRG) [79] to improve the convergence in the many-body calculation [80]. This

is achieved by unitary transformations that decouple high-momentum and low-momentum components.

In principle, the eigenvalue problem (3.1) has to be solved in the infinite-dimensional Hilbert space

to obtain the exact energy eigenstate. Hence, the model space has to be truncated to a computationally

feasible size. Therefore, only basis states with an excitation energy smaller than NmaxħhΩ are taken into

account, where Nmax defines the HO excitation quanta of the many-body state. By increasing the model

space size via NmaxħhΩ sufficiently, the results for the energy eigenvalues converge to the exact energies.
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0s

0p

0d 1s

0f 1p

0g 1d 2s

p n

ΔE =  ħΩ

Figure 3.1.: NCSM single-particle orbits in the harmonic-oscillator potential for protons (red) and neutrons
(blue). Horizontal lines indicate harmonic-oscillator shells. The energy difference between
two shells is ħhΩ. In this example for 12C, the total excitation energy is 4ħhΩ.

The general concept of this truncation scheme is illustrated for 12C in Fig. 3.1. The A= 12 nucleons

are distributed over the different shells of the proton and neutron HO potential according to their particle

species. The unperturbed Slater determinant is given by the configuration with the lowest possible HO

energy. In this case, the protons and neutrons completely fill the 0s- and 0p-shell for the unperturbed

ground state. Every excitation of one or multiple nucleons from this state into a higher shell yields an

excitation energy of NħhΩ, where N =
∑A

i=1(2ni + li) − Nunperturbed. In Fig. 3.1, a proton is excited by

1ħhΩ from the 0p-shell to the 0d, 1s-shell and a neutron is excited by 3ħhΩ from the 0s-shell into the

0f, 1p-shell. Thus, the total excitation energy is 4ħhΩ. Since all Slater determinants up to an excitation

energy of NmaxħhΩ are included in the model space, this Slater determinant is included if Nmax ≥ 4.

The dimension of the model space grows factorially with Nmax and particle number A. However, the

model-space size has to be manageable for the diagonalization of the Hamilton matrix. Thus, the NCSM

cannot reach convergence for heavier nuclei and works properly only up to p-shell nuclei.

3.1 Importance-Truncation Scheme

To overcome the dimensional problems arising in the NCSM, an importance-truncation (IT) scheme

can be applied [76]. In general, we are only interested in a few energy eigenstates, e.g., the ground

state and the first few excited states. To reduce the model-space dimension, only the most relevant

basis states for the description of the target eigenstates, with respect to an a priori importance mea-

sure, are taken into account. Accordingly, the Hamiltonian is diagonalized in this reduced model space.
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Originally, this importance-truncation concept was invented in quantum chemistry in the 1970s [81],

but it is adaptable to arbitrary configuration interaction approaches. In the following, the concept of the

importance-truncation scheme for the NCSM is explained in more detail.

An essential ingredient of the IT scheme is the definition of an a priori importance measure for

the individual basis states. In this framework, the importance measure is derived from many-body

perturbation theory. We start with a reference state |Ψref〉 from a previous calculation. This reference

state

|Ψref〉=
∑

µ∈Mref

C (ref)
µ |Φµ〉 , (3.3)

is a zeroth-order approximation for the description of the target eigenstate, whereMref is a subspace of

the full model space spanned by the basis states |Φµ〉 and C (ref)
µ represents the amplitudes of the basis

states for the target eigenstate, e.g., the ground state. In order to derive the importance measure, the

full Hamiltonian H = H0 +W is decomposed into an unperturbed part H0 and a perturbation W with

respect to |Ψref〉
H0 |Ψref〉= εref |Ψref〉 with εref = 〈Ψref |H|Ψref〉 . (3.4)

The unperturbed Hamiltonian that satisfies the eigenvalue relation is defined as

H0 = εref |Ψref〉 〈Ψref|+
∑

ν/∈Mref

εν |Φν〉 〈Φν| , (3.5)

where εν denotes the unperturbed energy for basis states outside of the reference spaceMref.

There are different choices of the unperturbed energies and of the partitioning of the Hamiltonian.

We employ the simplest Møller-Plesset-type formulation of multiconfigurational perturbation theory and

define the unperturbed energies as

εν = εref +∆εν , (3.6)

where, in the NCSM,∆εν is the excitation energy of the basis state |Φν〉 computed from the single-particle

HO energies ea = ħhΩ(2na + la + 3/2).

The choice of the unperturbed Hamiltonian defines the perturbation

W= H−H0 . (3.7)

Thus, the first-order correction of |Ψref〉 is given by

|Ψ(1)〉= −
∑

ν/∈Mref

〈Φν |W|Ψref〉
εν − εref

|Φν〉 (3.8)

= −
∑

ν/∈Mref

〈Φν |H|Ψref〉
εν − εref

|Φν〉 . (3.9)
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We define the a priori importance measure κν for the basis states |Φν〉 /∈ Mref by the amplitudes of the

individual basis states |Φν〉 in Eq. (3.8)

κν = −
〈Φν |H|Ψref〉
εν − εref

= −
∑

µ∈Mref

C (ref)
µ

〈Φν |H|Φµ〉
εν − εref

, (3.10)

where relation (3.3) is used in the second step. Only those basis states |Φν〉 with an importance mea-

sure larger than the importance threshold |κν| ≥ κmin are included in the importance-truncated (IT)

model spaceMIT. The eigenvalue problem is solved in this IT model space, which leads to an improved

approximation for the target eigenstate.

The IT scheme retains the variational principle of the NCSM. Accordingly, the energies E (κmin) for a

certain eigenstate with importance threshold κmin can be extrapolated to the exact energy Eexact(κmin =
0) ≤ E (κmin). This is accomplished by calculating the energy for a sequence of κmin values, typically of

the order of 10−5, and extrapolating the energy to vanishing κmin.

Since this IT scheme leads to a representation of the approximate eigenstates in a shell-model basis,

not only the energies but all other observables of interest, e.g., radii or transition strength, can be

computed directly.

3.2 Center-of-Mass Motion

The nucleus is a finite self-bound system. There is no external potential as in many-electron systems in

atomic physics, where the electrons are bound by the electromagnetic field of the nucleus, and accord-

ingly, there is no defined reference frame. In the exact theory, the many-body state |Ψ〉 of the nucleus

factorizes into the intrinsic state |Ψint〉 and a state |ΨCM〉 describing the center-of-mass (CM) motion [76]

|Ψ〉= |Ψint〉 ⊗ |ΨCM〉 . (3.11)

Only if this decoupling holds, the intrinsic state is translationally invariant and does not suffer from

spurious center-of-mass motion. For the NCSM with a HO basis and an NmaxħhΩ truncation, the exact

factorization of the CM and intrinsic state is possible for all Nmax [5, 76].

However, in the IT-NCSM, the factorization of the eigenstate into a CM and an intrinsic component is

only approximate due to the additional model-space truncation with respect to the importance measure.

Thus, a weak coupling between CM and intrinsic component is induced, which has to be monitored and

quantified [76].
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4 Halo EFT Results
Now, we have everything at hand to start with the discussion of our results. In this chapter, we explore

electromagnetic properties and nuclear reactions for one-neutron halo nuclei using the Halo EFT ap-

proach. As discussed in Sec. 2.2.2, halo nuclei are exotic nuclei that can be found for various isotopes

close to the drip line. The well-established ab initio approaches have difficulties to describe these exotic

nuclei since the separation of scales between Rcore and Rhalo is not explicit in the parameters of the ab

initio methods. Halo EFT exploits this separation of scales and so, it provides insights into universal cor-

relations of such weakly-bound systems. Thus, Halo EFT can be considered a complementary approach

to ab initio methods.

Halo EFT was successfully applied to describe shallowly bound S-wave and P-wave states [16, 64,

82]. In this work, we aim for the extension of the Halo EFT formalism to partial wave bound states

beyond P-wave states, in general, and D-wave states, in particular. That way, we want to make the Halo

EFT approach applicable to a broader range of halo systems and discuss universality for higher partial

wave bound states.

The chapter is organized as follows: First, we introduce the two one-neutron halo nuclei, 15C and
17C, that we aim to describe with our Halo EFT. After writing down the effective Lagrangian, we dress the

S- and D-wave dimers and develop a power-counting scenario for shallowly bound D-wave states. In the

next step, photons are included in our theory to calculate electromagnetic form factors of the S- and D-

wave state. Furthermore, we compute electromagnetic transitions between different states and neutron

capture into the S- and D-wave state. Eventually, we apply our findings to the two carbon isotopes and

discuss universal correlations between electric observables in such systems.

Parts of this chapter were already published in Refs. [1–3].

4.1 Carbon-15 and Carbon-17

In this thesis, we focus on one-neutron halo nuclei with a shallowly bound D-wave state. Two prominent

examples are the two carbon isotopes 15C and 17C.

As illustrated in Fig. 4.1, 15C has a J P = 1/2+ ground state and an excited 5/2+ state. While the

ground state is an S-wave state, the excited state is predominantly a D-wave bound state relative to

the core. The neutron separation energy of the 1/2+ state of 15C is Sn = 1218 keV and the neutron

separation energy of the 5/2+ state is Sn = 478 keV [83], whereas the first excitation of the 14C nucleus

is E(ex) = 6.1 MeV above the 0+ ground state. This weak binding indicates the halo nature of the ground

and first excited state of 15C. Converting these energy scales into the relevant distance scales

Rcore ≈
1

p

E(ex)2mR

= 1.91 fm and Rhalo ≈
1
γ2
=

1
p

Sn2mR

= 6.81 fm , (4.1)
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Figure 4.1.: Level schemes of 15C (left) and 17C (right) showing quantum numbers J P , excitation energies
in MeV, and the 14C + n/16C + n threshold.

with the reduced mass of the two-body system mR, we obtain an approximation for the core and halo

radius and can estimate the EFT expansion parameters for this system as Rcore/Rhalo ≈ 0.3− 0.4. Using

the experimental values for the binding energies of the S- and D-wave states above, we deduce

γ0 =
Æ

Sn(1/2+)2mR = 0.235 fm−1 and γ2 =
Æ

Sn(5/2+)2mR = 0.147 fm−1 . (4.2)

The electromagnetic form factors for the ground state of 15C and the radiative neutron capture on 14C to

the 1/2+ ground state of 15C were previously calculated using Halo EFT in Refs. [82, 84], respectively.

Next, we consider the 17C nucleus. The first excitation of the 16C core has an energy of

E(ex) = 1.766 MeV [85], while the neutron separation energy of the 3/2+ ground state in 17C is

Sn = 0.734 MeV [15]. This suggests that the ground state of 17C can be described as a neutron in a

D-wave relative to the 16C core, although the halo nature of the ground state is not commonly accepted

[86, 87]. Converting these energy scales into the relevant distance scales yields Rcore ≈ 3.53 fm and

Rhalo ≈ 5.47 fm that leads to an expansion parameter for this system of Rcore/Rhalo ≈ 0.6. As shown

in Fig. 4.1, 17C also has two excited J P = 1/2+ and 5/2+ states with energies E(ex)
1/2+ = 0.218 MeV and

E(ex)
5/2+ = 0.332 MeV [87]. In Halo EFT, these two states are described by a neutron in an S-wave and

D-wave relative to the core, respectively. This yields an expansion parameter for the two excited states

of Rcore/Rhalo ≈ 0.5. Using the experimental values for the binding energies of the S- and D-wave states

above, we find

γ0 = 0.153 fm−1 , γ2 = 0.183 fm−1 and γ2′ = 0.135 fm−1 , (4.3)

for the S-wave excited state and D-wave ground and excited state, respectively.

Since the expansion parameters for all bound states of both halo nuclei are not particularly small,

effects beyond LO are not negligible in our theory.

4.2 Effective Lagrangian

After the brief introduction of the two carbon isotopes, we write down the effective Lagrangian to de-

scribe the S- and D-wave states, in the following. We continue the discussion in Sec. 2.2.2 and extend

the Halo EFT formalism, developed in Ref. [64] for the calculation of electric properties of S- and P-wave
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systems, to D-wave states. Thus, the relevant degrees of freedom are the halo neutron, a spinor field n

with spin 1/2, and the core, a bosonic field c with spin zero, since the core of both carbon isotopes has

J P = 0+. The strong S-wave and D-wave interactions are included through the incorporation of auxiliary

spinor fields σs and dm, which correspond to the 1/2+ and 5/2+ or 3/2+ states, respectively.

With the convention that repeated spin indices are summed the effective, non-relativistic Lagrangian

can be written as

L = c†

�

i∂t +
∇2

2M

�

c + n†

�

i∂t +
∇2

2m

�

n

+σ†
s

�

η0

�

i∂t +
∇2

2Mnc

�

+∆0

�

σs + d†
m

�

c2

�

i∂t +
∇2

2Mnc

�2

+η2

�

i∂t +
∇2

2Mnc

�

+∆2

�

dm

− g0

�

c†n†
sσs +σ

†
s nsc

�− g2

�

d†
m

�

n
↔∇

2
c
�

J ,m
+
�

c†
↔∇

2
n†
�

J ,m
dm

�

, (4.4)

where 3/2≤ J ≤ 5/2 denotes the total spin of the D-wave state, m is the neutron mass, M the core mass

and Mnc = m+M is the total mass of the nc system. In the equation above, the first four terms denote

the kinetic energy part of the Lagrangian for the core, neutron, S- and D-wave dimer, respectively. The

last two terms represent the contact interactions for the coupling of the neutron and the core to an S- or

D-wave dimer with coupling constants g0 and g2, respectively. The power counting for this Lagrangian

depends on the underlying scales and will be discussed in Sec. 4.4. Because of the mass difference

between the core and the neutron and to preserve Galilean invariance, we adopt

n
↔∇c = n

�

M
←∇−m

→∇
�

Mnc
c . (4.5)

For the D-wave, we have four constants in our Lagrangian: c2,η2,∆2 and g2. However, only three

of them are linearly independent. In principle, we are free to choose which constant is set on a fixed

value. In this thesis, we follow the traditional approach and set η2 = ±1, but other choices, e.g., fixing

g2, lead to the same results. For the D-wave, the additional higher-order kinetic term with constant c2 is

required to renormalize the interacting D-wave propagator in Sec. 4.3.2. We project out the J = 5/2 or

3/2 part of the strong D-wave interaction employing Clebsch-Gordan coefficients

�

n
↔∇

2
c
�

J ,m
=
∑

msml

�

1
2

ms 2ml

�

�

�

�

Jm

�

nms

∑

αβ

(1α 1β |2ml)
1
2

�↔∇α
↔∇β +

↔∇β
↔∇α
�

c . (4.6)

In practice, we calculate D-wave observables in Cartesian coordinates and then couple the spin and

relative momentum appropriately through Clebsch-Gordan coefficients. To distinguish between spherical

and Cartesian coordinates, we use Greek indices to indicate spherical representation and Latin indices

denote Cartesian coordinates throughout this thesis.
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The Cartesian form of the strong D-wave interaction is taken from Refs. [17, 88]

1
2

�↔∇i

↔∇ j +
↔∇ j

↔∇i

�

− 1
D− 1

↔∇
2
δi j , (4.7)

where D denotes the space-time dimensions. This interaction yields 9 terms, but only 5 of them are

linearly independent since Eq. (4.7) is traceless and symmetric under permutation of i and j. Accordingly,

they correspond to the 5 components of a D-wave state. Thus, the D-wave part of the Lagrangian

(4.7) contains all symmetries relevant in our framework. It is Galilean invariant and symmetric under

permutation of two indices, which preserves gauge invariance after the inclusion of photons via minimal

substitution in Sec. 4.6. Furthermore, it contains the correct number of degrees of freedom.

4.3 Dimer Propagators

After writing down the effective Lagrangian, the dressed σ(d) propagator and the S(D)-wave scattering

amplitude are computed from the diagrams in Fig. 4.2 in the same way as in Ref. [64]. At first, we have

to dress the dimer propagator by iteratively summing up the one-loop self energy, Σ(p), to all orders.

This is achieved through the Dyson equation illustrated in the top panel of Fig. 4.2. Subsequently, we

calculate the scattering amplitude, bottom panel of Fig. 4.2, and match it to the effective range expansion

(ERE) in the corresponding channel.

= +
ij op

Σ
ij op ij op

Figure 4.2.: The top panel shows the diagrammatic representation of the Dyson equation for the dressed
dimer propagator and the bottom panel the neutron-core scattering amplitude with the
dressed dimer propagator. The dashed line denotes the core field c, and the thin solid line
the neutron. The thin double line represents the bare dimer propagator and the thick double
line with the gray circle is the dressed dimer propagator.

We demonstrate this in detail only for the D-wave and refer the reader to Ref. [64] for a detailed

calculation of the dressed σ propagator. Eventually, we obtain the exact solution of the effective field

theory for the S- or D-wave state. In Sec. 4.4, we develop a power-counting scheme that classifies the

different contributions to the dimer propagator according to their importance at low energies.
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4.3.1 S -Wave Propagator

The S-wave part of the Lagrangian is well known in the literature [14, 64, 84]. Compared to the D-

wave case, it contains three unknown constants η0, ∆0 and g0. However, only two of them are linearly

independent so that η0 is chosen to be a sign, which depends on the sign of the effective range. We

follow the steps in Ref. [64] to reproduce their results. Using the Dyson equation illustrated in Fig. 4.2,

we calculate the one-loop self energy Σσ(p) to obtain the full σ propagator Dσ(p)

Σσ(p) = −
g2

0 mR

2π

�

i

√

√

2mR

�

p0 −
p2

2Mnc

�

+µ

�

, (4.8)

Dσ(p) =
1

∆0 +η0[p0 − p2/(2Mnc) + iε]−Σσ(p)
, (4.9)

where mR denotes the reduced mass of the neutron-core system and the power divergence subtraction

(PDS) is employed as regularization scheme with scale µ [47, 48].

After matching the S-wave scattering amplitude in the two-body center-of-mass frame, t0(p′,p; E) =
g2

0 Dσ(E,p), to the S-wave effective range expansion

t0(p
′,p; E) =

2π
mR

1

1/a0 − 1
2 r0k2 + ik

, (4.10)

with E = k2/(2mR) and k = |p′| = |p| for on-shell scattering, we derive the following renormalization

conditions

1
a0
=

2π
mR g2

0

∆0 +µ and r0 = −
2π

m2
r g2

0

η0 . (4.11)

In the vicinity of the bound state pole, the dressed S-wave propagator thus reads

Dσ(p) = Zσ
1

p0 − p2

2Mnc
+ B0

+ Rσ(p) ,

Zσ =
2π

m2
R g2

0

γ0

1− r0γ0
, (4.12)

where Zσ denotes the wave-function renormalization, B0 = γ2
0/(2mR) indicates the binding energy and

Rσ(p) is regular at the pole.

4.3.2 D -Wave Propagator

Now, we consider the D-wave bound state. In practice, we calculate the dressed D-wave propagator in

Cartesian representation and eventually, couple the neutron spin and the relative momentum to project
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out the appropriate angular momentum J . The Dyson equation for the D-wave is graphically illustrated

in the top panel of Fig. 4.2 and its solution yields

Dd(p)i jop = Dd(p)

�

δioδ jp +δipδ jo − 2
3δi jδop

�

2
, (4.13)

Dd(p) =
1

�

D0
d (p)

�−1 −Σd(p)
, (4.14)

=
1

∆2 +η2 [p0 − p2/(2Mnc) + iε] + c2 [p0 − p2/(2Mnc) + iε]2 −Σd(p)
, (4.15)

with the bare dimer propagator D0
d (p) and the one-loop self energy is computed as

Σd(p)i jop =Σd(p)

�

δioδ jp +δipδ jo − 2
3δi jδop

�

2
, (4.16)

Σd(p) =−
mR g2

2

15π

�

2
5π
Λ5 +

2
3π
(2mR)

�

p0 −
p2

2Mnc

�

Λ3 +
2
π
(2mR)

2

�

p0 −
p2

2Mnc

�2

Λ

+i(2mR)
5/2

�

p0 −
p2

2Mnc

�5/2�

, (4.17)

where mR = (m + M)/(mM) denotes the reduced mass of the neutron-core system and we employ a

momentum cutoff Λ as regularization scheme. Additionally, we used the following identities for d = 3

space dimensions in the loop integration

li l j = l2
δi j

d
, (4.18)

li l j lo lp = l4
δi jδop +δioδ jp +δipδ jo

d(d + 2)
. (4.19)

The detailed calculation of the self energy is presented in App. A.1.

In spherical coordinates the Cartesian tensor of the D-wave propagator

�

δioδ jp +δipδ jo − 2
3δi jδop

�

2
, (4.20)

which is consistent with the results in [88], transforms to

∑

αβγδ

(1α 1β |2ml)
�

1γ 1δ|2m′l
�

�

δαγδβδ +δαδδβγ
�

2
= δml ,m

′
l

, (4.21)
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and eventually, the total angular momentum coupling, cf. Eq. (4.6), applied in the incoming and outgo-

ing channel yields

Σd(p)mm′ =
∑

msml m
′
sm′l

�

1
2

ms 2ml

�

�

�

�

Jm

��

1
2

m′s 2m′l

�

�

�

�

Jm′
�

δml m
′
l
δmsm′sΣd(p) (4.22)

= δmm′Σd(p) , (4.23)

as expected.

The D-wave scattering amplitude in the two-body center-of-mass frame with E = k2/(2mR) and

k = |p′|= |p| for on-shell scattering

t2(p
′,p; E) = g2

2

�

�

p · p′�2 − 1
3

p2p′2
�

Dd(E,0) , (4.24)

is then matched to the D-wave effective range expansion

t2(p
′,p; E) =

15π
mR

(p · p′)2 − 1
3p2p′2

1/a2 − 1
2 r2k2 + 1

4P2k4 + ik5
, (4.25)

and we find the following renormalization conditions

1
a2
=

15π
mR g2

2

∆2 +
2

5π
Λ5 , r2 = −

15π
m2

R g2
2

η2 −
2

3π
Λ3 , P2 =

15π
m3

R g2
2

c2 +
2
π
Λ , (4.26)

which determine the running of the coupling constants g2, ∆2, and c2 with the momentum cutoff Λ.

Since we get cutoff dependencies with powers of 5, 3 and 1, the effective range parameters a2, r2 and

P2 are required for the renormalization at LO, which motivates the power-counting scheme below. In

particular, we need to include the additional second-order kinetic term proportional to the coupling

constant c2 in our Lagrangian (4.4) to absorb the linear divergence [89]. If the values for these effective

range parameters are known, they can be used to fix the EFT couplings ∆2, c2, and g2 and the sign η2 in

our theory.

Near the bound state pole, the dressed d-propagator can then be written as

Dd(p) = Zd
1

p0 − p2

2Mnc
+ B2

+ Rd(p) , (4.27)

where B2 = γ2
2/(2mR) indicates the binding energy, Rd(p) is a remainder that is regular at the pole and

Zd denotes the wave function renormalization, which is the residue of the pole obtained by

1
Zd
= i

∂

∂ E
(iDd(p))

−1
�

�

�

E=− γ2
2

2mR
,p=0

→ Zd = −
15π
m2

R g2
2

1
r2 +P2γ

2
2 − 5γ3

2

. (4.28)
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For a D-wave bound state, Zd is related to the asymptotic normalization constant (ANC) of the

bound state wave function, whose position space representation reads

ψ2m(r ) = A2
u2(r)

r
Y2m(r̂ ) , (4.29)

with the spherical harmonic Y2m(r̂ ) for l = 2. The radial part of the wave function is given by

u2(r) = exp (−γ2r)

�

1+
3
γ2r
+

3

(γ2r)2

�

, (4.30)

while A2 denotes the ANC of the D-wave bound state

A2 =

√

√

√
2γ4

2

−r2 −P2γ
2
2 + 5γ3

2

. (4.31)

A2 is not directly measured in experiments, however, it can be extracted from neutron-core scattering

data by an analytic continuation of the scattering amplitudes to negative energy [14].

4.4 Power-Counting Scheme

After dressing the dimer propagators, we develop a power-counting scenario that classifies the different

contributions to the propagator according to their importance in our Halo EFT expansion, Rcore/Rhalo.

For the shallow S-wave bound state, we adopt the standard power counting used in Refs. [17, 64, 82].

It implies 1/γ0 ∼ a0 ∼ Rhalo and r0 ∼ Rcore, where γ0 represents the bound state pole position, a0 is the

S-wave scattering length and r0 the effective range. As a result, r0 contributes at NLO in the expansion

in Rcore/Rhalo.

Because of the increasing number of required effective range parameters and the weakly-bound na-

ture of halo nuclei, the power counting for partial waves beyond S-wave states is not unique and different

scenarios are conceivable [16, 17]. We apply the constraint that we use the minimal number of fine tun-

ings possible in our power-counting scheme to absorb all power law divergences. This is motivated by

the expectation that every additional fine tuning makes our scenario less likely to be found in nature, as

discussed by Bedaque et al. in Ref. [17]. They explicitly consider P-waves and assume that a1 ∼ R2
haloRcore

and r1 ∼ 1/Rcore, while higher effective range parameters scale with the appropriate power of Rcore. This

scenario requires only one fine-tuned constant for P-waves instead of two as proposed in the previous

paper on Halo EFT [16].

In Ref. [17], the P-wave power counting is generalized to partial waves with l > 0. They suggest

that also for l > 1 only one fine-tuned constant is sufficient. However, we find that the number of fine

tunings for higher partial waves (l > 1) is larger than proposed in Ref. [17]. A more detailed discussion

of the differences between both power countings is given in Sec. 4.5. In this work, we follow the general

arguments for the P-wave case in Ref. [17] and apply them to the D-wave. To renormalize all arising

divergences in the calculation of the dimer propagator, cf. Eq. (4.26), a2, r2 and P2 are required at LO
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in the D-wave case. In the minimal scenario for the Dd(p) propagator, two out of three effective range

parameters need to be fine-tuned, i.e. a2 ∼ R4
halo Rcore and r2 ∼ 1/(R2

halo Rcore) are both unnaturally

large. This is more likely to occur than three unnaturally large parameters and three fine tunings so that

we adopt P2 ∼ 1/Rcore. Thus, all three terms contribute at LO for typical momenta k ∼ 1/Rhalo. Higher

effective range parameters scale with Rcore only and are therefore suppressed by powers of Rcore/Rhalo.

Accordingly, the LO contribution to the dressed D-wave propagator (4.27), after resumming all

bubble diagrams and appropriate renormalization, comes from the bare propagator only. The loop con-

tributions are suppressed by Rcore/Rhalo and thus, contribute at NLO. Furthermore, all imaginary parts, if

present, appear in the regular part of the amplitude. Hence, the D-wave scattering amplitude will be not

exactly unitary, but it respects unitarity perturbatively in the expansion in Rcore/Rhalo. This is in contrast

to the S-wave case, where the bare propagator is not sufficient and the loop contributions are required

at LO to determine the dressed S-wave propagator. However, the power-counting scenario depends sen-

sitively on the details of the considered system and has to be verified by comparison with experimental

data.

After the discussion above and replacing the S-wave scattering length by the pole momentum,

a0 = 1/γ0, the relevant fit parameters in our EFT are γ0, γ2, r2, and P2 at LO and the following

renormalization constants can be derived

Zσ =
2πγ0

m2
R g2

0

and Zd = −
15π
m2

R g2
2

1
r2 +P2γ

2
2

. (4.32)

At NLO, we have to consider r0 as additional fit parameter and we obtain

Zσ =
2π

m2
R g2

0

γ0

1− r0γ0
and Zd = −

15π
m2

R g2
2

1
r2 +P2γ

2
2 − 5γ3

2

. (4.33)

The power counting for arbitrary l-th partial waves is presented in Sec. 4.5. For the specific case

of 15C, Ref. [84] indicates that effective range corrections could be large r0γ0 ∼ 0.6 and it could be

appropriate to scale r0 ∼ Rhalo and thus, to keep it at LO. The extracted value for r0 = 2.67 fm [84]

results from a fit to one-neutron capturing data 14C(n,γ)15C from Ref. [90]. Therefore, we will treat r0

as a LO parameter for 15C.

After the development of our power counting, we employ, from now on, a dimensional regular-

ization scheme with power divergence subtraction (PDS) and renormalization scale µ [47, 48] for all

calculations instead of a cutoff regularization. The reason why we used the cutoff regularization in

the first place was that it is more convenient for keeping track of any divergences emerging from the

loop integration. However, the cutoff regularization breaks Galilean invariance, which complicates the

renormalization for different substitutions in the loop integration. Therefore, dimensional regularization

schemes are more favorable since they preserve Galilean invariance. In this thesis, we compute several

observables with different loop integrations so that a dimensional regularization scheme is best suited for

our purpose. PDS is the ideal candidate since it keeps track of linear divergences and has all the benefits

of a dimensional regularization scheme, as we will discuss in more detail at the end of this section.
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To start with, we apply PDS to the full D-wave propagator calculation. In PDS, the one-loop self

energy is given by

Σd(p) = −
2
15

mR g2
2

2π
(2mR)

2

�

p0 −
p2

2Mnc

�2 �

i

√

√

2mR

�

p0 −
p2

2Mnc
+ iε

�

− 15
8
µ

�

. (4.34)

After the matching to the effective range expansion, we deduce the following renormalization conditions

1
a2
=

15π
mR g2

2

∆2 , r2 = −
15π
m2

R g2
2

η2 , P2 =
15π
m3

R g2
2

c2 +
15
2
µ . (4.35)

Note that the µ dependence in the condition for P2 ∼ 1/Rcore is subleading if µ ∼ 1/Rhalo and hence,

can be dropped at LO. Our findings later in the form factor calculation confirm this assumption.

Dressing the D-wave propagator was already performed in the context of the d+ t↔ n+α reaction

by Brown and Hale [88], where the coupling of the auxiliary field for the 5He resonance to the αn pair

with spin 3/2 involves an internal D-wave angular momentum. Employing a similar approach for the

coupling of the cn pair, we obtain the same Cartesian tensor (4.20) as Brown and Hale. In Ref. [88], they

also use a dimensional regularization scheme, the minimal subtraction (MS) scheme [91, 92], which

adds counterterms that subtract poles at D = 4 dimensions. In PDS, the poles at D = 4 and D = 3 are

both subtracted by counterterms. If there are no poles in D = 3, PDS and MS yield the same result.

Considering the calculation of the self energy for the D-wave propagator, there is no pole in D = 4

but a pole in D = 3. Therefore, by employing the MS scheme, it is not required to add counterterms

to regularize divergences. In PDS, the pole at D = 3, which corresponds to power law divergences

at D = 4, is also subtracted. The MS leads to a different power-counting scheme where all power

divergences are automatically set to zero in the D-wave case and the effective range parameters r2 and

P2 are not required for the renormalization at LO. As discussed in Refs. [47, 48], the PDS scheme is

better suited for such shallowly bound systems since it keeps track of power law divergences and yields

the appropriate power counting that we derived from the cutoff regularization (4.17) before.

4.5 Higher Partial Waves

As a first conclusion, the basic concept for the extension of our Halo EFT to higher l-th partial waves

is outlined in this section. The strong interaction terms for higher l can be derived from the traceless,

symmetric Cartesian (Buckingham) multipole tensors [93] given by

M (l)
i, j,··· ,t =

(−1)l

l!
r2l+1 ∂ l

∂ ri∂ r j · · ·∂ rt

�

1
r

�

i, j, · · · , t ∈ {x , y, z} . (4.36)

To obtain the specific interaction in momentum space for a given angular momentum l, r j is simply

replaced by i∇i. In principle, this leads to a tensor of rank l with 3l components. However, because the

tensors are traceless and symmetric in every pair of indices, only (2l + 1) components of the tensor are

linearly independent.

30 4. Halo EFT Results



This statement can be verified by applying concepts of combination theory and linear algebra. First,

we consider the l = 2 case and the Mi j tensor with i, j ∈ x , y, z. By summing over all possible values

of i and j, we obtain nk = 32 = 9 variations of Mi j. Since Mi j is symmetric under permutation of i and

j, the number of distinct components is given by
��n

k

��

=
�n+k−1

k

�

=
�4

2

�

= 6, which is equivalent to the

number of ways to sample k elements from a set of n elements allowing for duplicates but disregarding

different orderings. Moreover, the tensor Tr
�

Mi j

�

= 0 is traceless which further reduces the number of

independent components by one and we are left with the total number of five independent components.

The same reasoning applies to higher partial waves. Considering the case of l = 3, we obtain

33 = 27 components of Mi jk of which only
�5

3

�

= 10 components are distinct due to symmetry. The trace

of a rank r tensor can be generalized to a tensor contraction where a pair of unlike indices that are set

equal are summed up according to the Einstein summation convention. The result is a new tensor whose

rank (r − 2) is reduced by two. Accordingly, the trace of a rank two tensor (l = 2) is a scalar and of a

rank three tensor (l = 3) a vector. Since the Mi jk tensor is traceless, Miik = 0, this reduces the number

of independent components by three so that seven independent components remain in the end.

Initially, using Cartesian tensors and neglecting the spin simplifies the calculation of Feynman di-

agrams. However, we have to eventually couple the spin and the relative momentum for a given J in

the appropriate way. This can become demanding for some observables that are sensitive on the spin.

Therefore, it might be more convenient to apply the spherical representation for partial waves beyond

P-wave throughout the calculation.

Now, we reconsider the discussion of the renormalization procedure and the power-counting sce-

nario for arbitrary partial waves. To be able to absorb all power law divergences in the calculation of the

dressed dimer propagator, the number of effective range parameters required at LO for the l-th partial

wave is (l +1) [16]. Accordingly, for the S-wave only the scattering length a0 and for the D-wave a2, r2,

and P2 are necessary. As argued in Sec. 4.4, the highest ERE parameter at LO can be assumed to scale as

1/Rcore for partial waves beyond the S-wave. Thus, to renormalize all power law divergences for the l-th

partial wave, a minimal number of l fine-tuned parameters is required. This explains why higher partial

wave bound states occur less likely in nature as mentioned in Sec. 2.2.2. For arbitrary l, the reasoning

above and in Sec. 4.4 leads to the following power-counting scheme

al =

(

Rhalo, l = 0

R2l
halo Rcore, l > 0

(4.37)

rl =

(

Rcore, l = 0

1/
�

R2l−2
halo Rcore

�

, l > 0
(4.38)

Pl =

(

R3−2l
core , l ≤ 1

1/
�

R2l−4
halo Rcore

�

, l > 1
(4.39)

... ,

where the l-th and higher ERE parameters in each partial wave scale with appropriate powers of Rcore.
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Accordingly, our power-counting scenario agrees with Ref. [17] up to shallow P-wave states but

differs for partial waves beyond since higher ERE parameters are counted differently. Although Bedaque

et al. [17] confirm that higher effective range parameters are required to absorb the divergences in

the self energy for higher partial waves, the renormalized quantities scale differently in their power

counting. The absolute scaling differs for each partial wave, but the relative scaling is always the same

as for the P-wave. This means that only al and rl contribute at LO and every higher parameter is smaller

by two powers of Rcore/Rhalo. As a consequence, only one fine-tuned parameter is required for arbitrary

partial waves. However, this would imply that the probability to find shallow bound states in higher

partial waves does not decrease for larger l. This stands in contrast to the conclusion of our power

counting with l fine tunings and to experimental observations. Additionally, by comparing our Halo EFT

results with experimental data for 15C, we find that our power counting is in better agreement than their

scenario, as we will discuss in Sec. 4.10.2. Nevertheless, the scenario depends sensitively on the details

of the considered system and in principle, different fine tunings are conceivable.

4.6 Electromagnetic Interactions

After dressing the dimer propagators and developing the power-counting scheme for our Halo EFT,

the next step towards the calculation of electromagnetic observables is the incorporation of photons in

our theory. Hence, electromagnetic interactions are included via minimal substitution in the effective

Lagrangian (4.4)

∂µ→ Dµ = ∂µ + ieQ̂Aµ , (4.40)

where the charge operator Q̂ acting on the 14C or 16C core yields Q̂c = 6c and on the halo neutron

Q̂n= 0. Throughout this chapter we employ Coulomb gauge, ∇ ·A= 0.

We demonstrate the minimal substitution for the kinetic part of the core field

c†

�

i∂0 +
∇2

2M

�

c → c†

�

iD0 +
D2

2M

�

c = c†

 

i
�

∂0 + ieQ̂A0

�

+

�

∇− ieQ̂A
�2

2M

!

c , (4.41)

where the corresponding Feynman rules for the coupling of a photon to the core field are given by

−ieQ̂ε0 and i
eQ̂
M
ε · p , (4.42)

for an A0-photon and an A-photon vertex, respectively. The photon polarization vector is denoted by

ε. The explicit derivation of the Feynman rule for the A-photon vertex that stems from the minimal

substitution in the D-wave interaction is deduced in App. A.2.
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In addition to the electromagnetic interactions resulting from the application of the minimal sub-

stitution in the Lagrangian, we have to consider local gauge-invariant operators involving the electric,

E= −∇A0 − ∂0A, and magnetic field, B=∇×A, and the fields c, n, σ and d. Depending on the observ-

able and respective partial wave, they contribute at different orders in our EFT. For convenience, we will

introduce these additional operators for every calculation of electromagnetic observables separately in

the corresponding chapters.

After the inclusion of photons in our theory, we are now in the position to calculate electromagnetic

observables in our Halo EFT approach.

4.7 Electromagnetic Form Factors

We first consider the static electromagnetic properties of shallow S- and D-wave states in general and

eventually apply our results to 15C and 17C in Sec. 4.10. Static observables are usually easier to measure

experimentally than dynamical properties. Moreover, they can be calculated in ab initio approaches

that provide the wave functions of the involved states. In particular, we will compute the electric and

magnetic form factors for D-waves and review the existing results for the S-wave so that we can consider

all bound states of 15C and 17C.

4.7.1 Electric Form Factors

The result for the electric form factor of the S-wave halo state was already discussed in Ref. [64] for 11Be

and in Ref. [84] for 15C. We will review it briefly before discussing the D-wave form factors in detail. Up

to NLO, the electric form factors are calculated from Feynman diagrams with a scalar photon between the

initial and final bound state. The relevant diagrams contributing to the A0dd interaction up to NLO are

illustrated in Fig. 4.3. For the S-wave or A0σσ interaction, only diagram (b) contributes at LO, whereas

diagram (a), which is ∼ r0, contributes at NLO. For the D-wave, we have to consider only diagram (a)

at LO, where the photon directly couples to the dimer field, while the loop diagram (b) yields a NLO

contribution.

The Lagrangian with the relevant electric two-body currents for the S- and D-wave reads

LE =− L(σ)C0 σ
†
s

�∇2A0 − ∂0(∇ ·A)
�

σs

− L(d)C01 d†
m

�∇2A0 − ∂0(∇ ·A)
�

dm

− L(d)C02 d†
m

�

1
2

ms 2ml

�

�

�

�

Jm

��

1
2

ms 2ml

�

�

�

�

Jm

�

(1α 1β |2ml) (1γ 1δ|2ml)×
�

�∇α∇γδβδA0

�−
�

∂0

�∇αAγ +∇γAα
�

2
δβδ

��

dm , (4.43)
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(a) (b)

Figure 4.3.: The topologies contributing to the irreducible vertex for an A0-photon coupling to the core-
neutron D-wave bound state up to NLO. Diagram (a) arises since r2,P2 (minimal substitution
in the bare propagator) and the local gauge-invariant operator ∼ L(d)C01/2 contribute at LO,
while diagram (b) emerges from the minimal substitution in the core propagator and con-
tributes at NLO. The thick double line denotes the dressed D-wave propagator.

where repeated spin indices are summed over. For D-waves, the counterterms are required to absorb

divergences not only in the calculation of the charge form factor but also in the quadrupole form factor,

where the corresponding tensor structure becomes more complex, as we will see in Eq. (4.51). Hence,

we derive the lengthy expression for the L(d)C02 operator, which is similar to Eq. (4.6).

To determine the order of these additional operators in the power counting, we follow the procedure

from Refs. [64, 89]. The d and σ fields are rescaled so that they absorb factors of g0, g2 and mR and

have non-canonical dimensions

d̃ = d g2mR and σ̃ = σg0mR . (4.44)

For the rescaled σ field, we extract the non-canonical dimension from [64]: [σ̃] = 2. This can be

obtained by reconsidering the matching between Eq. (4.9) and (4.10) and the power-counting scheme

in Sec. 4.4

g2
0 m2

R ' −
2πη0

r0
∼ Rcore . (4.45)

Thus, the shallowness of the S-wave state is now encoded in the rescaled field and all the coefficients

are natural in terms of σ̃. The rescaling procedure for the d field is more complicated since r2 not only

scales with powers of Rcore but as ∼ (RcoreR2
halo)

−1 adopting our power-counting scenario. In order to

determine the scaling of the d̃ field, we recall that the D-wave field implicitly contains two additional

derivatives due to the higher angular momentum compared to the S-wave field. Thus, we assume that

the non-canonical dimension of the rescaled d field is two dimensions lower than for the σ̃ field and we

derive the non-canonical dimension
�

d̃
�

= 0. This is consistent with the finding in Ref. [64], [π̃] = 1,

for the non-canonical dimension of the rescaled P-wave field, which implicitly contains one additional
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derivative. Moreover, it agrees with the renormalization of the loop integral for the electric form factors

of the D-wave later in this chapter.

Using naive dimensional analysis with these rescaled fields, we can determine the scaling of the

operators with respect to Rcore. As a result, the coefficients written above scale as

L(σ)C0 ∼ R3
corel(σ)C0 g2

0 m2
R , (4.46)

L(d)C01 ∼ R−1
corel(d)C01 g2

2 m2
R , (4.47)

L(d)C02 ∼ R−1
corel(d)C02 g2

2 m2
R , (4.48)

with parameters l ...
... all of order one. In the sections below, we will show that the operator ∼ L(σ)C0

contributes at N3LO, while ∼ L(d)C01/2 yields a LO contribution.

Electric Form Factor of the S -Wave State

First, we review the S-wave results before we consider the D-wave case. It is convenient to calculate

all form factors in the Breit frame, where the photon transfers no energy, q = (0,q), and to choose

the photon to be moving in the ẑ direction q = |q |ẑ. The form factor of an S-wave one-neutron halo

nucleus was calculated in Refs. [64, 84]. In this section, we review their results. From a straightforward

calculation of diagram (b) in Fig. 4.3 for the A0σσ vertex, the electric charge form factor at LO can be

derived [64]

G(σ)E (|q|) = 2γ0

f |q| arctan
�

f |q|
2γ0

�

, (4.49)

with mass factor f = m/Mnc. Since the σ dimer corresponds to a spin 1/2 state, no higher form factors

beyond GE can occur. By expanding Eq. (4.49) for small values of |q|, cf. Eq. (4.65), we can extract the

charge radius relative to the electric radius of the core up to NLO

〈r2
E〉
(σ) =

f 2

2γ2
0(1− r0γ0)

. (4.50)

The LO result can be obtained by setting r0 = 0 in Eq. (4.50). At NLO, we have to consider the

additional operator that is proportional to η0σ
†A0σ and stems from the minimal substitution in the bare

dimer propagator. This additional diagram, depicted in Fig. 4.3 (a), guarantees that GE(0) = 1 if the NLO

wave function renormalization (4.33) is used. At N3LO, a counterterm related to the radius of the core

contributes. In the standard power counting, the factors of f are counted as O (1), although they can

become rather small for large core masses. As a consequence, the counterterm contribution is enhanced

numerically.

Since the core is assumed to be a point particle in Halo EFT, we have to add the charge radius of the

core to the result of the relative charge radius in Eq. (4.50) to obtain the total charge radius of the halo

nucleus.
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Electric Form Factors of the D -Wave State

Next, we compute the D-wave form factors by calculating the contribution to the irreducible vertex for

A0dd interactions up to NLO shown in Fig. 4.3. The first diagram represents three different direct

couplings of the photon to the D-wave propagator. Two couplings emerge from the minimal substitution

in Eq. (4.4) since r2 and P2 contribute at LO. The last one are the counterterms ∼ L(d)C01/2 entering at LO

that come out of Eq. (4.43). The second diagram stems from minimal substitution in the core propagator

in Eq. (4.4) and contributes at NLO. The computation is carried out in the Breit frame, q = (0,q), and

the irreducible vertex for the A0-photon coupling to the D-wave state in Cartesian coordinates yields

¬

i j
�

�J0
�

� op
¶

=− ieQc

�

GE(|q|) Ei j,op +
1

2M2
nc

GQ(|q|) Q i j,op +
1

4M4
nc

GH(|q|) Hi j,op

�

, (4.51)

with the three-momentum of the virtual photon q = p′ − p and three different D-wave tensors for each

form factor Ei j,op ∼ q0, Q i j,op ∼ q2 and Hi j,op ∼ q4. Compared to the S-wave state, we get contributions

to the electric GE , quadrupole GQ and hexadecupole form factor GH for the D-wave. Evidently, the

hexadecupole form factor is only observable for the 5/2+ D-wave state and unobservable for the 3/2+

state. This can be straightforwardly verified by considering the appropriate Clebsch-Gordan coefficients

to couple the spin and angular momentum to total J for the two D-wave states in combination with

Hi j,op in spherical coordinates.

For reasons of simplicity, the calculation is carried out in Cartesian coordinates and the Cartesian

tensors that come out automatically of our calculation are given below

Q̃ i j,op =
1
4

�

q jqpδio + q jqoδip + qiqpδ jo + qiqoδ jp −
4
3

qiq jδop −
4
3

qoqpδi j +
4
9

q2δi jδop

�

, (4.52)

H̃i j,op =
�

qiq jqoqp −
1
3

q2qiq jδop −
1
3

q2qoqpδi j +
1
9

q4δi jδop

�

. (4.53)

However, the appropriate Cartesian tensors Ei j,op, Q i j,op, and Hi j,op have to fulfill the following con-

straints

Ei j,op Ei j,op = 5, δi j Ei j,op = δop Ei j,op = 0 , (4.54)

Ei j,op Q i j,op = 0, δi j Q i j,op = δop Q i j,op = 0 , (4.55)

Ei j,op Hi j,op = 0, Q i j,op Hi j,op = 0, δi j Hi j,op = δop Hi j,op = 0 , (4.56)

that are derived from the definition of the tensor structure for the respective partial wave and correspond-

ing form factor. The Ei j,op tensor, which we deduced in the dimer calculation (4.20) before, represents

the number of D-wave polarizations

Ei j,op =

�

δioδ jp +δipδ jo − 2
3δi jδop

�

2
. (4.57)
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Hence, under consideration of the constraints in Eq. (4.55) and (4.56), we obtain the appropriate

quadrupole and hexadecupole tensors

Q i j,op =
3
5

Q̃ i j,op −
1
5

q2Ei j,op , (4.58)

Hi j,op =
3
2

H̃i j,op −
30
35

q2Q̃ i j,op +
3

35
q4Ei j,op . (4.59)

Note that the neutron spin is unaffected by the charge operator up to the order considered here.

LO results
In the following, we present the LO results for the D-wave state before discussing the NLO effects.

At LO, only topology (a) in Fig. 4.3 contributes and we find for the electric GE(|q|), quadrupole GQ(|q|)
and hexadecupole GH(|q|) form factors

GE(|q|) =
1

r2 +P2γ
2
2

��

L̃(d)LO
C01 +

4
3

L̃(d)LO
C02

�

|q|2 + γ2
2P2 + r2

�

, (4.60)

GQ(|q|) =
2M2

nc

r2 +P2γ
2
2

�

20
3

L̃(d)LO
C02

�

, (4.61)

GH(|q|) =0 , (4.62)

where L(d)LO
C01/2 represents the finite LO pieces of the local gauge-invariant operators L(d)C01/2 from Eq. (4.43).

At NLO, these operators have a finite piece L(d)NLO
C01/2 as well as µ-dependent part that cancels the renormal-

ization scale dependence from the loop contribution. For a better readability, we absorb some prefactors

in the definition of the counterterms and define

L̃(d)C01 =
15π

eQc g2
2 m2

R

L(d) fin
C01 , (4.63)

L̃(d)C02 =
15π

eQc g2
2 m2

R

L(d) fin
C02 . (4.64)

A more detailed discussion of the evaluation of the Feynman diagrams in Fig. 4.3 (a) is presented in

App. A.4.1.

The electric form factor for |q| → 0 is normalized such that

GE(|q|)≈ 1− 1
6
〈r2

E〉 |q|2 + . . . , (4.65)

and an expansion of Eq. (4.60) yields GE(0) = 1 and an electric radius of the D-wave state at LO

〈r2
E〉
(d) = − 6

r2 +P2γ
2
2

�

L̃(d)LO
C01 +

4
3

L̃(d)LO
C02

�

, (4.66)
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which means that the electric radius is not a prediction.

Moreover, the quadrupole and hexadecupole form factors can be expanded for small |q| as

1
M2

nc

GQ(|q|)≈ µQ

�

1− 1
6
〈r2

Q〉 |q|2 + . . .
�

, (4.67)

1
M4

nc

GH(|q|)≈ µH

�

1− 1
6
〈r2

H〉 |q|2 + . . .
�

. (4.68)

Thus, we expand Eq. (4.61) and find for the quadrupole moment at LO

µ
(d)
Q =

40 L̃(d)LO
C02

3
�

r2 +P2γ
2
2

� , (4.69)

which also contains an unknown counterterm.

NLO results
At NLO, diagram (b) in Fig. 4.3 also contributes. The detailed calculation of the loop diagram is

shown in App. A.4.2. After adjusting L(d)NLO
C01/2 to satisfy the renormalization conditions (4.66) and (4.69),

we obtain

GE(|q|) =−
1
6
〈r2

E〉
(d) |q|2 + 1

r2 +P2γ
2
2 − 5γ3

2

�

77γ2 f 2|q|2
48

− 19γ3
2

4
+ γ2

2P2 + r2

−arctan
�

f |q|
2γ2

�

�

21 f 3|q|3
32

+
13γ2

2 f |q|
4

+
γ4

2

2 f |q|

��

, (4.70)

GQ(|q|) = M2
nc µ

(d)
Q +

2M2
nc

r2 +P2γ
2
2 − 5γ3

2

�

125γ2 f 2

42
− 25γ3

2

7|q|2

−arctan
�

f |q|
2γ2
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75 f 3|q|
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+
75γ2

2 f

14|q| −
50γ4

2

7 f |q|3
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, (4.71)

GH(|q|) =
2
3

4M4
nc

r2 +P2γ
2
2 − 5γ3

2

�

−45γ2 f 2

64|q|2 +
45γ3

2

16|q|4

−arctan
�

f |q|
2γ2

�

�

45 f 3

128|q| −
15γ2

2 f

16|q|3 +
45γ4

2

8 f |q|5
��

, (4.72)

with f = mR/M . From the loop diagram in Fig. 4.3, a divergence emerges that is absorbed by P2 from

the direct photon coupling in diagram (a) and two more that are absorbed by the µ-dependent parts of

the counterterms L(d)C02 and L(d)C01 at NLO. We expand Eq. (4.72) and derive the hexadecupole moment

µ
(d)
H = −

2 f 4

3γ2

�

r2 +P2γ
2
2

� , (4.73)

38 4. Halo EFT Results



as a prediction. The electric radius 〈r2
E〉
(d) and the quadrupole moment µ(d)Q are not predicted. They are

used to fix the counterterms L(d)C02 and L(d)C01. The quadrupole and hexadecupole radii yield

〈r2
Q〉
(d) =

27
28

f 4

γ2 L̃(d)C02

, (4.74)

〈r2
H〉
(d) =

9
14

f 2

γ2
2

, (4.75)

where the hexadecupole radius is predicted by Halo EFT and the quadrupole radius depends on the

counterterm L(d)C02, fixed by the quadrupole moment. Thus, we can predict the quadrupole radius if the

quadrupole moment is known.

We continue with the calculation of magnetic form factors, while the explicit application of our Halo

EFT results to 15C and 17C is presented in Sec. 4.10.

4.7.2 Magnetic Moments

The magnetic properties of shallow bound states are predominantly determined by the magnetic mo-

ments of its degrees of freedom. The magnetic moment of a single particle is introduced into the

Lagrangian through an additional magnetic one-body operator [49, 84]. An additional counterterm

enters via a two-body current. Assuming a spin-0 core, the effective Lagrangian is written as

LM = κnµN n†σ · Bn+ 2µN LJ
MΦ

†SJ · BΦ , (4.76)

where Φ is a place holder for the relevant auxiliary field (σs, πs, dJ ,M , ...), SJ is the corresponding spin

matrix for spin J ,σ represents the Pauli matrices, µN denotes the nuclear magneton, and LJ
M the coupling

constant for the magnetic two-body current. For the anomalous magnetic moment of the neutron we use

κn = −1.913 [37].

The corresponding Feynman rule for the coupling of the photon to the magnetic moment of the

neutron is given by

−κnµNσms ,m
′
s
· (k × ε) , (4.77)

with the photon momentum k, the photon polarization vector ε and the Pauli matrices σ. The incoming

and outgoing spin polarizations of the neutron are denoted by ms and m′s, respectively.

Compared to the electric form factors, magnetic form factors are calculated from Feynman diagrams

with a vector photon between the initial and final bound state. Furthermore, the photon not only couples

to the electric charge of the core but also to the magnetic moment of the halo neutron. As before, we

review the S-wave result of the magnetic moment before we consider the D-wave state.
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Magnetic Moment of the S -Wave State

We reproduce the results obtained by Fernando et al. [84] who calculated electromagnetic form factors

for S-wave states of one-neutron halo nuclei. Up to NLO, only the two last diagrams in Fig. 4.4 contribute

+ +

Figure 4.4.: Diagrams contributing to the magnetic moment. The first diagram is the coupling of a vector
photon to the charge of the core arising from minimal substitution in the Lagrangian. The
second diagram displays a vector photon coupling to the magnetic moment of the neutron.
The last diagrams shows a two-body current. The thick solid line denotes the dressed σ-
propagator.

to the magnetic form factor in the Breit frame and we derive for the magnetic form factor

eQc

2Mnc
GM(|q|) = ZσµN

�

g2
0κn

mmR

π|q| arctan
� |q|mR

2mγ0

�

+ LσM

�

, (4.78)

with the NLO wave function renormalization

Zσ =
2πγ0

m2
R g2

0(1− r0γ0)
and we define L̃σM =

2πLσM
m2

R g2
0

. (4.79)

The magnetic moment κσ is obtained by evaluating the form factor at |q|= 0

κσ =
eQc

2Mnc
GM(0) =

κn + L̃σMγ0

1− r0γ0
, (4.80)

where κσ is given in units of µN . Naive dimensional analysis with rescaled fields, [σ̃] = 2, determines

the scaling of the counterterm L̃σM ∼ Rcore. As a consequence, L̃σM contributes at NLO. At LO, we set r0 = 0

and the magnetic moment of the S-wave state is thus given by the magnetic moment of the neutron, κn.
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Magnetic Moments of the D-Wave State

In the case of the D-wave, the only contribution to the magnetic moment at LO is the two-body current

in Eq. (4.76), which corresponds to the last diagram in Fig. 4.4. Hence, we obtain for the magnetic form

factor

eQc

2Mnc
GM(|q|) = ZdµN Ld

M = −
µN L̃d

M

r2 +P2γ
2
2

, (4.81)

with the wave function renormalization at LO

Zd = −
15π
m2

R g2
2

1
r2 +P2γ

2
2

and we adopt L̃d
M =

15πLd
M

m2
R g2

2

. (4.82)

The expansion of Eq. (4.81) for small |q| yields for the magnetic form factor at LO

κd =
eQc

2Mnc
GM(0) = −

L̃d
M

r2 +P2γ
2
2

, (4.83)

where κd is given in units of µN as before. Because of the unknown counterterm, κd cannot be predicted.

Beyond LO, we also need to consider the loop diagrams in Fig. 4.4. Therefore, additional counterterms

are required to renormalize the corresponding divergences. This complicates predictions even further

and for that reason, we do not calculate the NLO contribution to the magnetic form factors for the

D-wave state explicitly.

In general, the magnetic moment of the D-wave states will thus differ significantly from the magnetic

moment of the neutron since κn is a NLO contribution.

4.8 Electromagnetic Transitions

After investigating the static electromagnetic properties of halo states, we consider E2 and M1 transitions

between S- and D-wave states in this chapter. In this case, the amplitudes are calculated from Feynman

diagrams with a real vector photon between the initial and final bound state. Moreover, the initial and

final states are no longer identical. We start with the calculation of the S-to-D state E2 transition and

then consider the M1 transitions from S-to-D and D-to-D′ state.

4.8.1 E2 Transitions

The diagrams contributing to the irreducible vertex for the E2 transition from the S-wave state to the

D-wave state up to NLO are depicted in Fig. 4.5. At LO, only the two loop diagrams (a) from minimal

substitution contribute and at NLO, an additional counterterm (b) enters.
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(a) (b)

Figure 4.5.: The diagrams contributing to the irreducible vertex that determines the S-to-D state transi-
tion in Halo EFT up to NLO. The thick double line denotes the dressed D-wave propagator
and the thick single line the dressed S-wave propagator.

The additional local operator with one power of the photon field for the B(E2) transition strength is

given by

LE =− L(sd)
E2 σmd†

m′

�

1
2

m Jm′
�

�

�

�

2ml

�

(1α 1β |2ml)

�

∇α∇βA0 − ∂0

�∇αAβ +∇βAα
�

2

�

, (4.84)

where repeated spin indices are summed over. Using the rescaled fields σ̃ and d̃ (4.44), we can determine

the scaling of the operator with respect to Rcore from naive dimensional analysis

L(sd)
E2 ∼ Rcorel(5/2)E2 g0 g2m2

R , (4.85)

with l(5/2)E2 of order one. Below we show that the operator ∼ L(sd)
E2 yields a NLO contribution.

LO result

We start with the presentation of the LO results and then discuss the NLO effects. The photon has

a four momentum of k = (ω,k) and its polarization index is denoted by ν. The computation of the

relevant diagrams yields a vertex function Γm′msν
, where m′ is the total angular momentum projection

of the D-wave state and ms denotes the spin projection of the S-wave state. The detailed evaluation of

both Feynman diagrams is shown in App. A.3. Since the neutron spin is unaffected by this transition, we

calculate the vertex function with respect to the specific components of the D-wave interaction

Γm′msν
=
∑

ml

�

1
2

ms 2ml

�

�

�

�

Jm′
�

∑

αβ

(1α 1β |2ml) Γ̃αβν , (4.86)

where J denotes the total spin of the D-wave state. In the case of ms = m′ = ±1/2, only ml = 0
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contributes to the sum in Eq. (4.86) and we derive for J = 5/2

Γ++ν = Γ−−ν =

√

√2
5
Γ̃00ν +

√

√ 1
10
Γ̃1−1ν +

√

√ 1
10
Γ̃−11ν , (4.87)

where ± denotes the total angular momentum projection ±1/2. We calculate the irreducible vertex

in Coulomb gauge so that we have k · ε = 0 for real photons with the photon polarization vector ε.

Additionally, we choose, without loss of generality, k · p= 0 to simplify the calculation, where p denotes

the incoming momentum of the S-wave state. As a result, the space-space components of the vertex

function in Cartesian coordinates can be written as

Γ̃i jk = ΓE
1
2

�

k jδik + kiδ jk

�

+ ΓM pk

�

kik j −
1
3
δi jk

2
�

. (4.88)

By choosing the photon to be traveling in ẑ direction, we obtain

Γ̃333 = ΓEω , with |k|= kz =ω . (4.89)

By comparing the definitions for the transition rate depending on B(E2) and the transition rate as a

function of the irreducible vertex ΓE [94], we deduce the following dependence for arbitrary multipolar-

ity λ

B(Eλ)=
1

2π
1

k2λ

λ [(2λ+ 1)!!]2

(λ+ 1)(2λ+ 1)

�

�Γm′msν

�

�

2
. (4.90)

Hence, in the case of B(E2) and if we replace Γm′msν
with Eq. (4.87) and (4.89), it follows

B(E2: 1/2+→ 5/2+)=
15
π

�

Γ++3

ω2

�2

=
6
π

�

Γ̄E
ω

�2

, (4.91)

with the renormalized, irreducible vertex Γ̄E =
p

ZσZdΓE . At LO, Zσ and Zd are given in Eq. (4.32).

Using the result of the calculation for ΓE from the diagrams in Fig. 4.5 (a), App. A.3, we derive at LO

B(E2: 1/2+→ 5/2+)=
4

5π

Z2
effe

2γ0

−r2 −P2γ
2
2

�

3γ2
0 + 9γ0γ2 + 8γ2

2

(γ0 + γ2)3

�2

, (4.92)

where γ2, r2, and P2 are the parameters of the 5/2+ state and the effective charge, Zeff =
�

m
Mnc

�2
Qc,

comes out of the calculation automatically and is given for arbitrary multipolarity λ by [95]

Z (λ)eff = Zn

�

M
Mnc

�λ

+ Zc

�

− m
Mnc

�λ

. (4.93)
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Consequently, we can predict the B(E2) transition in Halo EFT at LO once γ0, γ2 and the wave function

renormalization constants are known.

The renormalized B(E2) matrix element scales as ∼ Rhalo
p

Rcore Rhalo, whereas the operator ∼ L(sd)
E2

scales as ∼ Rcore
p

Rcore Rhalo and therefore, contributes at NLO. Both diagrams in Fig. 4.5 (a) are diver-

gent. However, the divergences cancel each other. This is expected since gauge invariance precludes

additional counterterms that could absorb divergences at this order.

Alternatively, the same result for Γ̄E can be derived using current conservation

ωΓ̃i j0 = kkΓ̃i jk , (4.94)

if we calculate the space-time components of the vertex function Γ̃ . In contrast to Γ̃i jk, we have to

consider only the left diagram in Fig. 4.5 with an A0-photon vertex for Γ̃i j0 at LO.

The calculation of the transition to the 3/2+ state can be carried out in the same way. The only

difference is a relative factor of 2/3 for B(E2) because of the different Clebsch-Gordan coefficient in Eq.

(4.87)

B(E2: 1/2+→ 3/2+)=
8

15π

Z2
effe

2γ0

−r2 −P2γ
2
2

�

3γ2
0 + 9γ0γ2 + 8γ2

2

(γ0 + γ2)3

�2

, (4.95)

where γ2, r2, and P2 are now the parameters of the 3/2+ state.

NLO result
To obtain the NLO result for the 1/2+ to the 5/2+ transition, we have to take the additional coun-

terterm for B(E2), Eq. (4.84) or diagram (b) in Fig. 4.5, into account and use the NLO expressions for

Zσ and Zd in Eq. (4.33)

B(E2: 1/2+→ 5/2+)=
6γ0/π

(r2 +P2γ
2
2 − 5γ3

2)(r0γ0 − 1)

�p
2Zeff ep

15

�

3γ2
0 + 9γ0γ2 + 8γ2

2

(γ0 + γ2)3

�

+
2mR L̃(sd)

E2

γ2
0 − γ2

2

�2

,

(4.96)

with the definition

L̃(sd)
E2 =

p
30π

m2
R g0 g2

L(sd)
E2 . (4.97)

Because of the additional counterterm that has to be fitted, numerical predictions for the NLO result are

currently not possible. As before, the expression for the transition to the 3/2+ state differs by a relative

factor of 2/3.

In principle, we can also calculate the E2 transition for D → D′. However, we do not present

the result here since the relevant diagram diverges cubically and therefore, additional counterterms are

required for this observable already at LO. Instead, we continue with the M1 transitions.
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4.8.2 M1 Transitions

The selection rules for M1 transitions, i.e. parity conservation and ∆J = 0,±1, allow only transitions

from 3/2+ → 1/2+ or 3/2+ → 5/2+ and vice versa for S- and D-wave states. As there are no relevant

M1 transitions in 15C, we focus on 17C in this section.

S → D Transition

We will first consider the M1 transition strength from the 3/2+ ground state (D-wave) to the first excited

1/2+ state (S-wave) in 17C since it was measured in Refs. [86, 87]. The experimental result is small

compared with typical M1 transition strengths in nuclei

B(M1: 1/2+→ 3/2+)= 1.04+0.03
−0.12 × 10−2µ2

N (4.98)

= 0.58× 10−2 W.u. , (4.99)

expressed in Weisskopf units and taken from Ref. [87].

In the neutron-core picture of Halo EFT, the M1 transition from a D-wave to an S-wave state is

forbidden for one-body currents, which agrees with the experimental suppression of the transition. The

non-zero transition strength can only be accounted for by a two-body current that takes short-ranged

(core) physics into account. We therefore include the gauge-invariant counterterm

LM = −µN Lσd
M1σ

†
mdm′

�

1
2

m1i

�

�

�

�

3
2

m′
�

Bi . (4.100)

By rescaling the fields to absorb unnaturally large coupling constants, leading to [σ̃] = 2, [d̃] = 0, and

using naive dimensional analysis for the rescaled fields, we derive Lσd
M1 ∼ R−1

corelσd
M1 g0 g2m2

R with lσd
M1 of

order one. To obtain the magnetic transition amplitude, we calculate the vertex function

Γmm′ i =

�

1
2

m1i

�

�

�

�

3
2

m′
�

µN L̃σd
M1εi jkk j , (4.101)

where we adopt

L̃σd
M1 =

p
30π

m2
R g0 g2

Lσd
M1 . (4.102)

If we consider the case m= −m′ = ±1/2 and choose the photon to be traveling in ẑ direction, we obtain

Γ̄±∓,∓1 = ∓
µNp

3
L̃σd

M1ω . (4.103)
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This yields for the M1 transition strength

B(M1: 1/2+→ 3/2+)=
3

4π

�

Γ̄±∓,∓1

ω

�2

= − 1
4π

γ0

r2 +P2γ
2
2

�

L̃σd
M1

�2
µ2

N . (4.104)

Because of the additional counterterm at LO, we cannot predict B(M1) numerically to compare our Halo

EFT result with the experimental data.

D ’→ D Transition

The M1 transition strength from the 3/2+ ground state (D-wave) to the second excited 5/2+ state (D′-
wave) in 17C was also measured in Ref. [86]

B(M1: 5/2+→ 3/2+) = 7.12+1.27
−0.96 × 10−2µ2

N . (4.105)

Compared to the D-to-S-state M1 transition strength, it is around one order of magnitude larger. This

agrees with the fact that M1 transitions are allowed for neutron-core systems with one-body currents by

the usual selection rules. We calculate both loop diagrams in Fig. 4.6 and find that we need additional

counterterms to absorb all divergences. Moreover, we obtain results for the M3 and M5 transition. Two

different counterterms are required for the M1 transition and two more for the M3 transition.

+ + +

(a) (b)

Figure 4.6.: Relevant diagrams for the M1 transition. In the diagram (a) a vector photon couples to the
magnetic moment of the neutron and in (b) to the electric charge of the core. In the two
remaining diagrams the photon couples directly to the D-wave dimers. For a more detailed
description of the lines, see Fig. 4.2.

In the following, we concentrate the discussion on the M1 transition. In this case, the two countert-

erms are given by

LM = −Ldd′
M1aµN d†

i jd
′
i jσ

msms′
k Bk − Ldd′

M1bµN d†
i j∇ ·Ad ′i j . (4.106)

The first counterterm is needed to renormalize the scale dependence from diagram (a) with the magnetic
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photon coupling to the neutron and the second one renormalizes the scale for the vector photon coupling

in diagram (b), respectively. For a better readability, we absorb some prefactors in the definition of the

counterterms and adopt

L̃dd′
M1a =

15π
m2

R g2′ g2
Ldd′ fin

M1a , (4.107)

L̃dd′
M1b =

15π
m2

R g2′ g2
Ldd′ fin

M1b , (4.108)

which represent the finite pieces of the local gauge-invariant operators. The µ-dependent part of Ldd′
M1a

and Ldd′
M1b cancels the renormalization scale dependence from the loop contribution.

As before, the photon has a four-momentum k = (ω, k) and its polarization index is denoted by

ν. The computation of both diagrams leads to a vertex function Γmm′ν, where m is the total angular

momentum projection of the 3/2+ state and m′ denotes the spin projection of the 5/2+ state. The

computation of the vertex function with respect to the specific components of the D-wave interaction

yields

Γmm′ν =
∑

αβδηml m
′
l msm′s

�

1
2

ms2ml

�

�

�

�

3
2

m

�

(1α1β |2ml )

�

1
2

m′s2m′l

�

�

�

�

5
2

m′
�

�

1δ1η
�

�2m′l
�

Γ̃αβδην . (4.109)

We calculate the irreducible vertex in Coulomb gauge so that we have k · ε = 0 for real photons. Addi-

tionally, we choose k · p = 0, where p denotes the incoming momentum of the D-wave state. As a result,

the space-space components of the vertex function in Cartesian coordinates for the left diagram can be

written as

Γ̃i jopk = Γ
(a)
M εabkσ

msms′
a kb

�

δioδ jp +δipδ jo

2
− 1

3
δi jδop

�

, (4.110)

and for the right one

Γ̃i jopk = Γ
(b)
M pk

�

δioδ jp +δipδ jo

2
− 1

3
δi jδop

�

+ ΓE2

�

ki

�

δ jpδko +δ joδkp

2
− 1

3
δ jkδop

�

+ · · ·
�

, (4.111)

where the ellipsis inside the bracket stands for further terms with permuted indices. In the left diagram,

the photon couples to the spin of the neutron and we get a spin flip ms 6= m′s. In the case of the right

diagram, there is no spin flip so that ms = ms′ . By choosing the photon to be traveling in ẑ direction, it

follows from the tensor structure of Γ̃i jopν that ml = m′l and ν 6= 0. For the case that m = ±1/2 = −m′,
we derive

−Γ−+,1 = Γ+−,−1 =
p

6
5
Γ
(a)
M

p
2ω , (4.112)
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and for m= m′, we get zero for all possible values. This yields for the B(M1: 3/2+→ 5/2+) transition

B(M1: 3/2+→ 5/2+)=
3

4π

�

Γ+−,−1

ω

�2

=
9

25π

�

Γ̄
(a)
M ω

ω

�2

(4.113)

=
9µ2

N

25π
1

r2 +P2γ
2
2

1
r2′ +P2′γ

2
2′

�

L̃dd′
M1a +

2γ4
2′κn

(γ2′ + γ2)
+ 2κn

�

γ2γ
2
2′ + γ

3
2

�

�2

, (4.114)

with the renormalized, irreducible vertex Γ̄M =
p

Zd Zd′ΓM . By rescaling the fields, [d̃] = [d̃ ′] = 0, and

using dimensional analysis, we find that the counterterm scales as

Ldd′
M1a/b ∼ R−3

coreldd′
M1a/b g2 g2′m

2
R , (4.115)

with ldd′
M1a/b of order one. In contrast, the contribution from the loop scales as R−3

halo, which means that

at LO, only the counterterm contributes to the M1 transition and the loop diagram is suppressed by

(Rcore/Rhalo)3. Thus, the M1 transition is strongly dominated by short-range physics. As a consequence,

a numerical prediction for the M1 transition for the D′→ D case is generally difficult and at the moment,

not possible for 17C due to the lack of data.

4.9 Neutron Capture

An important process providing insight into the properties of halo nuclei is neutron capture or the time-

reversed process, photodissociation. In contrast to the standard ab initio approaches, Halo EFT allows for

the calculation of static observables as well as nuclear reactions within the same theoretical framework.

In this chapter, we compute cross sections for the E1 and M1 neutron capture reaction on one-neutron

halo nuclei into the S- and D-wave state. Because of the detailed balance theorem [96], the time-

reversed process, i.e. breakup reactions through photodissociation, can also be described without further

calculations.

The cross section for the neutron capturing process, n+ c→ Anc +γ, in the center-of-mass system is

related to the squared matrix elementM by the following relation

σ(inelastic) =
1

|vn − vc|
|M|2Φ2 =

2mR

|p| |M|
2Φ2 , (4.116)

where Anc represents the nucleus of the composite neutron-core system, vn − vc indicates the relative

neutron and core velocity and p is the relative momentum of the nc pair. Moreover, Φ2 denotes the
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two-particle phase space and is given by

Φ2 =

∫

d3pAnc

(2π)3

∫

d3k
(2π)3

1
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=
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√

√
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2mR

�



 , (4.120)

where BE denotes the binding energy of the Anc system, ω = |k| the photon energy and k the photon

momentum. By exploiting the energy conservation

p2

2m
+

p2

2M
=ω− BE +

ω2

2Mnc
, (4.121)

and by replacing
�

BE +
p2

2mR

�

with
�

ω+ ω2

2Mnc

�

, it follows

Φ2 =
1

2π
ωMnc

ω+Mnc
. (4.122)

The total cross section thus reads

σ(inelastic) =
1
π

mR

p
Mncω

ω+Mnc
|M|2 ≈ mR

π

ω

p
|M|2 , (4.123)

where we used in the last step that ω� Mnc.

4.9.1 E1 Neutron Capture

We start with E1 neutron capture, which generally dominates over M1 capture. For 15C, E1 neutron

capture was already considered in Ref. [82]. In their studies, Rupak et al. included P-waves as initial

state interactions. Their power counting, however, differs from ours for shallow bound states beyond

S-wave so that P-wave initial state interactions are LO in Ref. [82] but NLO contributions in our power-

counting scheme, cf. Ref. [64] and App. B. In the following, we calculate the neutron capture cross

section at LO and therefore, neglect diagrams including P-wave states. First, we discuss E1 capture into

the S-wave state and then consider D-wave states.
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E1 Capture into the S -Wave State

E1 capture proceeds dominantly through the vector coupling of the photon to the halo core. The cor-

responding LO operator is generated through minimal substitution in Eq. (4.4), cf. Eq. (4.42). The

diagram that contributes at LO to this process is shown in Fig. 4.7. It is the time-reversed diagram of the

photodissociation reaction considered in Ref. [64].

Figure 4.7.: Relevant diagram contributing to the E1 capture amplitude to S-wave states at LO. For a
more detailed description of the lines, see Fig. 4.2 and 4.4.

At LO, the E1 neutron capture amplitude yields

Γ̄ i =

p

ZσeQc g0

M

�

E − (p − k)2

(2M)

�−1

εi · p (4.124)

= −ε
i · p
M

p

ZσeQc g02mR

γ2
0 + (p − m

Mnc
k)2

, (4.125)

where i is the photon polarization, p denotes the relative momentum of the nc pair, ω the photon

energy and k the photon momentum. Throughout this section, we choose the nc pair to be traveling in ẑ

direction, which means that p = |p|ez. Moreover, the energy of the core propagator between the photon

vertex and the nc-S-wave interaction is given by

E =
p2

2M
−ω . (4.126)

In the last step of Eq. (4.125) we exploited the energy conservation and used

E =
p2

2M
−ω= − p2

2m
− B0 +

ω2

2Mnc
with B0 =

γ2
0

2mR
. (4.127)

Since m/Mnc is small and it follows from power counting that p ∼ γ0 ∼ R−1
halo and ω ∼ Rcore/R

2
halo,

we can neglect the recoil term ∼ p · k in the denominator. By averaging over the neutron spin and
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photon polarization and summing over the outgoing S-wave spin, we obtain at LO using m
Mnc
ω� p

dσcap

dΩ
=

mR

4π2

ω

p

�

�M (1/2)
�

�

2
=

e2Z2
eff

πm2
R

pγ0 sin2 θ

(p2 + γ2
0)

, (4.128)

with the LO approximation ω ≈ (p2 + γ2
0)/2mR, the angle between k̂ · p̂ = cosθ , the effective charge

Zeff = (mR/M)Qc, and

�

�M (1/2)
�

�

2
=

1
2

∑

i,ms ,M

�

�Γ̄ i
�

�

2
δms ,M , (4.129)

where ms denotes the neutron spin and M the S-wave polarization. For the photon polarization sum, the

following identity was used

∑

i

εi
αε

i∗
β = δαβ −

kαk∗
β

k2
. (4.130)

As the neutron spin is unaffected by this reaction, ms and M have to be the same. After integration

over dΩ, we derive

σcap =
mR

π

ω

p

�

�M (1/2)
�

�

2
(4.131)

=
8e2Z2

eff

3m2
R

pγ0

(p2 + γ2
0)
=

32παZ2
eff

3m2
R

pγ0

(p2 + γ2
0)

, (4.132)

with the fine-structure constant α= e2/(4π).

Exploiting the detailed balance theorem, the capture cross section σcap can be related to the pho-

todissociation cross section σdis [96] as follows

σcap =
2(2Jnc + 1)

(2 jn + 1)(2 jc + 1)
ω2

p2
σdis = 2

ω2

p2
σdis . (4.133)

E1 Capture into the D -Wave State

Next, we consider D-wave states and calculate E1 neutron capture into the 3/2+ and 5/2+ states. The

relevant diagrams that emerge from minimal substitution in our Lagrangian (4.4) are shown in Fig. 4.8.
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Figure 4.8.: Relevant diagrams for E1 capture to D-wave states at LO. For a more detailed description of
the lines, see Fig. 4.2.

They yield

Γ̄ i
msJ M =−

∑

ms′ml

�

1
2

ms′ 2ml

�

�

�

�

J M

�

∑

αβ

(1α 1β |2ml)
p

Zd g2eQc
2mR

M
×





�

p − m
Mnc

k
�

α

�

p − m
Mnc

k
�

β

γ2
2 +

�

p − m
Mnc

k
�2 εi · p + εi

α

�

pβ −
m

2Mnc
kβ

�



δmsm′s , (4.134)

with the charge of the core Qc, the photon momentum k, the relative momentum of the incoming nc

pair p, the photon polarization i and J M denoting the spin and polarization of the D-wave, respectively.

Note that the neutron spin is unaffected by the E1 capture process up to this order.

By projecting out the J = 3/2 part of the amplitude M (3/2) and by averaging (summing) over

incoming (outgoing) spins, respectively, we finally obtain the differential cross section for the E1 capture

process at LO using m
Mnc
ω� p

dσcap

dΩ
=

mR

4π2

ω

p

�

�M (3/2)
�

�

2
(4.135)

=
15
2π

�

p2 + γ2
2

�

m2
Rp

e2Z2
eff

−r2 −P2γ
2
2

X (θ ) =
30αZ2

eff

−r2 −P2γ
2
2

�

p2 + γ2
2

�

m2
Rp

X (θ ) , (4.136)

with the fine-structure constant α, Zeff = (mR/M)Qc, the squared amplitude

�

�M (3/2)
�

�

2
=

1
2

∑

i,ms ,M

�

�

�Γ̄ i
ms3/2M

�

�

�

2
, (4.137)

and the function that contains the θ dependency

X (θ ) =
1
15

�

2p2(13− cos(2θ )) +
4p4 sin2(θ )
�

γ2
2 + p2

�

�

p2

�

γ2
2 + p2

� + 2

��

. (4.138)

52 4. Halo EFT Results



After integrating over dΩ, we eventually derive for the total cross section

σcap =
αZ2

eff

−r2 −P2γ
2
2

32πp
3m2

R

�

5γ4
2 + 11p4 + 14γ2

2p2
�

�

γ2
2 + p2

� . (4.139)

From an experimental measurement of the capture (or dissociation) cross section, we can therefore

extract the numerical value of the combination of D-wave effective range parameters 1/(−r2 −P2γ
2
2).

For the 5/2+ state we project out the J = 5/2 part of the amplitude M (5/2) and obtain

dσcap

dΩ
=

mR

4π2

ω

p

�

�M (5/2)
�

�

2
(4.140)

=
45
4π

�

p2 + γ2
2′
�

m2
Rp

e2Z2
eff

−r2′ −P2′γ
2
2′

X (θ ) =
45αZ2

eff

−r2′ −P2′γ
2
2′

�

p2 + γ2
2′
�

m2
Rp

X (θ ) , (4.141)

where X (θ ) is the same as for the J = 3/2 cross section. After integrating over dΩ, we deduce for the

total cross section

σcap =
αZ2

eff

−r2′ −P2′γ
2
2′

16πp
m2

R

�

5γ4
2′ + 11p4 + 14γ2

2′p
2
�

�

γ2
2′ + p2

� , (4.142)

which is the same result as the J = 3/2 cross section multiplied by a factor of 3/2 and different numerical

values for γ2, r2 and P2.

4.9.2 M1 Neutron Capture

After the calculation of the E1 neutron capture, we consider the M1 neutron capture process. In partic-

ular, we compute the cross section for M1 capture first into the S- and then into the D-wave state.

M1 Capture into the S -Wave State

The calculation of the M1 capture cross section is similar to the E1 capture in the previous section. The

main difference between both processes is the parity conservation in the M1 matrix element. Therefore,

the loop diagram (b), shown in Fig. 4.9, is also relevant at LO for M1 capture since initial state interac-

tions in the S-wave channel have to be taken into account. Additionally, the photon now couples to the

magnetic moment of the halo neutron in diagrams (a) and (b). In principle, we also need to consider

diagrams that arise from minimal substitution. This is illustrated in the third diagram (c), where the

photon couples to the charged core. In the S-wave case, however, diagram (c) yields no contribution to

the M1 capture process.
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(a) (b) (c)

Figure 4.9.: Relevant diagrams contributing to M1 capture at LO. For a more detailed description of the
lines, see Fig. 4.2 and 4.4.

For diagram (a) in Fig. 4.9, we obtain

Γ̄
(a)
imsms′

= −2
p

ZσκnµN g0mR

σ
msms′
j (k× εi) j

γ2
0 +

�

p − M
Mnc

k
�2 , (4.143)

with the Pauli matrices σ j, the photon polarization index i, and the relative momentum of the incoming

nc pair p. Since the power counting stipulates p ∼ γ0 ∼ R−1
halo and ω ∼ Rcore/R

2
halo, we can neglect the

recoil term ∼ p · k in the denominator of Eq. (4.143)

Γ̄
(a)
imsms′

= −2
p

2πγ0κnµN

σ
msms′
j (k× εi) j
γ2

0 + p2
. (4.144)

Considering diagram (b) with the intermediate S-wave state, we derive

Γ̄
(b)
imsms′

= −pZσg3
0κnµN

2π
g2

0 mR

σ
msms′
j (k× εi) j

1
a0
− r0

2 p2 + ip

∫

dl3

(2π)3
2mR

p2 − l2

2mR

γ2
0 +

�

l + mR
m k

�2 , (4.145)

with the loop momentum l. This leads at LO to

Γ̄
(b)
imsms′

= 2
p

2πγ0κnµN

σ
msms′
j (k× εi) j
γ0 + ip

1
γ0 − ip

= −Γ̄ (a)imsms′
. (4.146)

As a consequence, both diagrams cancel each other at LO. In coordinate space, this process is given

by an overlap integral between two orthogonal wave functions. At NLO, there is an additional con-

tribution from the effective range r0 as discussed for the E1 capture process before, which will give a

correction of order γ0r0 ≈ 40% depending on the specific value of the expansion parameter Rcore/Rhalo.

Moreover, a two-body current enters at NLO with an additional counterterm that has to be fixed from

data, similar to the case of magnetic moments discussed in Sec. 4.7.2. This demonstrates once again

that counterterms play a more dominant role in the magnetic sector than in the electric one.
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Recoil corrections

Subleading recoil corrections are usually dropped in EFT calculations for capture reactions such as

this one. Taking recoil corrections into account, the first diagram (a) will give non-zero contributions to

higher multipoles through higher partial waves in the initial state. The second diagram (b) in Fig. 4.9

contributes only when the core and the nucleon are in a relative S-wave in the initial state.

The denominator in Eq. (4.143) for diagram (a) can be written in coordinate space as

1

γ2
0 +

�

p − M
Mnc

k
�2 =

∫

dr3 exp (−γ0r)
4πr

exp
�

i
�

p − M
Mnc

k
�

· r
�

. (4.147)

The expression on the right-hand side can be viewed as the overlap integral of the halo wave function, a

plane wave scattering wave function, and the current operator exp(i M
Mnc

k·r). After spherically expanding

the plane wave scattering wave function, we obtain for the different partial waves

1

γ2
0 +

�

p − M
Mnc

k
�2 = −

∑

l

(2l + 1)i2l Pl(p̂ · k̂)
Mnc

2Mωp
Re
§

Q l

�

− Mnc

2M pk

�

p2 +
M2

M2
nc

ω2 + γ2
0

��

ª

, (4.148)

where Q l(x) denotes the Legendre function of the second kind and we used

exp(ip · r) = 4π
∞
∑

l=0

l
∑

m=−l

i l jl(pr)Ylm(p̂)Y
∗
lm(r̂ ) . (4.149)

As an example, we consider the S-wave result for Eq. (4.148)

−1
a

ln



1− a

γ2
0 +

�

p+ M
Mnc
ω
�2



 , (4.150)

with a = Mnc/(4Mωp), which agrees with Eq. (4.144) if we set ω∼ 0 and expand the logarithm.

After averaging and summing over incoming and outgoing spins, respectively, we obtain for the

differential cross section the general result

dσcap

dΩ
=

mR

4π2

ω

p

�

�M (1/2)
�

�

2
=

mR

m2
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k
�2i2 , (4.151)

with the fine structure constant α and the squared amplitude
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�M (1/2)
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2
=
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2
. (4.152)
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M1 Capture into the D -Wave State

Next, we consider D-wave states and calculate M1 neutron capture from the continuum into the 3/2+ or

5/2+ states. Compared to the 1/2+ case in the previous section, there are additional contributions from

two-body currents for the D-wave case at LO and NLO
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2
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�

�

�

�

3
2

m′
�

−µN Ldd
M1capd†

m′dmBi

�

3
2

m1i

�

�

�

�

3
2

m′
�

−µN Ld′d′
M1capd ′†m′d

′
mBi

�

5
2

m1i

�

�

�

�

5
2

m′
�

−µN Lσd
M1capd†

m′σmBi

�

1
2

m1i

�

�

�

�

3
2
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. (4.153)

By rescaling the fields to absorb unnaturally large coupling constants, leading to [σ̃] = 2, [d̃] = [d̃ ′] = 0,

and using naive dimensional analysis for the rescaled fields, we obtain

Ld′d
M1cap ∼ R−3

coreld′d
M1cap g2′ g2m2

R , Ld(′)d(′)
M1cap ∼ R−3

coreld(′)d(′)
M1cap g2

2(′)m
2
R , and Lσd

M1cap ∼ R−1
corelσd

M1cap g0 g2m2
R ,

(4.154)

with the constants l ···M1cap all of order one.

The corresponding diagrams are shown in Fig. 4.10. The first diagram (a) represents the first

three terms in Eq. (4.153), where the two-body current is between two D-wave states. This is the LO

contribution to the M1 capture process. The second diagram (b) belongs to the last term in Eq. (4.153)

and is only relevant for the 3/2+ state. This yields a NLO contribution.

+

(a) (b)

Figure 4.10.: Relevant diagrams contributing to M1 capture into the D-wave up to NLO. The thick double
line denotes the dressed D-wave dimer and the thick single line the dressed S-wave dimer.
For a description of the other lines, see Figs. 4.2 and 4.4. The solid squares denote different
vertices from two-body currents.

The diagram (a) in the previous Fig. 4.9, where the photon couples to the magnetic moment of the

neutron, contributes at N2LO and the two loop diagrams at N3LO. Since we get additional counterterms

LM1cap that have to be matched to data, predictions for the M1 capture in the D-wave case become even

more complicated.
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Therefore, we concentrate on the LO result which yields for the 5/2+ state
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with the D-wave polarizations α and β , the photon momentum k, photon polarization i, the relative

momentum of the incoming nc pair p, and we define
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R g2

2′
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M1cap . (4.156)

For the 3/2+ state, we derive
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(4.157)

where we implicitly summed over repeated indices and we adopted

L̃dd
M1cap =
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2
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The differential cross section for the M1 capture process at LO for J = 3/2 or 5/2 is then given by
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4.10 Results for Carbon-15 and Carbon-17

Up to this point, all the results are universal and not specific to 15C or 17C. In this section, we combine

our Halo EFT results with experimental data and ab initio data from the IT-NCSM [76] to predict electro-

magnetic properties for the two carbon isotopes 15C and 17C, shown in Fig. 4.1. Moreover, we investigate

universal relations between different observables for shallow D-wave bound states predicted by the Halo

EFT.
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4.10.1 S -Wave Charge Radius

We start the discussion by considering the relative charge radius of the S-wave state in Eq. (4.50).

Fernando et al. already discussed the result for 15C in Ref. [84]

〈r2
E〉

1/2+

15C − 〈r2
E〉14C = 0.103 fm2 , (4.160)

where we employed the binding momentum γ0 = 0.235 fm−1 from Sec. 4.1 and the extracted value for

r0 = 2.67 fm is taken from Ref. [84]. To make a numerical prediction for the full charge radius of 15C,

we use the charge radius of the 14C core, 〈r2
E〉

1/2
14C = 2.503(9) fm [97], and add it to our Halo EFT result

which yields
r

〈r2
E〉1/2

+

15C = 2.523(9) fm . (4.161)

We compare this value to the measured point-proton radius of 15C in Ref. [98]. For this purpose we

convert the point-proton radius Rp into the charge radius

r

〈r2
E〉1/2

+

15C =

√

√�

R15C
p

�2
+ r2

p +
3

4m2
+

N
Z

r2
n = 2.50(3) fm , (4.162)

where we used the formula for the charge radius from Ref. [99] including the Darwin-Foldy term and

the neutron charge radius as corrections. Furthermore, we employed the proton, rp = 0.875 fm, and

neutron charge radii, r2
n = −0.116 fm2 [100], and N = 9 (Z = 6) denotes the number of neutrons

(protons) of 15C. The derived radius agrees with our Halo EFT result. However, the effect of the relative

charge radius is in the same order as the experimental error.

Considering 17C, we obtain for the charge radius of the excited S-wave state of 17C relative to the

charge radius of 16C at LO

〈r2
E〉

1/2+

17C − 〈r2
E〉16C = 0.074 fm2 , (4.163)

where we used γ0 = 0.218 fm−1 from Sec. 4.1. The error from NLO corrections is about 50%. As before,

we have to add the charge radius of 16C, 〈r2
E〉16C , to our result to predict the full charge radius of 17C

numerically. Hence, we use the point-proton radius Rp from Ref. [98] to derive

r

〈r2
E〉1/2

+

17C =

√

√�

R16C
p

�2
+ r2

p +
3

4m2
+

N
Z

r2
n + 0.074 fm2 = 2.53(5) fm , (4.164)

where N = 11 (Z = 6) indicates the number of neutrons (protons) of 17C. The error bar includes both

the experimental and the Halo EFT uncertainties.

To date, there is no experimental data for the charge radius of the 1/2+ excited state to compare

with. As a consistency check, we compare it with the experimental value for the 3/2+ ground state of
17C extracted in Ref. [98],

Ç

〈r2
E〉3/2

+

17C = 2.54(4) fm, which is very close to our result for the 1/2+ excited
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state. Note that the difference between the charge radius of 17C and 16C is smaller than the experimental

error from Ref. [98] for this quantity.

4.10.2 D -Wave E2 Transition and Form Factors

In the D-wave sector, we start with the E2 transition in 15C. It was measured experimentally and the result

is used to extract the denominator of the D-wave renormalization constant at LO and subsequently, to

predict several electric observables numerically. The E2 strength for the transition from 5/2+→ 1/2+ in
15C is B(E2)= 0.44(1)W.u. [83]. This yields B(E2)= 2.90(7) e2fm4 for the transition from 1/2+→ 5/2+

that we calculated in Sec. 4.8.1. As argued for the power counting in Sec. 4.4, r0 is treated as a LO

parameter for 15C so that Eq. (4.92) has to be modified by a factor of 1/(1− r0γ0), originating from the

renormalization constant of the S-wave state in Eq. (4.33). Using the experimental value for the binding

momenta from Sec. 4.1 γ0 = 0.235 fm−1, γ2 = 0.147 fm−1 and the extracted value for r0 = 2.67 fm [84],

we are able to derive the numerical value for

Zd m2
R g2

2 ∼
1

r2 +P2γ
2
2

= −181(4) fm3 , (4.165)

for 15C. Moreover, the denominator with the effective range parameters is related to the Asymptotic Nor-

malization Coefficient (ANC) of the D-wave state, A2 =
q

2γ4
2/(−r2 −P2γ

2
2), as discussed in Sec. 4.3.2.

With the numerical result for Zd m2
R g2

2 we can check if our power-counting scenario, leading to the

scaling Zd m2
R g2

2 ∼ R2
haloRcore, can be confirmed or if the scenario of Ref. [17] yields better agreement.

By employing the experimental values for Rhalo ≈ 6.81 fm and Rcore ≈ 1.91 fm from Sec 4.1, we predict

Zd m2
R g2

2 ∼ R2
haloRcore ≈ 90 fm3. This value is by a factor of 2 smaller than the one extracted from B(E2)

and thus in reasonable agreement. The power counting of Ref. [17] leads to the scaling

Zd m2
R g2

2 ∼
1
r2
∼ R3

core ≈ 7 fm3 , (4.166)

which is around 26 times smaller than the extracted result. These numbers indicate that our power-

counting scenario is better suited for 15C.

Using our LO and NLO results from the previous electric form factor calculation in Sec. 4.7.1, we

obtain

L̃(d)LO
C01 +

4
3

L̃(d)LO
C02 = 〈r2

E〉
(d)
/1088(25) fm−1 , L̃(d)LO

C02 = −µ(d)Q /2418(55) fm−1 , (4.167)

for the LO piece of the counterterms. At NLO, no new physics input enters as these counterterms have

a finite and a µ-dependent piece which are completely determined by the renormalization condition

applied to the form factors. For the hexadecupole moment and radius we derive the following predictions

µ
(d)
H = 1.68(4)× 10−2 efm4 , and 〈r2

H〉
(d) = 0.135(3) fm2 . (4.168)
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Comparing our findings with Ref. [64], we deduce, as a general rule, that the highest multipole

form factor is always independent of additional parameters from short-range counterterms. Moreover,

the second highest multipole form factor requires one additional counterterm for the respective moment,

the third highest one for the respective moment and one for the respective radius, et cetera. As a

consequence, we can always find a smooth correlation between the highest radius and the neutron

separation energy Sn

〈r2
H〉
(d) =

9
28

f 2

mRS(d)n

. (4.169)

In the P-wave case, we obtain

〈r2
E〉
(p) = −5

2
µ
(p)
Q , (4.170)

as an additional correlation since the electric form factor is normalized to GE(0) = 1.

For the D-wave, we can derive several linear correlations between different combinations of mul-

tipole moments and radii. This is illustrated in Fig. 4.11, where the red cross denotes the numerical

prediction of the corresponding quantity for 15C. Therefore, by measuring one of these observables, we

can immediately predict the correlated quantity. These correlations are universal and can be found in

arbitrary one-neutron D-wave halo nuclei or similar weakly-bound systems.

The ground state and the two excited states of 17C have positive parity and differ at most by 2

units in total angular momentum. All states can therefore be connected by E2 transitions. In the case

of 17C, there is, however, no experimental data to compare with since M1 transitions seem to be more

dominant than E2 transitions [86, 87]. Thus, we cannot extract the renormalization constant Zd m2
R g2

2 of

the D-wave states in the same way as before for 15C to be able to predict electric observables numerically.

Nevertheless, by combining Eqs. (4.104) and (4.95), we find a correlation between B(E2) and B(M1)

B(E2: 1/2+→ 3/2+)=
32
15

Z2
effe

2

�

L̃σd
M1

�2
µ2

N

�

3γ2
0 + 9γ0γ2 + 8γ2

2

(γ0 + γ2)3

�2

B(M1: 1/2+→ 3/2+) . (4.171)

If we use the experimental result for B(M1: 1/2+→ 3/2+) = 1.04+0.03
−0.12 × 10−2µ2

N [87] and employ naive

dimensional analysis for the counterterm L̃σd
M1 ∼ R−1

core ≈ 0.28 fm−1, we obtain a rough prediction for

B(E2)

B(E2: 1/2+→ 3/2+)≈ 3× 10−2 e2fm4 , (4.172)

where we applied the numerical values for γ0 and γ2 from Sec. 4.1.

60 4. Halo EFT Results



−0.10 −0.05 0.00 0.05 0.10
µH[efm4]

−2.0

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

2.0

µ
Q
〈r2 Q
〉[

ef
m

4 ]

−0.10 −0.05 0.00 0.05 0.10
µH[efm4]

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

µ
H
〈r2 H
〉[

ef
m

6 ]

×10−2

−1.0 −0.5 0.0 0.5 1.0
µQ 〈r2

Q〉 [efm4]

−8

−6

−4

−2

0

2

4

6

8

µ
H
〈r2 H
〉[

ef
m

6 ]

×10−3

Figure 4.11.: Linear correlations between the hexadecupole moment and the quadrupole moment
times quadrupole radius (top left), the hexadecupole moment and the hexadecupole mo-
ment times hexadecupole radius (top right) and between the quadrupole moment times
quadrupole radius and hexadecupole moment times hexadecupole radius (bottom). The
red cross denotes the numerical prediction for 15C.

Moreover, the M1 and E2 transition strengths for 17C can be compared considering the correspond-

ing transition rates [94]

T (Rλ) =
8π(λ+ 1)

λ[(2λ+ 1)!!]2
ω2λ+1B(Rλ) , (4.173)

that have, in contrast to B(M1) and B(E2), the same units. Here, R stands for E or M, λ denotes the

order of the transition andω defines the photon energy which, in this case, is 0.218 MeV. Using the naive

dimensional analysis result for L̃σd
M1 from above, we find

T (E2)
T (M1)

=
32ω2

125

Z2
effe

2

�

L̃σd
M1

�2
µ2

N

�

3γ2
0 + 9γ0γ2 + 8γ2

2

(γ0 + γ2)3

�2

≈ 1× 10−5 , (4.174)

which implies that the M1 transition strongly dominates over E2 for 17C.
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Correlations between E2 Observables

Two prominent examples for universal correlations in light nuclei are the Phillips line [101], a correlation

between the binding energy of 3H and the neutron-deuteron scattering length, and the Tjon line [102], a

linear relation between 3N and 4N binding energies for different nuclear interactions, see, e.g., Ref. [103]

for an explicit example. In general, universal correlations are easier to find in Halo EFT than in ab initio

methods since Halo EFT employs the relevant degrees of freedom with respect to the separation of scales

between Rcore and Rhalo.

In this section, we combine our Halo EFT results with experimental data and ab initio data from

the IT-NCSM [76] to predict the electric quadrupole moment for 15C. In a second step, the correlations

obtained in Halo EFT are compared to the E2 correlation based on the rotational model by Bohr and

Mottelson [104]. To derive the correlation between the quadrupole transition from the 5/2+ to the 1/2+

state and the quadrupole moment of the 5/2+ state, we combine Eqs. (4.69) and (4.92) and apply a

factor 2/6 to account for the different multiplicity of the initial and final states. As discussed before, we

have to include the S-wave effective range r0 in Eq. (4.92) since r0 contributes at LO for 15C. Eventually,

we obtain a linear dependence between B(E2) for the transition 5/2+ → 1/2+ and the quadrupole

moment at LO

B(E2: 5/2+→ 1/2+)= − 1
50π

Z2
effe

2γ0

(1− r0γ0)

�

3γ2
0 + 9γ0γ2 + 8γ2

2

(γ0 + γ2)3

�2 µ
(d)
Q

L̃(d)LO
C02

, (4.175)

where L̃(d)LO
C02 is treated as fit parameter and γ0 and γ2 are taken from experiment [83].

A similar correlation between the quadrupole transition and the quadrupole moment can be deduced

from the rotational model by Bohr and Mottelson [104]. The quadrupole moment for a rigid rotor with

static intrinsic quadrupole moment Q0,s

µQ(J) =
3K2 − J(J + 1)
(J + 1)(2J + 3)

Q0,s , (4.176)

is combined with the B(E2) transition of such a rigid rotor

B(E2, Ji → J f ) =
5

16π

�

JiK 20| J f K
�2 �

Q0,t
�2

, (4.177)

where K denotes the projection of the total angular momentum on the symmetry axis of the intrinsically

deformed nucleus and Q0,t is the transition intrinsic quadrupole moment. Consequently, we derive the

correlation between the E2 transition and the quadrupole moment in the rigid rotor model

B(E2, Ji → J f ) =
5

16π
((J + 1)(2J + 3))2

(3K2 − J(J + 1))2
�

JiK 20| J f K
�2
�

Q0,t

Q0,s

�2

µQ(J)
2 , (4.178)

with K = 1/2 for 15C. For an ideal rigid rotor, both intrinsic quadrupole moments would be equal

Q0,s =Q0,t =Q0.
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The idea to employ this simple model is motivated by observations of Calci and Roth [29], who

found a robust correlation between this pair of quadrupole observables in ab initio calculations for light

nuclei. In the simple rigid rotor model the ratio Q0,t/Q0,s is expected to be one. The results of Ref. [29]

indicate that the correlation is robust as long as the ratio Q0,t/Q0,s is treated as a fit parameter.

We use IT-NCSM data of 15C, provided by Robert Roth and generated by different χEFT interactions

and different model spaces, to check the quadratic and linear correlations and predict the quadrupole

moment of 15C numerically. This is demonstrated in Fig. 4.12.
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Figure 4.12.: Correlation between B(E2) and the quadrupole moment µQ. The IT-NCSM data is ob-
tained with different NN + 3N χEFT interactions: EM with cutoffs {400, 400,500}
MeV/c (square, diamond, triangle down), and EGM with cutoffs (Λχ/Λ̃χ) =
{(450/500), (600/500), (550/600), (450/700), (600/700)}MeV/c (triangle left, pentagon,
circle, triangle right, and triangle up) with oscillator frequency ħhΩ= 16 MeV for all IT-NCSM
calculations except for the diamond and triangle down data where ħhΩ= 20 MeV. Different
colors denote different Nmax = 2 (blue), 4 (red), 6 (green), 8 (violet), and 10 (yellow) values.
Left panel: Rigid rotor model with quadratic fit of Q0,t/Q0,s ratio (dashed line, χ2

red = 110)
and linear Halo EFT fit of L̃(d)C02 with fixed γ2 from experiment (dotted line, χ2

red = 123). Right
panel: Linear Halo EFT fit with γ2

0− γ2
2 from IT-NCSM calculation and rescaled µQ/Γ (dotted

line, χ2
red = 80), where Γ = γ0(3γ2

0 + 9γ0γ2 + 8γ2
2)

2/(1 − r0γ0)/(γ0 + γ2)6 divides out de-
pendence on γ0 and γ2. The gray shaded area indicates the error band of the experimental
B(E2) [83]. The blue shaded area corresponds to the prediction for µQ.

The varying symbols denote different NN + 3N χEFT interactions which are similar to the ones used in

Ref. [29]. We employ the NN interaction developed by Entem and Machleidt (EM) [44] at N3LO with

a cutoff of 500 MeV/c for the nonlocal regulator function. This NN force is combined with the local

3N force at N2LO using a cutoff of 400 or 500 MeV/c [105]. The second NN interaction by Epelbaum,

Glöckle, Meißner (EGM) [106] at N2LO uses a nonlocal regularization with a cutoff Λχ and an additional

spectral function regularization with cutoff Λ̃χ . The EGM NN forces are combined with a consistent

nonlocal 3N force at N2LO used in several applications to neutron matter [107–109]. For reasons of
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convergence, the NN+3N potentials are softened by a similarity renormalization group evolution where

all contributions up to the three-body level are included.

The different colors in Fig. 4.12 denote different Nmax values. Since the IT-NCSM results are not fully

converged and the results differ for different Nmax values, the ordering of the ground and first excited

state is exchanged for some data points. Leaving out the data sets with exchanged ordering does not

significantly improve the fit. The plot on the left side employs the experimental values for the neutron

separation energy as input for γ0 and γ2. For the plot on the right side, we apply the excitation energy of

the first excited state from the IT-NCSM to determine γ2
0 − γ2

2 and for γ0 we use the experimental value.

We emphasize that in the ab initio calculations, both, the interactions (including short distance

physics) and the model spaces are varied. If the ab initio calculations were (i) fully converged and (ii) all

interactions and electromagnetic operators were unitarily equivalent, they would fall on a single point.

However, neither (i) nor (ii) is the case here. So, naively, one would expect the calculations for B(E2)

and µQ to fill the whole plane. Halo EFT and the rotational model, however, predict a one parameter

correlation between B(E2) and µQ based on certain assumptions. If these assumptions, such as shallow

binding and a corresponding separation of scales in the case Halo EFT, are satisfied in the ab initio

calculations, they should also show the correlation even if they are not converged and/or have different

short distance physics.

An additional complication here is the appearance of the two-body coupling L(d)C02 in Eq. (4.43) which

could vary for the different ab initio data sets. In our analysis of the ab initio data, we explicitly assume

that L(d)C02 varies only slowly and can be approximated by a constant for the ab initio data considered.

Under this assumption, it becomes possible to decide between the type of correlation using the ab initio

data for 15C. A similar assumption is made in the analysis of three-body recombination rates for ultra-

cold atoms near a Feshbach resonance to observe the Efimov effect. There the scattering length varies

strongly with the magnetic field B while the three-body parameter is assumed to stay approximately

constant [61]. Since the two parameters are independent, it would be very unnatural if both had a

resonance at the same value of B.

From the left plot, we obtain µ(d)Q ≈ −3.98(5) efm2 for the quadratic fit and µ(d)Q ≈ −5.46(12) efm2

for the linear fit, where the uncertainties from B(E2) are given in parenthesis. For both fits, we find

for the two-body current operator L̃(d)LO
C02 Rcore ≈ 10−3, which is significantly smaller than expected from

Eq. (4.43). Part of this suppression is due to mass factors that are not accounted for in the power counting

in Rcore/Rhalo. Specifically, a suppression of order 10−2 comes from the effective charge Zeff ∼ (m/Mnc)2

which is implicitly contained in L̃(d)LO
C02 . Taking this into account, the value of L̃(d)LO

C02 is much more natural.

The remaining deviation from unity could be due to a conspiracy of numerical factors or an additional

fine tuning.

From the fits, we cannot decide which scenario describes the IT-NCSM data more appropriately since

both lead to similar reduced χ2 values. The ratio Q0,t/Q0,s should be equal to 1 for an ideal rigid rotor.

Since the quadratic fit yields a ratio of Q0,t/Q0,s ≈ 0.5, we assume that 15C is not a good example of a

rigid rotor. Perhaps for larger Nmax values, and thus better converged results, the matching between fit

curves and data points would improve.

In the linear case, the slope of the fit depends also on the neutron separation energies of both states,

which differ for each data point from the IT-NCSM. From the excitation energy obtained in the IT-NCSM

64 4. Halo EFT Results



calculation, we know only the difference between the neutron separation energies of the ground and

excited state. Thus, one experimental input is still required to fix γ0 and γ2 from the IT-NCSM data since

we did not perform explicit calculations for 14C. In the right plot of Fig. 4.12, we determine γ2
0 − γ2

2

from IT-NCSM data and take γ0 from experiment. The reduced χ2 value for the linear fit then slightly

improves compared to the fit using experimental values only. This leads to µ(d)Q ≈ −4.21(10) efm2, which

is closer to the value from the quadratic fit. The deviations of the data points from the linear fit might

decrease further if consistent values for both neutron separation energies could be extracted from the

IT-NCSM. However, within the 30% LO uncertainty from Halo EFT both values for µ(d)Q agree.

With the extracted results of µ(d)Q , we can predict the quadrupole radius, 〈r2
Q〉
(d) = 5.93(13)× 10−2

fm2 from the left linear fit and 〈r2
Q〉
(d) = 7.70(17) × 10−2 fm2 from the right linear fit in Fig. 4.12, by

Halo EFT.

Finally, we note that the correlation between the LO result for µQ and B(E2) previously discussed

does not persist at NLO because two different counterterms enter into µQ and B(E2) at this order. Hence,

this correlation is only expected to hold up to corrections of order Rcore/Rhalo ≈ 0.3.

Similar to the correlation between µ(d)Q and B(E2) above, we find a smooth correlation between

〈r2
E〉
(d) and µ(d)Q

µ
(d)
Q = −20

9

L̃(d)LO
C02

�

L̃(d)LO
C01 + 4

3 L̃(d)LO
C02

� 〈r2
E〉
(d)

, (4.179)

which implies that ab initio calculations with different phaseshift-equivalent interactions should show a

linear correlation between the quadrupole moment and the charge radius.

4.10.3 Neutron Capture

Eventually, we focus on neutron capture into 15C and 17C in this section. E1 neutron capture was already

considered for 15C by Rupak et al. in Ref. [82]. In 15C, there is an experimentally measured 1/2− P-wave

resonance with a resonance energy of Er ≈ 1.885 MeV and a width of Γr ≈ 40 keV [83]. As discussed

in Sec. 4.9.1, Rupak et al. incorporated P-wave initial state interactions by including the resonant 2P1/2

state with ERE parameters, a(1)1 and r(2)1 , determined from the resonance data and the non-resonant 2P3/2

state with undetermined ERE parameters, a(2)1 = −n1/Q
3, r(2)1 = 2n2Q, where n1 and n2 are expected

to be O (1) and Q = 40 MeV. Note that Q is equivalent to 1/Rhalo in our Halo EFT. They estimated the

scattering parameters in the 2P3/2 channel from the direct capture and Coulomb dissociation data [90,

110]. Rupak et al. included the P-wave contributions at LO because their power counting differs from

ours for shallow P-wave states. We neglect these diagrams since they contribute at NLO in our power

counting. For 17C, there exists no data concerning P-wave states.

Our numerical results for the E1 capture into 17C, Eq. (4.131), and photodissociation of 17C, using

Eq. (4.133), at LO are shown in the top panel of Fig. 4.13. At NLO, there is an additional contribution

from the effective range r0. By assuming that r0 scales as Rcore, we can estimate the size of the NLO

contribution by multiplying the LO result by a factor of 1/(1± γ0Rcore) and add an error band to our LO

results in Fig. 4.13.
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Figure 4.13.: Left panel: E1 capture cross section into the 1/2+ state of 17C (top panel) and 15C (bottom
panel) as a function of the center-of-mass energy Ecm. Right panel: E1 photodissociation
cross section as a function of Ecm. The solid (blue) line denotes the LO result and the dashed
(red) lines show an estimate of the NLO corrections.

The numerical capture and photodissociation results for 15C are illustrated in the bottom panel of

Fig. 4.13. Note that we have to add a factor of 1/(1 − r0γ0) to the LO result in Eq. (4.131) since r0

contributes at LO for 15C. We can estimate NLO contributions, e.g., from P-wave initial state interac-

tions, by a relative factor of Rcore/Rhalo ≈ 0.45 from our Halo EFT expansion. This leads to the error

bands shown in the bottom panel of Fig. 4.13. Our capture cross section into the S-wave state of 15C is

qualitatively consistent with the findings of Rupak et al., see Fig. 4.14, if we disregard the peak in the

cross section in the region of 1.5 MeV < Ecm < 2.0 MeV due to the implicit inclusion of the P-wave res-

onance. Furthermore, our predicted cross section at LO is slightly larger than their prediction. Since we

neglected the contributions of P-wave initial state interactions, we expect deviations in the order of the

estimate of the NLO corrections. Including the estimate of the NLO effects, depicted by the dashed red

curve in Fig. 4.14, our prediction, i.e. the lower dashed red curve, reasonably agrees with the findings of

Rupak and also with the experimental data [90, 110] plotted in the left graph of Fig. 4.14. Although we

cannot reproduce the resonance peak without explicitly including P-wave initial state interactions, the

experimental data, with a few exceptions, lie within the NLO correction.
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Figure 4.14.: The E1 capture cross section into the 1/2+ state of 15C as a function of the CM energy
Ecm is compared to the findings of Rupak et al. [82] and experimental data [90, 110]. Left
panel: Our predicted cross section. The solid (blue) line denotes the LO result and the
dashed (red) lines show an estimate of the NLO corrections. Right panel: Calculated cross
section taken from Ref. [82] with undetermined ERE parameters for the 2P3/2 channel a(2)1 =
−n1/(Q3), r(2)1 = 2n2Q, and Q = 40 MeV. Q is equivalent to 1/Rhalo. The solid (blue) curve
uses (n1, n2) = (2, 1.5); the dot-dashed (red) curve uses (n1, n2) = (1.5, 1.2); the dashed
(black) curve uses (n1, n2) = (0.818, 1.12). The calculated cross sections are compared with
square (maroon) direct capture data from Ref. [110] and with circle (dark blue) Coulomb
dissociation data from Ref. [90].
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Figure 4.15.: Left panel: E1 capture cross section into the 5/2+ state of 15C as a function of the center-of-
mass energy Ecm. Right panel: E1 photodissociation cross section as a function of Ecm. The
solid (blue) line denotes the LO result and the dashed (red) lines show an estimate of the
NLO corrections.

Using the numerical result of Zd m2
R g2

2 ∼ 1/
�

r2 +P2γ
2
2

�

= −181(4) fm3 for the 5/2+ state of 15C,

extracted from the B(E2) transition in Sec. 4.10.2, we can predict the E1 neutron capture cross section

for the D-wave state in 15C numerically. This is illustrated in Fig. 4.15. Compared to the S-wave cross

section in Fig. 4.13, the D-wave cross section steadily increases for increasing Ecm. This can be explained

by the fact that the unitary cut ∼ ik5 in Eq. (4.25), which leads to a decrease in the cross section for
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large energies, is a NLO contribution in the D-wave case, while it is a LO contribution for the S-wave.

The ik5 contribution, however, dominates for energies beyond Ecm ¦ 0.8 MeV for the D-wave so that we

cannot expect our results to be accurate for larger Ecm values.

Eventually, we briefly discuss M1 capture into the D-wave state. Since we need at least four addi-

tional input parameters to be able to predict the M1 capture process into the D-wave state already at LO,

cf. Eqs. (4.155) and (4.157), numerical predictions are currently not possible.

This shows the limitations of Halo EFT for higher partial waves especially in the magnetic sector,

where additional counterterms typically contribute at LO.

4.11 Conclusion

We extended the Halo EFT approach for the calculation of electromagnetic observables introduced by

Hammer and Phillips [64] to shallow bound states beyond the P-wave. In particular, we considered

D-wave states to describe the two carbon isotopes 15C and 17C. Since the neutron separation energy is

large compared to the first excitation energy of the core, both carbon isotopes can be assumed to be

one-neutron halo nuclei. We exploited this separation of scales and developed a new power-counting

scheme for shallow D-wave and higher partial wave bound states. For the D-wave state in particular,

we assumed that a2 ∼ R4
halo Rcore and r2 ∼ 1/(R2

halo Rcore) while all other parameters scale with Rcore.

In general, we find that the number of fine-tuned parameters increases for higher partial waves which

explains why S- and P-wave states are observed more frequently in nature than shallow bound states

with larger l. This power-counting scheme differs from the general scenario proposed by Bedaque et al.

in Ref. [17]. The Bedaque scheme requires only one fine tuning in the leading oder parameter set, but

further fine tunings appear through higher order power law divergences that have to be canceled. Our

scheme requires two fine tunings for the D-wave case, but is better adapted to the scale hierarchy in 15C

than the scheme of Ref. [17].

Using our power-counting scheme, we computed the electric, quadrupole and hexadecupole form

factors of the D-wave state up to NLO. We found that for the D-wave, the local gauge-invariant opera-

tors become more important than in lower partial waves and counterterms are required in the electric

and quadrupole form factors already at LO. This continues the trend, observed in Ref. [64], that the

counterterms enter in lower orders at larger l. We also computed the B(E2) strength for the transition

from the S-to-D state up to NLO and found that the first counterterm emerges at NLO. The occurrence

of counterterms in low orders limits the predictive power of Halo EFT for D-waves since the number

of matching parameters increases. However, this limitation can be overcome by considering universal

correlations between observables, as discussed in particular for 15C. Considering 15C, the lack of exper-

imental data for the first excited 5/2+ state complicates numerical predictions. We can, however, use

the experimentally measured B(E2) transition to extract the combination of unknown effective range

parameters of the wave function renormalization. Hence, we were able to predict the hexadecupole

moment µ(d)H = 1.68(4)×10−2 efm4 and the hexadecupole radius 〈r2
H〉
(d) = 0.135(3) fm2. Unfortunately,

there is not enough experimental data to predict the form factors for the 3/2+ and 5/2+ state in 17C.

Furthermore, we cannot directly predict the charge radius, quadrupole moment and quadrupole ra-

dius at LO since the expressions (4.66), (4.69) and (4.74) contain unknown counterterms. Nevertheless,

we determined a value for the quadrupole moment for 15C, µ(d)Q ≈ −4.21(10) efm2, by exploiting the
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linear correlation between the reduced E2 transition strength B(E2) and the quadrupole moment in our

Halo EFT, fitting the unknown counterterm to ab initio data from the IT-NCSM. With the result for the

quadrupole moment, we also predicted the quadrupole radius for 15C, 〈r2
Q〉
(d) ≈ 7.70(17) × 10−2 fm2,

using correlations from Halo EFT. These correlations are not obvious in ab initio approaches because the

separation of scales is not explicit in the parameters of the theory. This demonstrates the complementary

character of Halo EFT towards ab initio methods. In principle, the universal correlations allow to extract

information even from unconverged ab initio calculations since the correlations are universal. We com-

pared the linear Halo EFT correlation to the quadratic correlation based on the simple rotational model

by Bohr and Mottelson. The value for the quadrupole moment, µ(d)Q ≈ −3.98(5) efm2, obtained from

the quadratic correlation deviates from the linear result by 5% – 30% depending on the input used for

γ2
0 − γ2

2. Within the accuracy of LO EFT this is still consistent.

In the Halo EFT approach, static observables and nuclear reactions can be calculated in the same

framework. Therefore, we also considered E1 neutron capture and photodissociation into the S- and

D-wave states at LO. In the case of 15C, we used the values for the effective range parameters of the

D-wave renormalization extracted from B(E2) to compute the cross section for both reactions into the S-

and D-wave bound state. E1 capture into the S-wave state was already considered by Rupak et al. [82],

who compared their result to experimental data. Our result is consistent with their findings taking

our estimate of NLO corrections into account and disregarding the peak in the cross section due to the

inclusion of the P-wave resonance by Rupak. The latter yields a NLO contribution in our power-counting

scenario. In the case of 17C, the lack of experimental data complicates numerical predictions so that our

predictions are limited to the S-wave bound state.

We also calculated static observables and nuclear reaction in the magnetic sector. As a general

rule, the counterterms are even more dominant for magnetic observables than in the electric case. This

further complicates numerical predictions. Consider the S-wave magnetic form factor for example, the

counterterm enters already at NLO, while for the electric form factor the counterterm yields a N3LO

contribution [64]. In the case of the D-wave, neither the magnetic moment nor the M1 transition from

the D-wave ground state to the excited S-wave or D-wave bound state in 17C can be predicted because

of the emerging counterterms at LO. Furthermore, the two diagrams at LO for the M1 neutron capture

into the S-wave state cancel each other and another unknown counterterm enters at NLO. In the D-wave

sector, the counterterms contribute already at LO and due to the lack of experimental data, we cannot

predict the cross section numerically.

As exotic nuclei are difficult to describe by ab initio methods, our results show the usefulness and

complementary character of the Halo EFT approach even for D-wave bound states. Although we pre-

dicted several observables, in particular in the electric sector, the dominant role of counterterms and the

increasing number of matching parameters demonstrate the limiting factors for the extension to higher

partial waves beyond D-waves.
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5 Pion Photoproduction
In this chapter, we shift our focus to the threshold pion photoproduction off light nuclei employing χEFT.

Pion production off nucleons and nuclei is a useful tool to study and test ChPT and to obtain further

insights into nuclear structure. Our work is motivated by the previous calculation of threshold neutral

pion photoproduction off 3He and 3H by Lenkewitz et al. [26, 111, 112]. They used 3He as a neutron-like

target and extracted the S-wave pion production amplitude in order to verify the counterintuitive ChPT

prediction that Eπ
0n

0+ = +2.13× 10−3/Mπ+ is larger in magnitude than Eπ
0p

0+ = −1.16× 10−3/Mπ+ [23,

27]. In a similar approach, pion photoproduction off 2H was studied before in Ref. [113]. Instead of a

hadron physics motivation, our goal is to further test ChPT in the sense of nuclear physics and to extend

the calculation of the pion production to a broad number of light nuclei.

To analyze the pion photoproduction off nuclei, we have to calculate the nuclear matrix element of

the pion production operator 〈M ′J |Ô|MJ〉Ψ , where MJ (M ′J) denotes the magnetic quantum number of the

initial (final) nuclear wave function, Ψ, corresponding to the total angular momentum, J . Lenkewitz et al.

evaluated the matrix element numerically using Monte Carlo integration and wave functions from ChPT

at the appropriate order. We employ a different approach that is more convenient for the extension to a

broad number of nuclei. As explained in Chapter 3, the nuclear wave functions are obtained by the (IT)-

NCSM from Robert Roth [76] employing nuclear interactions from ChPT. These wave functions are given

in the harmonic oscillator (HO) basis. Since our pion production operator obtained from ChPT is given

in the plane wave (PW) basis, we transform the pion production operator into the HO basis and apply a

density matrix approach to extract the relevant information from the many-body HO wave functions for

the relevant one-nucleon (1N) and two-nucleon (2N) pion production operators. The exact procedure

is discussed in more detail in the following sections. This approach has the benefit that we have to

calculate the pion production operator in HO basis only once. Then the pion production amplitude for

arbitrary nuclei can be derived at no additional computational cost except for the respective density

matrix calculation.

Experimentally, the pion production off light nuclei was studied at Saskatoon [19, 20] for 2H, 4He

and 12C and at MAMI [21, 22] for 7Li and H, respectively. For a review of this topic see Ref. [18].

5.1 Pion Photoproduction at Threshold

The pion photoproduction describes the nuclear process of the creation of a pion (π0,π±) through ab-

sorption of a photon (γ) by the nucleus (A)with proton number (Z). This reaction is illustrated in Fig. 5.1

and given by

γ+ A(Z)→ π0 + A′(Z) (5.1)

γ+ A(Z)→ π± + A′(Z ∓ 1) . (5.2)
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Figure 5.1.: Pion photoproduction. The photon (γ) is absorbed by the nucleus (A) and a pion (π) is pro-
duced. The corresponding energies and momenta are given in parenthesis, respectively.

Since the photon requires enough energy to produce a pion with mass mπ0 ≈ 134.97 MeV or mπ± ≈
139.57 MeV [37], there is a threshold above which pion production becomes possible. Due to energy

and momentum conservation, the threshold photon energy is slightly higher than the bare pion mass and

converges to mπ for increasing mass number of the nucleus because the recoil effect becomes negligible.

In this work, we concentrate on the pion production at threshold, where the momentum of the produced

pion is zero (q= 0). Hence, we deduce from momentum and energy conservation

pi + k= p f , (5.3)

Ethresh
γ = E f − Ei +mπ with E f /i =

p2
f /i

2mA
, (5.4)

with the mass of the nucleus mA, k indicates the photon momentum and p i (p f ) denotes the initial

(final) momentum of the nucleus. If we consider the initial nucleus to be at rest (pi = 0) such that

p f = k, we obtain for the threshold energy depending on the mass of the nucleus

Ethresh
γ (mA) = mA−

q

m2
A− 2mAmπ ≈ mπ +O (m2

π/mA) , (5.5)

where we exploited in the last step that mπ� mA.

Depending on the incoming multipolarity of the photon RL, where R stands for E or M and L

denotes the multipole, and the spin of the nucleus S, the outgoing pion-nucleus system can be only in

distinct outgoing channels such that angular momentum J and parity are conserved [114]

|L ± S|= J = |l ± S| , (5.6)

where l denotes the orbital momentum of the pion relative to the recoiling nucleus. At threshold,

the dominant contribution comes from the S-wave multipole E0+ of the pion-nucleus system, which

corresponds to an incoming E1 photon and an orbital momentum of the pion of l = 0. Above threshold,

where the momentum of the produced pion differs from zero |q| > 0, contributions from P-wave and
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even higher multipoles become important. For more details concerning the derivation of multipole

amplitudes for the pion production see, e.g., Refs. [115–117].

In this work, we consider the threshold neutral pion photoproduction, where only the S-wave am-

plitude is relevant at LO. In Refs. [118–120] the S- and P-wave amplitudes for the pion production off

the proton and 2H are derived. We follow their approach and extract the S-wave amplitude for neutral

pion production, which is consistent with Ref. [112],

M λ =: 2iEπ
0

0+

�

ελ · J�+ 2i
�

Lπ
0

0+ − Eπ
0

0+

�

�

ελ · k̂� �k̂ · J� (5.7)

= 2iEπ
0

0+

�

ελT · J
�

+ 2i Lπ
0

0+

�

ελL · J
�

, (5.8)

where ελT = ε
λ− �ελ · k̂� k̂ and ελL =

�

ελ · k̂� k̂ denote the transverse and longitudinal part of the photon

polarization vector ελ, respectively. The nuclear spin vector is given by J and the photon momentum by

k. In principle, there are also longitudinal multipoles ∼ L0+ that can be calculated using longitudinal

polarized photons. Since we focus on the photoproduction and not on the electroproduction of pions,

we employ transverse polarized photons (ελ · k = 0), where the longitudinal parts are zero.

5.2 Neutral and Charged Pion Photoproduction

The next step in the calculation of pion photoproduction amplitudes is the derivation of the relevant

Feynman diagrams at LO for neutral and charged pion production. We follow the power counting

in Refs. [112, 113] for Feynman diagrams from chiral perturbation theory (Sec. 2.1.2) to deduce the

relevant Feynman diagrams at LO. The chiral order for a given diagram is given by

ν= 4− A− 2C + 2L +
∑

i

Vi∆i , with ∆i = di +
Ni

2
− 2 , (5.9)

where A denotes the total number of nucleon lines in the initial or final state, C the number of separately

connected pieces, L the number of loops and Vi vertices of type i with dimension∆i. The latter is derived

from Ni which denotes the number of nucleon lines attaching a vertex of type i and from di which is

the dimension of the meson (Lππ), meson-baryon Lagrangian (LπN ) as described in Sec 2.1.2. For

more details regarding the vertices Vi and corresponding Feynman rules we refer the reader to Ref. [24]

appendix A.

Similar to the hierarchy of nuclear forces in Fig. 2.1, we find that one-nucleon contributions start to

appear earlier in the chiral order than two-nucleon contributions, et cetera. The lowest order contribu-

tion for pion photoproduction contains the maximum number of disconnected pieces (C = A), no loops

(L = 0), one vertex with ∆i = −1, which is the lower bound from chiral symmetry after the inclusion of

photons via minimal substitution, and any number of vertices with ∆i = 0

ν= 4− A− 2A+ 0− 1= 3− 3A . (5.10)
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At this order, the prominent Kroll-Ruderman term contributes [121]. The NLO contribution has one

additional vertex with ∆i = 1

ν= 4− A− 2A= 4− 3A . (5.11)

At NNLO, we get one-nucleon contributions with L = 0 and
∑

i Vi∆i = 1, where ∆i = 2, 1,0,−1, and

with L = 1, one vertex with ∆i = −1 and any number of vertices with ∆i = 0. Moreover, the two-

nucleon contributions start to appear at this order with C = A− 1, L = 0, one vertex with ∆i = −1 and

any number of vertices with ∆i = 0. Since the lowest order of N -nucleon contribution differs only in

C = A− N , we deduce that the next higher (N + 1)-nucleon contributions starts two orders beyond the

leading N -nucleon contribution.

Not all possible diagrams, however, contribute to the neutral pion photoproduction at threshold.

For example, all the LO graphs, as the Kroll-Ruderman term, vanish for neutral pion production which

is not the case for charged pion production [122]. As a consequence, the cross section for neutral pion

production is smaller than for charged pions. Since we employ Coulomb gauge (ε · k = 0), only the two

diagrams (a) and (b) survive in the two-nucleon sector, illustrated in Fig. 5.2.

+ +

(a) (b)

Figure 5.2.: Relevant diagrams at LO for the neutral pion photoproduction at threshold. Solid, dashed
and wiggly lines denote nucleons, pions and photons, respectively. In the left panel, the one-
nucleon contribution is shown, while in the right panel the two-nucleon diagrams (a) and (b)
are illustrated.

Accordingly, we have one-nucleon and two-nucleon contributions for neutral pion photoproduction at LO

or at chiral order q3, where q is a generic symbol for a small momentum or the pion mass. The relevant

diagrams at this order are shown in Fig. 5.2. In contrast, charged pion photoproduction at threshold is

well described by the one-nucleon contribution from the Kroll-Ruderman term at LO [123].

At order q4, there are additional contributions in the one- and two-nucleon sector for neutral pion

photoproduction at threshold. We briefly discuss these corrections and refer the reader to Refs. [26,

112] for more details. First, there are boost corrections that emerge from the relative motion of the

nucleons inside the nucleus. This leads to a slight shift in the pion production threshold compared to

a single nucleon and essentially induces P-wave contributions due to the lowering of the threshold.

Second, there are further corrections in the two-nucleon sector which can be grouped into static and

recoil corrections. The former are tree graphs that contain exactly one insertion from the dimension two
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pion-nucleon Lagrangian (L (2)πN ), while recoil corrections involve only insertions from the dimension one

pion-nucleon Lagrangian.

5.3 Density Matrix Approach

As briefly discussed in the introduction to this chapter, we employ the (IT)-NCSM (Sec. 3) to obtain the

nuclear wave functions and apply a density matrix approach to calculate the pion production amplitude

for the considered nucleus. In principle, the nucleus is an A-body system where up to A particles can

be involved in the pion production process. This is illustrated in the top panel of Fig. 5.3, where the

so-called integral kernel is sandwiched with the initial and final nuclear wave function.

... ...

... ... ... ...

Figure 5.3.: Pion photoproduction off the nucleus. The gray bubble denotes the integral kernel that is
sandwiched with the initial and final nuclear wave function denoted by the triangles. Solid,
dashed and wiggly lines denote nucleons, pions and photons, respectively. In the top panel,
the generalized integral kernel is shown, where in the bottom panel the two relevant topolo-
gies for threshold neutral pion photoproduction at LO are illustrated.

The integral kernel contains all possible diagrams from Sec. 5.2. For the threshold neutral pion photo-

production, only 1N- and 2N-topologies contribute at LO. This is shown in the bottom panel of Fig. 5.3,

where the nucleons that are not involved in the pion production act as spectators. Since we are inter-

ested in pion photoproduction off a broad range of light nuclei, employing the (IT)-NCSM is convenient.

As explained in Chapter 3, the wave functions |ΨHO〉 obtained by the (IT)-NCSM are a superposition of

many-body Slater determinants |Φi〉 in HO basis

|ΨHO〉=
∑

i

ci |ΦHO
i 〉=

∑

i

ci |sHO
1 sHO

2 . . . sHO
A 〉i , (5.12)

where the correct normalization of the total wave function is ensured by the ci constants, the single-

particle HO eigenstates are indicated by |sHO
i 〉 and A denotes the total number of nucleons.

5. Pion Photoproduction 75



To calculate the pion production amplitude with the (IT)-NCSM wave functions provided by Robert

Roth, we use one-particle and two-particle density matrices. Density matrices are an expedient tool from

second quantization to reduce the information from a many-body state to the relevant information for

1N- or 2N-operators. It is an alternative representation of the many-body state that encodes all the

relevant information of the system.

The 1N-density matrix for a many-body state |Ψ〉 in a single-particle basis |s〉 is defined as

ρ
(1N)
s,s′ = 〈Ψ|â†

s′ âs|Ψ〉 , (5.13)

where â†
s and âs are the creation and annihilation operators for a single-particle state s, respectively.

Summing up the diagonal elements of ρ(1N) yields the particle number N of the many-body system

Tr
�

ρ(1N)
�

=
∑

s

ρ(1N)
s,s = N . (5.14)

Likewise, the 2N-density matrix is defined as

ρ
(2N)
s1s2,s′1s′2

= 〈Ψ|â†
s′1

â†
s′2

âs1
âs2
|Ψ〉 . (5.15)

The trace of the 2N-density matrix yields the number of pairs of the many-body system, i.e. all possible

combinations, times two

Tr
�

ρ(2N)
�

=
∑

s1s2

ρ(2N)
s1s2,s1s2

= N(N − 1) . (5.16)

Moreover, ρ is Hermitian so that ρ(1N)
s,s′ = ρ

(1N)
s′,s and because of the antisymmetric two-particle basis

states, we deduce

ρ
(2N)
s1s2,s′1s′2

= −ρ(2N)
s2s1,s′1s′2

= −ρ(2N)
s1s2,s′2s′1

= ρ(2N)
s2s1,s′2s′1

. (5.17)

In addition, the trace of the density matrix does not change under unitary transformations since the trace

is invariant under cyclic permutations

Tr
�

UρU†
�

= Tr
�

U†Uρ
�

= Tr (ρ) . (5.18)

This will be used later to validate if our basis transformation matrix from plane wave to HO basis states

indeed satisfies unitarity.

After calculating the density matrix for the HO many-body wave function, we can use it to compute
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any expectation value for a given 1N-operator Ô(1N)

〈Ψ f |Ô(1N)|Ψi〉=
∑

ss′
〈Ψ f |s′〉 〈s′|ô|s〉 〈s|Ψi〉=

∑

ss′
os′,s 〈Ψ f |â†

s′ âs|Ψi〉=
∑

ss′
os′,sρ

(1N)
s,s′ = Tr

�

O(1N)ρ(1N)
Ψ f Ψi

�

,

(5.19)

with Ô(1N) =
∑

ss′ os′,s â
†
s′ âs.

The expectation value of a 2N-operator can be calculated likewise using the 2N-density matrix

〈Ψ f |Ô(2N)|Ψi〉= Tr
�

O(2N)ρ(2N)
Ψ f Ψi

�

. (5.20)

5.4 Plane Wave to Harmonic-Oscillator Basis Transformation

Up to this point, we derived the relevant Feynman diagrams contributing to the pion production at LO

and discussed the density matrix approach to evaluate the expectation value of the pion production

operator with the nuclear wave functions obtained by the (IT)-NCSM. Since the derived pion production

operators are represented in plane wave (PW) basis, while the wave functions from the (IT)-NCSM are

in harmonic-oscillator (HO) basis, the next step towards the calculation of the amplitude is the necessary

basis transformation of the pion production operator from PW into HO representation

〈Ψ f |Ô|Ψi〉= Tr
�

UOU†ρΨiΨ j

�

, (5.21)

with the transformation matrix U .

The transformation matrix between the PW and HO single-particle states (si) reads

Uab = 〈sHO
a |sPW

b 〉 := 〈(nlml)a|k〉b = i lΦnl(k)Y
∗
lml
(Ωk) , (5.22)

with the spherical HO quantum numbers (nlml), the PW momentum k = |k|, the spherical harmonics

Ylml
(Ω) and the spherical harmonic-oscillator wave function in momentum space [124]

Φnl(k) = (−1)n
√

√

√

2n!

Γ (n+ l + 3
2)

�

kl bl+3/2
�

exp
�

−1
2
(kb)2

�

L(l+1/2)
n

�

(kb)2
�

. (5.23)

Here, b =
p

ħh/(mNω) denotes the oscillator length, depending on the oscillator frequency ω and nu-

cleon mass mN ≈ 939 MeV, while L(k)n (x) represents the generalized Laguerre polynomials.
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The expression for the transformation matrix in Eq. (5.22) can be derived by repeatedly inserting

identity operators

〈nlml |k〉=
∫ ∞

0

dk′k′2
∑

l′m′l

〈nlml |k′l ′m′l〉 〈k′l ′m′l |k〉 (5.24)

=

∫ ∞

−∞
d3r

∫ ∞

0

dk′k′2
∑

l′m′l

Φnl(k
′) 〈k′l ′m′l |r 〉 〈r |k〉 (5.25)

=

∫ ∞

0

drr2

∫

dΩr

∫ ∞

0

dk′k′2
∑

l′m′l

Φnl(k
′)

√

√ 2
π

jl′(k
′r)Y ∗

l′m′l
(Ωr)

1
(2π)3/2

exp(ik · r ) , (5.26)

with the spherical HO momentum basis |klml〉 and the spherical Bessel functions jl . After spherically

expanding the plane wave

exp(ik · r ) = 4π
∞
∑

l′′=0

l′′
∑

m′′=−l′′
i l′′ jl′′(kr)Yl′′m′′(k̂)Y

∗
l′′m′′(r̂ ) , (5.27)

and exploiting the orthogonality of the spherical harmonics and spherical Bessel functions, we eventually

obtain the result of Eq. (5.22).

Furthermore, the spin projection, ms, and isospin projection, mt , have to be included as additional

quantum numbers in the single-particle basis. Since these quantum numbers are identical in both bases,

we have neglected them in the transformation above

|sHO〉i = |nlml msmt〉i |sPW〉i = |kmsmt〉i . (5.28)

However, the HO single-particle states from the (IT)-NCSM are coupled to total angular momentum

j = |l ± s|. Therefore, we have to decouple the HO single-particle states with the corresponding Clebsch-

Gordan coefficients which yields for the transformation

Uab = 〈sHO
a |sPW

b 〉 := 〈(n(ls) jm jmt)a|(kmsmt)b〉 (5.29)

=i lΦnl(k)
∑

ml

�

1
2

ms lml

�

�

�

�

jm j

�

Y ∗lml
(Ωk) (5.30)

=i lΦnl(k)

�

1
2

ms l(m j −ms)

�

�

�

�

jm j

�

Y ∗l(m j−ms)
(Ωk) . (5.31)

In principle, the PW basis is continuous in k while |k| goes from minus infinity to plus infinity. For

the numerical integration of the matrix element, however, we need to discretize our basis and employ a
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momentum grid

1=

∫ ∞

−∞
d3k |k〉 〈k| →

∑

k, |k|≤ kmax

∆3
k |k〉 〈k| , (5.32)

with grid length kmax and grid spacing ∆3
k = ∆kx

∆ky
∆kz

. The simplest method for the grid generation

is the application of an equidistant grid for the momentum basis. For an appropriate number of momen-

tum basis states, this leads to consistent results. However, to improve the convergence with the same

number of basis states, it is convenient to employ a more sophisticated ansatz to decrease the step size

in the dominant region or increase the step size in the less important domain and weighting every point

individually. Therefore, we apply the Gauss-Legendre n-point quadrature formula for the grid generation

[125], where the weights for the j-th grid point can be expressed as

w j =
2

�

1− x2
j

�

�

P ′n(x j)
�2 , (5.33)

with the Legendre Polynomials Pn(x) and x j denotes the j-th root of Pn adapted to the employed grid

length. If the grid domain goes from −1 to +1, x j would be exactly the j-th root of Pn.

Using a distinct momentum grid instead of a continuous momentum basis from minus infinity to

plus infinity, we have to take care of ultraviolet errors due to an undersized grid domain and of infrared

errors because of an insufficient grid spacing. To specify the appropriate grid dimensions, we calculate

UU† !
= 1 to cross check our grid resolution for a given HO basis with |sHO

i 〉= |(n(ls) jm jmt)i〉

1= 〈sHO
i |sHO

i 〉=
∑

ms

∫

d3k 〈sHO
i |kmsmt〉 〈kmsmt |sHO

i 〉 (5.34)

=
∑

ms

∑

k

∆3
k 〈sHO

i |kmsmt〉 〈kmsmt |sHO
i 〉 (5.35)

=
∑

j

∆3
k j
〈sHO

i |(kmsmt) j〉 〈(kmsmt) j|sHO
i 〉 (5.36)

=
∑

j

∆3
k j

Ui jU
†
ji , (5.37)

where ∆3
k j
= wkx , jwky , jwkz , j denotes the weights from the Gauss-Legendre algorithm (5.33) of the j-

th plane wave state |(kmsmt) j〉. Since the HO single-particle states are orthonormal, the off diagonal

entries in U should yield zero. In terms of precision, three digits are sufficient for our numerical accuracy.

In the (IT)-NCSM, the HO single-particle basis is truncated in the single-particle energy emax, which

is chosen such that it matches the many-body Nmax truncation. The HO single-particle energy is defined

as e = 2n+ l. Depending on the dimension of the HO single-particle basis, we have to adapt our grid

dimensions for a consistent numerical precision. In general, we find that grid spacing values below 0.5

fm−1 are reasonable and an appropriate grid limit is around 4.5 fm−1. Note that the grid dimensions

are not explicitly applied since they are used as input for the Gauss-Legendre algorithm that generates
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the grid points with individual weights and varying grid spacings. However, they set the total number of

grid points generated by the algorithm.

5.5 One-Nucleon Results

In this chapter, we explicitly discuss the computation of one-body operators with the density approach

described above. The nuclear wave functions employed in this thesis are provided by the group of Robert

Roth. We start with a proof of concept calculation for the magnetic moments and then present our

results of the one-nucleon contribution to the neutral pion photoproduction amplitude at threshold and

compare them with the literature. Throughout the entire discussion of our one-nucleon and two-nucleon

results, the IT scheme is not required for the NCSM calculation of the nuclear wave functions since the

many-body problem for the nuclei under consideration can be solved numerically without the additional

importance truncation for sufficiently large Nmax model spaces. However, our approach can also be

applied to nuclear wave functions obtained by the IT-NCSM.

5.5.1 Magnetic Moment Benchmark

As a first cross check of our numerical procedure, we calculate the 1N contribution to the magnetic

dipole moment for different nuclei and compare them to the corresponding NCSM result and the results

obtained by Lenkewitz [112].

The 1N operator for the magnetic moment in spin and isospin space has the generic form [112]

µ̂1N = µ̂1 + µ̂2 + · · ·+ µ̂A , (5.38)

µ̂i = σi

�

1+τz
i

2
µp +

1−τz
i

2
µn

�

+ l i
1+τz

2
µN , (5.39)

whereσ denotes the spin operator represented by the Pauli matrices, τz is the z-component of the isospin

operator and µp = 2.79 µN , µn = −1.91 µN are the magnetic moments of the proton and neutron, respec-

tively, in units of nuclear magneton µN . The last term proportional to the angular momentum l, which

is generated by the rotating proton charges, is expected to be small. However, it should become more

important for nuclei where the total spin of the nucleus J is not dominated by the S-wave contribution

with L = 0.

The expectation value is then given by

¬

M ′J
�

�µ̂1N
�

�MJ

¶

Ψ
=
∑

si

∑

s j

∑

ms ,m
′
s

∫

d3k

∫

d3k ′U s j ,k′m′s om′sm′t ,msmt
δ(3)(k − k ′)U†

si ,kms
ρ1N

si ,s j
(5.40)

=
∑

si ,s j

∑

ms ,m
′
s

∑

k

∆3
kU s j ,km′s om′sm′t ,msmt

U†
si ,kms

ρ1N
si ,s j

(5.41)

= Tr
�

UOU†ρ1N
MJ M ′J

�

, (5.42)
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where om′sm′t ,msmt
denotes the single-particle operator of the magnetic moment in PW basis that reads

om′sm′t ,msmt
=

�

km′sm
′
t

�

�

�

�

σ

�

1+τz

2
µp +

1−τz

2
µn

�

+ l
1+τz

2
µN

�

�

�

�

kmsmt

�

. (5.43)

In principle, different choices for MJ and M ′J yield different results for the expectation value



M ′J
�

�µ̂1N
�

�MJ

�

Ψ
. However, the results are proportional to the spin matrices for a given nuclear spin,

J , so that we can cross check our numerical outcome. As a consequence, we find for the tensor structure

of the expectation value for µ1N

¬

M ′J
�

�µ̂1N
�

�MJ

¶

Ψ
=:

J MJ′MJ

J
µ1N
Ψ , (5.44)

where µ1N
Ψ indicates the result of the magnetic dipole moment for the nuclear state denoted by |Ψ〉 and

J MJ′MJ
is the entry of the spin matrix for the nuclear spin J at the position M ′J , MJ .

In the next step, our results for the magnetic moment are compared with the NCSM results from

Robert Roth and with the results obtained by Lenkewitz in Ref. [112]. As a first remark, by varying

the boundaries and density of our momentum grid, we can monitor the convergence behavior of our

results. Moreover, we find that the grid values obtained from our unity matrix validation above are also

appropriate for the magnetic moment calculation.

We compute the magnetic moment for arbitrary nuclei and find that our values are consistent with

the results from the NCSM up to the desired accuracy. In Ref. [112], Lenkewitz neglects the last term

in Eq. (5.39), which is proportional to the angular momentum l. This is legitimate for 3H and 3He,

where contributions from this term are indeed negligible. However, for nuclei with dominant L 6= 0

contributions to the nuclear wave function this leads to significant deviations.

The results for 2H, 3H and 3He are shown in Tab. 5.1 for an NCSM calculation with ħhω= 20 MeV and

Nmax = emax = 12. We employ the NN interaction developed by Entem and Machleidt (EM) [44] at N3LO

with a cutoff of 500 MeV/c for the nonlocal regulator function. This NN force is combined with the local

3N force at N2LO [105]. In order to improve the convergence in the many-body calculation, the poten-

tials derived from ChPT are “softened” via unitary transformations that decouple high-momentum and

low-momentum components. We achieve this by applying the similarity renormalization group (SRG)

[79] where the SRG evolution of the Hamiltonian is carried out with a flow parameter α = 0.12 fm4.

Table 5.1.: Numerical results for the magnetic dipole moment µ1N in units of µN for different nuclei.

nucleus our result NCSM Ref. [112]
2H 0.866 0.865
3H 2.692 2.695 2.582(42)
3He -1.833 -1.836 -1.810(34)
6Li 0.843 0.843
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Unless otherwise stated, we consistently use the same nuclear wave functions for all calculations through-

out Chapter 5.

Note that we use different wave functions than in Ref. [112], which explains the small deviations.

Hence, we are consistent with the numerical results. Furthermore, we extend the calculation to 6Li. The

same interactions from ChPT are employed as before and the nuclear wave function is calculated by the

NCSM for Nmax = 8. The value for the magnetic moment of 6Li is also consistent with the NCSM result.

5.5.2 One-Nucleon Contribution to the Neutral Pion Photoproduction

We have now all the tools at hand to calculate the one-body contribution to the neutral pion photopro-

duction at threshold. Following the approach in Ref. [112], we initially compute the transverse form

factors FS±V
T before stating the final result for the S-wave amplitude E1N

0+ . This has the advantage that we

gain further insights into the neutron and proton properties of the composite nucleus and can directly

compare our results with Lenkewitz et al. As described in Sec. 5.2, the one-nucleon contribution at LO is

illustrated in the first diagram from the left in Fig. 5.2. In this impulse approximation, the nucleons are

considered to be coupling independently to the electromagnetic current.

Similar to the magnetic moment calculation, the 1N pion production operator is given by [112]

M λ
1N =

A
∑

i=1

M λ
i with M λ

i = iελT ·σi

�

1+τz
i

2
Eπ

0p
0+ +

1−τz
i

2
Eπ

0n
0+

�

, (5.45)

where ελT denotes the transverse photon polarization vector for a given polarization λ and Eπ
0p

0+ , Eπ
0n

0+ are

the pion production amplitudes off the proton and the neutron, respectively. For the elementary S-wave

neutral pion production amplitudes at threshold, we take the predictions from the chiral perturbation

theory calculation to order O (q4) from Refs. [23, 126]

Eπ
0p

0+ = −1.16× 10−3/Mπ+ and Eπ
0n

0+ = +2.13× 10−3/Mπ+ , (5.46)

given in the usual units. Note that the values above are order O (q4) predictions in ChPT, while the chiral

order of the LO contribution to the pion production is O (q3). There are two reasons for this: First, we

want to compare our numerical results for 2H, 3H and 3He with the values of Refs. [26, 113], which

use the same predictions as in Eq. (5.46). Second, the order O (q3) value for the threshold amplitudes

disagrees with the experimentally measured S-wave amplitude at threshold [127]

Eπ
0p

0+ = (−1.23± 0.08± 0.03)× 10−3/Mπ+ , (5.47)

since the E0+ amplitude is only slowly converging in ChPT [23]. The same predictions as in Eq. (5.46)

can be derived by averaging the values of Refs. [27, 128]. Furthermore, the E0+ amplitudes above

are consistent with the results of the chiral unitary approach in Ref. [25]. Since the elementary

S-wave amplitudes from ChPT vary by about 5% in Refs. [27, 126, 128], we consequently assign a
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5% uncertainty to the E0+ amplitudes. Even under consideration of the experimental value above, this

seems to be a reasonable assumption. Moreover, this is consistent with the arguments in Ref. [26].

As described in Sec. 5.1 and shown in Eq. (5.8), the S-wave pion production amplitude can be

extracted from the expectation value of the pion production operator

¬

M ′J
�

�M λ
1N

�

�MJ

¶

Ψ
=: 2iE1N

0+

�

ελT · J
�

= 2i

�

Eπ
0p

0+

FS+V
T

2
+ Eπ

0n
0+

FS−V
T

2

�

�

ελT · J
�

. (5.48)

First, we calculate the transverse form factors

¬
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�Ôλ1N

�

�MJ

¶

Ψ
=

�
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�

A
∑

i=1

ελT ·σi
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i

2
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�
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�

MJ

�

Ψ

=: FS±V
T

�

ελT · J
�

. (5.49)

The corresponding expectation value is given by

¬

M ′J
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�Ôλ1N

�

�MJ

¶
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∑

ms ,m
′
s
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m′sm′t ,msmt

δ(3)(k + kγ − k ′)U†
si ,kms

ρ1N
si ,s j

(5.50)

=
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si ,s j
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ms ,m
′
s
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k

∆3
kU s j ,(k+kγ)m′s o

λ
m′sm′t ,msmt

U†
si ,kms

ρ1N
si ,s j

(5.51)

= Tr
�

UOλU†ρ1N
MJ M ′J

�

, (5.52)

where kγ denotes the photon momentum with ελT · kγ = 0 and the single-particle operator for the

transverse form factors in PW basis reads

oλ
m′sm′t ,msmt

=

�

km′sm
′
t

�

�

�

�

ελT ·σ
(1±τz)

2

�

�

�

�

kmsmt

�

, (5.53)

where ± determines the appropriate transverse form factor FS±V
T .

As explained in Sec. 3.2, the total many-body wave function factorizes into an intrinsic and a CM

state

|ΨHO〉= |Ψint〉 ⊗ |ΨCM〉 . (5.54)

Compared to the magnetic moment operator, we have a momentum transfer from the photon to the

nucleus in the pion photoproduction. Hence, the center-of-mass (CM) momentum is shifted by the

incoming photon momentum kγ ≈ mπ0 , cf. Eq. (5.5), due to the recoil of the nucleus. This poses an

issue in the NCSM approach since the center-of-mass part of the wave function is expected to remain

unchanged for the initial and final wave function.

Therefore, we have to modify our result to account for the shift in the CM momentum. Using
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Eq. (5.54), the expectation value above (5.52) reads

〈Ψ f |Ôλ1N |Ψi〉= 〈Ψ int
f |Ôλ1N |Ψ int

i 〉 〈ΨCM
f |Ôλ1N |ΨCM

i 〉= Tr
�

UOλU†ρ1N
ΨiΨ f

�

. (5.55)

However, we are only interested in the intrinsic contribution to the pion production. For that reason, we

have to divide our result by the CM contribution. In general, the CM state in the NCSM wave function

occupies always the HO ground state |N LM〉 = |000〉, where we use capital letters for the quantum

numbers to indicate the CM state. In the case of the pion production, the overlap of the initial and final

CM wave function thus yields

〈ΨCM
f |Ôλ1N |ΨCM

i 〉= 〈000|Ôλ1N |000〉=
∫

d3P′
∫

d3P 〈000|P′〉δ(3)(P + kγ − P′) 〈P|000〉 (5.56)

=

∫

d3P 〈000|P + kγ〉 〈P|000〉 (5.57)

=

∫

d3PΦ00(|P + kγ|)Y ∗00(ΩP+kγ)Φ00(|P|)Y00(ΩP) (5.58)

= exp
�

−1
4

B2k2
γ

�

, (5.59)

where P denotes the CM momentum and B =
p

ħh/(AmNω) the HO length for the composite sys-

tem, depending on the number of nucleons A. For 3H, we have to divide our result by a factor of

〈ΨCM
f |Ôλ1N |ΨCM

i 〉 ≈ 0.92 to obtain only the intrinsic contribution. For increasing A, this factor converges

to 1 since the recoil effect becomes negligible. In the case of the magnetic moment, we ignored the CM

contribution because kγ = 0 and the CM part therefore yields 〈ΨCM
f |Ô|ΨCM

i 〉= 1.

From Eq. (5.49) we can then deduce the general S-wave amplitude. To account for the change in

the phase space from the one-nucleon to the A-nucleon system, we have to multiply E1N
0+ by a kinematical

factor [112]

K1N (mA) =
mN +mπ

mA+mπ

mA

mN
, (5.60)

which depends on the nuclear mass mA. Thus, the S-wave amplitude for a given nucleus with A nucleons

yields

E1N
0+ =

K1N (mA)
2

�

Eπ
0p

0+ FS+V
T + Eπ

0n
0+ FS−V

T

�

. (5.61)

At threshold, we obtain non-vanishing amplitudes for all nuclei with spin J unequal to zero. Since

the 1N calculation is not computationally exhausting, we can employ large momentum grids so that

infrared and ultraviolet errors are negligible. Furthermore, we obtain consistent results for different

combinations of initial MJ and final M ′J and varying photon polarizations λ. We also compare the

results for different Nmax (emax) values and find that the pion production operator is not very sensitive
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to different HO model spaces. In the case of 3H, we already reach convergence for Nmax = 10 while

the deviation of the Nmax = 2 from the Nmax = 12 result is about 5%. A similar behavior is observed

for 2H, where the deviation of the Nmax = 2 from the Nmax = 12 pion production amplitude is about

7%. Moreover, the results are not very sensitive to different values of ħhω or varying flow parameters in

the SRG evolution of the interaction. We expect both errors to be in the single-digit percentage range.

Since we want to apply the pion production operator at threshold to a broad range of light nuclei, we

have to choose a distinct photon momentum kγ ≈ mπ0 that suits all nuclei. Due to the small deviation

from this value induced by the recoil term ∼ kγ/mA, we get a systematic error that is below 1% for the

nuclei considered here. With these considerations, we estimate the total error to be in range of 5%.

Additionally, we have to consider the 5% uncertainty from the ChPT prediction for the single-nucleon

amplitudes Eπ
0p/n

0+ .

As before, our numerical results for 3H and 3He are compared with Ref. [26] and for 2H with

Ref. [113] in Tab. 5.2. Taking the uncertainties into account, our values are consistent with the literature.

Table 5.2.: Numerical results of the one-nucleon contribution to the pion production amplitude at thresh-
old for different nuclei. The numbers in parenthesis denote the errors. In the case of two
consecutive parentheses, the first error represents the 5% estimation due to different chiral
interactions and photon momenta while the second error indicates the uncertainty from the
single-nucleon amplitudes. The NCSM calculation is performed for Nmax = 8 in the case of 6Li
and in all other cases for Nmax = 12. The literature results are taken from Refs. [26, 113].

our result literature

nucleus FS+V
T FS−V

T E1N
0+ [10−3/Mπ+] FS+V

T FS−V
T E1N

0+ [10−3/Mπ+]
2H 0.773(39) 0.773(39) 0.40(5)(5) 0.72 0.72 0.37(5) [113]
3H 1.551(78) 0.039(2) -0.94(5)(5) 1.493(25) 0.012(13) -0.93(3)(5) [26]
3He 0.041(2) 1.544(77) 1.77(9)(9) 0.017(13) 1.480(26) 1.71(4)(9) [26]
6Li 0.476(24) 0.479(24) 0.26(3)(3)

Moreover, we calculate the pion production amplitude for 6Li, which has the same nuclear spin structure

J P = 1+ as 2H. By comparing the result of 6Li to the computed values for 2H, 3H, and 3He, we find

that the result of 6Li differs significantly from the values for 3H and 3He, while the calculated amplitude

of 6Li is only 35% smaller than the value for 2H. Furthermore, the transverse form factors of 6Li are

qualitatively similar to those of 2H. The numerical result for 6Li can be explained if we consider that the

production amplitude for 4He is zero at threshold and 6Li can be approximated as a composite system of
6Li = 4He+ 2H.

As pointed out before, we have to evaluate the pion production operator in HO basis only once for

arbitrary nuclei and then multiply it with the appropriate density matrix for the considered nucleus. If

we have the nuclear wave function from the NCSM, we can immediately obtain the pion production

amplitude at almost zero additional costs. This is the advantage of this density method compared to the

Monte Carlo integration of Lenkewitz et al.
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So far, we applied the density approach to nuclei with spin J = 0, 1/2, and 1, but in principle, our

approach is applicable to arbitrary nuclei.

5.5.3 Charged Pion Photoproduction

In this section, we briefly discuss the charged pion photoproduction at threshold. In contrast to the neu-

tral pion production, the so-called Kroll-Ruderman term [121], which contributes at LO to the charged

pion production (Sec. 5.2), does not vanish and describes the charged pion production fairly well [123].

This simplifies the LO calculation for charged pions since the computationally exhausting two-nucleon

production operator contributes at higher orders.

We can straightforwardly follow the steps in the previous section for neutral pion production. From

Eqs. (5.52) and (5.61), we can calculate the transverse form factors for charged pion production by

replacing the S-wave amplitudes for neutral pion production off the proton and the neutron with the

ones derived for the charged pion production from the Kroll-Ruderman term [123]

Eπ
+n

0+ =
egπN

4π
p

2m(1+µ)3/2
= 27.6× 10−3/Mπ+ (5.62)

Eπ
−p

0+ = − egπN

4π
p

2m(1+µ)1/2
= −31.7× 10−3/Mπ+ , (5.63)

with µ = Mπ+/m and using g2
πN/(4π) = 14.28 for the pion-nucleon coupling constant, e2/(4π) =

1/137.036 for the fine-structure constant, m= 928.27 MeV and Mπ+ = 139.57 MeV. The amplitudes for

charged pion production are one order in magnitude larger than the neutral pion production amplitudes

and hence, the cross section for charged pion production is also more pronounced. Including chiral

corrections to the Kroll-Ruderman theorem up to order O (q3) yields only small deviations of the values

for the S-wave amplitudes [123]

Eπ
+n

0+ = (28.2± 0.6)× 10−3/Mπ+ (5.64)

Eπ
−p

0+ = (−32.7± 0.6)× 10−3/Mπ+ , (5.65)

since the chiral expansion shows a rapid convergence. The minor mass difference between mπ0 and mπ±

leads to slightly larger photon energies at threshold. However, the main difference in the calculation

comes from the fact that the initial and final nucleus differ because of charge conservation, cf. Eq. (5.2).

Therefore, we have to consider the transition density matrix from the initial nuclear state Ψi to the final

nuclear state Ψ ′f

ρ
(1N ,trans)
s,s′ = 〈Ψ ′f |â†

s′ âs|Ψi〉 . (5.66)

This can complicate the computation, especially if the initial and the final nuclear spin are also different.

Moreover, employing the NCSM, we are limited to nuclear reactions between bound states. For the

reasons mentioned above, the charged pion photoproduction is not explicitly evaluated in this thesis.

86 5. Pion Photoproduction



Instead, we will address the two-nucleon contribution to the neutral pion photoproduction in the next

section.

5.6 Two-Nucleon Results

In this chapter, we demonstrate the computation of two-nucleon operators employing the density ap-

proach. As a first test case, we start with the calculation of the intrinsic kinetic energy. Eventually,

we present our results for the 2N pion production amplitude at threshold and compare them with the

literature.

At first, we discuss the extension of the single-particle basis to a two-particle basis required for the

calculation of two-body operators. The HO and PW two-particle basis are composed from the single-

particle basis states and since we are dealing with fermions, they satisfy antisymmetry

|s1s2〉a =
|s1s2〉 − |s2s1〉p

2
. (5.67)

Due to the fact that the two-particle basis grows approximately quadratically with the number of

single-particle basis states, the calculations in the two-particle sector become computationally exhaust-

ing, even for small values of emax. This is illustrated in Fig. 5.4, where the number of single-particle

and two-particle HO basis states are plotted as a function of emax. Since the computation time scales

approximately quadratically with the number of basis states, we expect the calculation for emax = 2 in

the 2N sector to take significantly longer than for emax = 16 in the one-nucleon contribution. In this

assumption, however, we did not consider that the PW basis also grows quadratically with the number

of PW single-particle states. As a consequence, even the calculation of the 2N contribution for emax = 2

is barely feasible on a personal computer.
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Figure 5.4.: Number of HO basis states as a function of the single-particle energy emax on a logarithmic
scale. The blue colored data points denote the number of single-particle basis states while
the red colored data points represent the number of antisymmetrized two-particle states.
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5.6.1 Intrinsic Kinetic Energy Benchmark

Similar to the benchmark of the magnetic moments, we apply the intrinsic kinetic energy operator, T̂int =
T̂− T̂CM, as a first cross check in the two-nucleon sector. There are two reasons for this: First, it is already

implemented in the (IT)-NCSM code of Robert Roth’s group and second, T̂int can be straightforwardly

calculated in the PW basis

T̂int =
1
2

∑

i j

2
A

P2
i j, rel

2µ
=
(k i − k j)2

4AmN
with P i j, rel =

(k i − k j)

2
, (5.68)

where A denotes the total number of nucleons, P i j, rel the relative momentum and µ= mN/2 the reduced

mass between the two nucleons.

The expectation value then reads
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= Tr
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, (5.71)

where t (int)
k1k2,k1k2

represents the two-particle operator for the intrinsic kinetic energy in PW basis, which

is given by

t (int)
k1k2,k1k2

=

�

k1ms1mt1, k2ms2mt2

�

�

�

�

(k1 − k2)2

4AmN

�
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�

�

k1ms1mt1, k2ms2mt2

�

. (5.72)

The tensor structure of the expectation value is a scalar so that the extraction of the Tint result is

straightforward. Since the HO and PW two-particle basis grow approximately quadratically with the

number of single-particle states, calculations become computationally exhausting to reach convergence.

While reaching convergence is still feasible for the calculation of the two-nucleon UU† = 1 unitary matrix

and for Tint employing small emax model spaces, the computation of the two-nucleon pion production

amplitude will become a hard nut to crack. This is because of the additional integrals or sums over HO

and PW basis states, as we will discuss in the next chapter. For this reason, we calculate the expectation

value of Tint only for Nmax = 2 and ħhω = 20 MeV for 2H, 3H, 3He and 6Li and compare it to the NCSM

results. The results are shown in Tab. 5.3 and are consistent with the values of the NCSM.

Employing small values of emax not only decreases the HO model space size but also the PW basis

required to represent the HO basis in order to satisfy the unitary condition UU† = 1. In the 2N sector, we
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find that a grid length of kmax = 2.5 fm−1 and a grid spacing of 0.4 fm−1 as input for the Gauss-Legendre

algorithm lead to reasonable results with a three digits precision for UU† = 1.

Table 5.3.: Numerical results for the intrinsic kinetic energy Tint in units of MeV for different nuclei.

nucleus our result NCSM
2H 13.75 13.74
3H 28.62 28.60
3He 28.38 28.37
6Li 86.69 86.66

5.6.2 Two-Nucleon Contribution to the Neutral Pion Photoproduction

After the successful benchmark in the 2N sector for Tint, we are now in the position to calculate the

relevant two-nucleon diagrams contributing at LO in Fig. 5.2. In Coulomb gauge, all possible contact

terms vanish at this order and only the two relevant one-pion-exchange diagrams (a) and (b) in Fig. 5.2

remain at threshold, as discussed in Sec. 5.2. Since the two-nucleon contributions are dominant over

the one-nucleon effects for 2H [113] and 3H, 3He [26], these contributions are not negligible and are

expected to yield a significant contribution to the pion production amplitude at LO for arbitrary light

nuclei.

In principle, the two-body contribution can be evaluated in the same way as in the one-body sector.

Following the approach in Ref. [26], the S-wave pion production amplitude can be extracted from the

expectation value of the pion production operator in the 2N sector

¬

M ′J
�

�M λ,a
2N +M λ,b

2N

�

�MJ

¶

Ψ
=: 2iE2N

0+

�

ελT · J
�

= 2iK2N

�

F a
T − F b

T

� �

ελT · J
�

, (5.73)

with M λ,a
2N +M λ,b

2N =
1
2

∑

i j

�

M λ,a
i j +M λ,b

i j

�

. (5.74)

The prefactor K2N , which depends on the nuclear mass, reads

K2N (mA) =
mπegAmA

16π(mA+mπ)(2π)3F3
π

, (5.75)

with the axial-vector coupling constant gA = 1.26 and the pion decay constant Fπ = 93 MeV. Note that

we use the old values for gA and Fπ to be consistent with Refs. [26, 112] and with the evaluation of the

single-nucleon multipoles in Eq. (5.46). Moreover, we define the transverse form factors

¬

M ′J
�

�M λ,x
2N

�

�MJ

¶

Ψ
=: K2N

¬

M ′J
�

�Ôλ,x
2N

�

�MJ

¶

Ψ
= K2N F x

T

�

ελT · J
�

, (5.76)
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where x is a placeholder for diagram (a) or (b). The expectation value is then given by

¬
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=Tr
�

UOλ,i
2N U†ρ2N

MJ M ′J

�

, (5.79)

where |sPW
i 〉 = |k imsimt i〉, kγ denotes the photon momentum and oλ,x represents the two-particle oper-

ator in PW basis. The two-particle operator reads for diagram (a) [26]

oλ,a

sPW
1 sPW
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�

sPW
1
′
sPW
2
′
�

�

�

�

ελT · (σ1 +σ2)(τ1 ·τ2 −τz
1τ

z
2)

4q2

�

�

�

�

sPW
1 sPW

2

�

, (5.80)

and for diagram (b)
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, (5.81)

where q = (k1−k2−k ′1+k ′2+kγ)/2 denotes the momentum of the exchanged pion, which simplifies to

q = k1 − k ′1 + kγ = k ′2 − k2 , (5.82)

after applying the momentum conservation via the delta function in Eq. (5.77).

As previously discussed for the 1N pion production in Sec. 5.5.2, the two-nucleon result also has to

be divided by a factor of

¬

ΨCM
f

�

�Ôλ2N

�

�ΨCM
i

¶

= exp
�

−1
4

B2k2
γ

�

, (5.83)

due to the recoil effect that leads to a shift in the CM momentum. Here, B =
p

ħh/(AmNω) denotes the

HO length of the nucleus.

Compared to the one-nucleon contribution, the computation in the 2N sector is computationally very

exhausting. There are two reasons for this: First, the two-particle HO and PW model space dimensions

grow approximately quadratically with respect to the single-particle basis, which leads in each case to
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twice as many sums as in the one-nucleon contribution. Second, the delta function eliminates only

the sum over the outgoing PW basis k ′2 while the additional sum over k ′1 remains. These difficulties

can be tackled head-on. The code is easy to parallelize and the matrix calculation of UOλ,x
2N U† can be

conveniently split into smaller matrix blocks. This enables large scale calculations on clusters that shifts

the feasibility to larger model spaces.

Another complication is induced by the denominator in Eqs. (5.80), (5.81) since the integral for the

form factors contains an integrable singularity for q → 0. There are several possibilities to deal with this.

As one possibility, we can remove the singularity by an appropriate variable transformation

∫

d3k1

∫

d3k ′1
1
q2
= −

∫

d3k1

∫

d3q
1
q2

, (5.84)

where we exploited that q = k1 − k ′1 + kγ. Then we can cancel the denominator and obtain

−
∫

d3k1

∫

d3q
1
q2
= −

∫

d3k1

∫

dΩq dq
q2

q2
. (5.85)

This has the downside that it is not straightforwardly compatible with our numerical approach of sum-

ming over the PW basis in Cartesian representation. First, this would require another variable transfor-

mation from Cartesian to spherical PW representation and second, the new integral boundaries would

become more complex.

Therefore, we follow the idea of Lenkewitz [112] and introduce an additional mass scale Λ in the

denominator to avoid division-by-zero terms

1
q2
→ 1

q2 +Λ2
. (5.86)

To extract the result that is independent of Λ, we have to extrapolate Λ → 0. Hence, we evaluate the

form factors for different values of Λ and extrapolate exponentially to zero. In the following, we briefly

motivate this exponential ansatz.

We start with the integral for the form factor in momentum space

MΛ
λ,a(ε

λ
T , kγ) =

∫

d3k

∫

d3k ′Ψ†(k ′)
ελT · S

�

k − k ′ +
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2

�2
+Λ2

Ψ(k) , (5.87)

with S = σ1 +σ2. This expression can be Fourier transformed into

MΛ
λ,a(ε

λ
T , kγ) = 2π2

∫

d3rΨ†(r )
ελT · S
|r | Ψ(r )exp

�

i
kγ
2
· r
�

exp (−|Λ||r |) (5.88)

= 2π2

∫

d3r f (r )exp(−|Λ||r |) , (5.89)
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with

f (r ) = Ψ†(r )
ελT · S
|r | Ψ(r )exp

�

i
kγ
2
· r
�

, (5.90)

and we employed the following identities

Ψ(k) =
1

(2π)3/2

∫

d3r exp(−ik · r )Ψ(r ) , (5.91)

1
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|r | exp(−|Λ||r |) , (5.92)

∫

d3k exp
�

i(r − r ′) · k�= (2π)3δ(3)(r − r ′) . (5.93)

Under the assumption that f (r ) denotes a function with a distinctive peak at the typical nuclear

length scale r = r 0, we can replace r with r 0 in Eq. (5.89) and write

MΛ
λ,a(ε

λ
T , kγ) = 2π2 f (r 0)exp(−|Λ||r0|)

∫

d3r (5.94)

= 2π2 f (r 0)exp(−|Λ||r0|)V , (5.95)

with V =
∫

d3r . When we explicitly discuss our numerical results, we will see that r0 is indeed in the

typical nuclear length scale.

The exponential ansatz is also confirmed by comparing with our numerical results for different

values of Λ in the range of 0.5− 1.0 fm−1, as illustrated in Figs. 5.5 and 5.6. The reasoning behind the

choice of the upper and lower limit for Λ is as follows: For large values of Λ, the integral converges to

zero, while for small values of Λ, the integral diverges and the distinctive peak of f (r ) at r0 becomes

negligible compared to the Λ contribution. We apply a logarithmic scale and obtain from Eq. (5.95)

ln
�

MΛ
λ,a(ε

λ
T , kγ)

�

= ln
�

2π2 f (r 0)V
�− |Λ||r 0| (5.96)

= ln
�Ma(εT , kγ)

�− |Λ||r 0| . (5.97)

Then we extrapolate exponentially Λ to zero. This is shown in Fig. 5.5 and 5.6, where all data points

for 1.0 fm−1 ≥ Λ ≥ 0.5 fm−1 lie approximately on a linear curve. Here, the slope of the linear curve is

given by r 0 and the result for Λ→ 0 is denoted byMa(εT , kγ). In Fig. 5.5, the data points are not fully

converged with respect to the PW model space since we intentionally decreased the number of grid points

to reduce the computation time. Therefore, the corresponding result for (F a
T − F b

T ) is about 20% smaller

than for the converged data set in Fig. 5.6. As explained above, for small values of Λ the singularity

destroys the linear behavior and the outcome is very sensitive to small changes in our momentum grid.
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Figure 5.5.: The numerical result of (F a
T − F b

T ) is plotted for different values of Λ (red data points) on a
logarithmic scale for 3H. The blue curve is the exponential fit (in the data range of Λ= 0.5−
1.0 fm−1) to vanishing Λ for extracting the result of the form factor. The data points are not
fully converged with respect to the PW model space. The NCSM wave function is calculated
for an Nmax = 2 model space and accordingly, the applied HO single-particle energy is emax =
2.

For large values of Λ the linear behavior is more robust, but the expectation value eventually goes to

zero because the Λ term dominates.

The converged results are illustrated in Fig. 5.6. In contrast to the one-nucleon contribution, the

NCSM calculation is performed in an Nmax = 2 model space for all nuclei since, at the moment, we are

computationally limited to single-particle model spaces with emax = 3 in the two-nucleon sector. As a

consequence, our results are not fully converged with respect to emax (Nmax). Due to our findings for

the one-nucleon contribution, we do not expect our results to be strongly sensitive to emax. Compared

to the converged result for emax = 10, the deviation for emax = 2 is about 5% in the case of 3H and
3He and about 7% for 2H. The largest uncertainty stems from the Λ→ 0 extrapolation. By varying the

fitting range of Λ in both directions we estimate the uncertainty to be in order of 10%. Because of the

logarithmic scale, even small changes in the slope of the linear curve lead to significant deviations of

the extrapolated result. The other uncertainties discussed for the 1N contribution, e.g, the change in the

photon momentum for different nuclei due to the recoil term, are negligible in the two-nucleon sector.

Employing the formula for the Gaussian propagation of uncertainty, we expect the total error for all

nuclei to be in the range of 12% since the 2N contribution is not as sensitive to the varying number of

neutrons and protons inside the nucleus as the 1N effect before.

The numerical results for the two-nucleon contribution are shown in Tab. 5.4. Comparing our values

with the results of Lenkewitz et al. and Beane et al., we find that our numerical results are around 10%

smaller in magnitude for all nuclei compared to the ones in the papers, i.e. 2H, 3H and 3He. However,

including the uncertainties, our values are consistent with the literature.
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Figure 5.6.: The numerical result of (F a
T − F b

T ) is plotted for different values of Λ (red data points) on
a logarithmic scale. The blue curve is the exponential fit (in the data range of Λ = 0.5 −
1.0 fm−1) to vanishing Λ for extracting the result of the form factor. The respective NCSM
wave functions are calculated for an Nmax = 2 model space and emax is chosen accordingly. In
the top panel, the extrapolation for the two J P = 1+ nuclei 2H and 6Li is shown while in the
bottom panel 3H and 3He with J P = 1/2+ are illustrated.

Table 5.4.: Numerical results of the two-nucleon contribution to the pion production amplitude at thresh-
old for different nuclei. The numbers in parenthesis denote the errors. The NCSM calculations
are performed for Nmax = 2. The literature results are taken from Refs. [26, 113].

our result literature

nucleus F a
T − F b

T [fm
−1] E2N

0+ [10−3/Mπ+] F a
T − F b

T [fm
−1] E2N

0+ [10−3/Mπ+]
2H -13.4(16) -1.71(20) -1.90 [113]
3H -27.2(33) -3.55(43) -29.7(3) -4.01(3) [26]
3He -27.1(33) -3.53(42) -29.3(3) -3.95(3) [26]
6Li -11.4(14) -1.52(18)
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As mentioned before, we employ different nuclear wave functions than Lenkewitz and Beane, which

can lead to small deviations. Furthermore, our amplitudes are not expected to be converged with respect

to emax. This is one possible explanation for the fact that our amplitudes are systematically smaller in

magnitude than the literature results. Moreover, the numerical uncertainties for the 2N contribution

of Lenkewitz et al. appear to be an overoptimistic estimation. They apply a similar approach for the

extrapolation to vanishing Λ and assume that their error is one order in magnitude smaller than our

estimation. As a further validation of our extrapolation procedure, we extract r0 from the slope of our

linear fit. We find for all nuclei considered in Fig. 5.6 that r0 ≈ 1.6 fm, which is consistent with the

typical nuclear length scale.

5.7 Results of the Neutral Pion Photoproduction at Threshold

The total S-wave amplitudes derived from the 1N and 2N contributions for threshold neutral pion pho-

toproduction at LO for 2H, 3H, 3He, and 6Li are shown in Tab. 5.5.

Table 5.5.: Numerical results of the total S-wave neutral pion production amplitude at threshold E0+ for
different nuclei. The numbers in parenthesis denote the errors. The literature results are taken
from Refs. [26, 113].

E0+ [10−3/Mπ+]

nucleus our result literature
2H -1.31(22) -1.53(5) [113]
3H -4.48(43) -4.94(5) [26]
3He -1.77(44) -2.25(4) [26]
6Li -1.26(19)

The calculated 2N contributions are smaller in magnitude than in the literature and dominate over the

1N effects. Thus, the deduced total amplitudes are also smaller in magnitude than the literature results.

Including the uncertainties, they are consistent with Refs. [26, 113].

Furthermore, we can compare our results with experimental data from the Saskatchewan Acceler-

ator Laboratory (SAL) for the neutral pion photoproduction off 2H in the threshold region [19]. They

extrapolated their data to threshold and concluded for the threshold pion photoproduction amplitude

of 2H

E0+ = (−1.45± 0.09)× 10−3/Mπ+ , (5.98)

which is about 11% larger than our prediction and about 5% lower than the prediction by Beane [113].

Finally, we briefly discuss the NLO effects. The relevant contributions at order O (q4) are outlined

in the last paragraph of Sec. 5.2. Beane and Lenkewitz calculated the neutral pion photoproduction

amplitudes at threshold up to NLO. By comparing their LO predictions with their results at NLO, we

can estimate the NLO contribution to our computed values. We observe an increase in magnitude of
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the pion production amplitude from LO to NLO for all considered nuclei, i.e. 2H, 3H and 3He. The

pion production amplitude up to NLO of 2H is 17% larger in magnitude than the result at LO [113]

while the NLO amplitudes of 3H and 3He are 7% and 10% larger in magnitude, respectively, than the LO

values [26]. Consequently, we assume that the NLO contribution to our results is of the same size. In

the case of 6Li, a similar effect as for 2H is expected.

5.8 Conclusion

We combined the threshold neutral pion photoproduction operators from ChPT at LO with nuclear wave

functions from the NCSM in a density matrix approach. Thus, we extended the calculation of S-wave pion

production amplitudes to a broad range of light nuclei. In particular, we calculated the threshold neutral

pion photoproduction amplitude at LO for 2H, 3H, and 3He to compare it with the literature [26, 113]

and we further extended the calculation to 6Li. The advantage of this density approach is that the pion

production operator has to be evaluated only once for arbitrary nuclei. The pion production amplitude

can then be directly derived by tracing the resulting matrix with the appropriate density matrix for the

considered nucleus. This approach works smoothly in the one-nucleon sector, where the computation

time is negligible and the results for the neutral pion photoproduction amplitude at threshold E1N
0+ =

[0.40(5), −0.94(5), 1.77(9)]×10−3/Mπ+ for 2H, 3H, and 3He, respectively, agree with the literature. We

further predicted the neutral pion photoproduction amplitude at threshold E1N
0+ = 0.26(3)× 10−3/Mπ+

for 6Li. This value can be explained by considering 6Li as a composite system of 4He+ 2H. At threshold,

all amplitudes for nuclei with J = 0 such as 4He vanish. Thus, we expect the amplitude of 6Li to yield a

similar result as for 2H.

The calculation in the two-nucleon sector was more challenging. On the one hand, the matrix di-

mensions become very large so that the calculation of the pion production operator is computationally

exhausting even on large clusters. On the other hand, the integral contains an integrable singularity. To

avoid division-by-zero terms, we included an additional mass scale in the denominator that has to be

extrapolated to zero. This induces extrapolation errors and requires multiple calculations with different

values for the mass scale. Nevertheless, we were able to calculate the two-body contribution to the neu-

tral pion photoproduction amplitude at threshold E2N
0+ = [−1.71(20), −3.55(43), −3.53(42)]×10−3/Mπ+

for 2H, 3H, and 3He, respectively. Taking the uncertainties into account, our values are consistent with

the literature. Furthermore, we predicted the two-nucleon amplitude E2N
0+ = −1.52(18) × 10−3/Mπ+

for 6Li. This result can be explained as before by considering the approximation 6Li = 4He + 2H and

comparing it with the value of 2H.

At LO in ChPT, one-nucleon and two-nucleon effects contribute to the S-wave neutral pion produc-

tion amplitude. Our results confirm that the two-nucleon contribution is dominant over the one-nucleon

effect, as suggested by the literature. Incorporating the uncertainties, we are consistent with the total

amplitudes in the literature for 2H, 3H, and 3He and with the experimental data for 2H [19]. The ex-

perimental result for the threshold pion production amplitude is about 11% larger than our prediction,

while it is about 5% lower than the prediction of Ref. [113]. Our calculated amplitudes are systematically

smaller in magnitude than the theoretical and experimental reference values. One explanation for this

could be that our results of the dominant two-nucleon contribution are not fully converged with respect

to emax. For 6Li, we predicted the threshold pion photoproduction amplitude E0+ = −1.26(26) 10−3/Mπ+
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at LO in ChPT for the first time. By comparing the pion photoproduction amplitudes from the literature

at LO with the appropriate NLO results, we estimate the NLO effects to be about 10%, depending on the

considered nucleus.

In principle, this density approach can be applied to any light nucleus for which the (IT)-NCSM

is capable of calculating the nuclear wave function to immediately predict the threshold neutral pion

photoproduction amplitude at LO. However, there is still an unresolved issue related to the computation

time of the pion production operator in the two-nucleon sector. For harmonic-oscillator single-particle

model spaces with emax > 4, our density approach in its current version reaches its computational limit

even on large clusters. However, especially for nuclei beyond 6Li, neither the energy of the nuclear wave

function nor the corresponding pion production amplitude are fully converged in these small emax model

spaces.
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6 Conclusion and Outlook
In this work, we employed two different effective field theories for the description of electromagnetic

properties and reactions in light nuclei depending on the effective degrees of freedom in the considered

system. We applied the pionless Halo EFT to calculate electromagnetic form factors, electromagnetic

transitions as well as the neutron capture cross section for the two carbon isotopes 15C and 17C. Both

carbon isotopes can be assumed to be one-neutron halo nuclei, where the effective degrees of freedom

are the halo neutron and a tightly bound carbon core. Furthermore, they both have shallow D-wave

bound states. We extended the Halo EFT approach to higher partial wave bound states and to D-wave

states in particular. Moreover, we predicted several electromagnetic observables such as the quadrupole

moment exploiting the universal correlation between the quadrupole moment and the B(E2) transition.

In this sense, Halo EFT can be regarded as a complementary approach to ab initio methods, where these

correlations are not obvious since the separation of scales is not explicit in the parameters of the theory.

We generally find that counterterms become more dominant for higher partial waves, which complicates

numerical predictions. In the magnetic sector, in particular, unknown counterterms that have to be

matched to theoretical or experimental data enter already at LO. We also outlined the extension of

the Halo EFT approach to partial waves beyond the D-wave. However, we propose the application of

the spherical representation throughout the calculation of electromagnetic observables beyond the P-

wave instead of employing Cartesian coordinates as in this work. Especially in the magnetic sector,

where observables are more sensitive to the spin of the neutron, we expect a significant simplification

in the evaluation of observables from the spherical representation. Moreover, we could extend our

considerations to systems with two halo neutrons. In such three-body systems, new universal few-body

correlations, such as the Efimov effect [60], emerge. Another field of study are one-proton halo nuclei.

Because of the Coulomb interaction between the charged core and halo proton, the long-range Coulomb

photon exchange has to be explicitly included in the effective Lagrangian in addition to the short-range

strong interaction. Some of these extensions are already being considered by our group.

Through the inclusion of pions in addition to nucleons as effective degrees of freedom in our theory,

we employed ChPT and a density matrix approach to evaluate the threshold neutral pion photoproduc-

tion amplitudes at LO for several light nuclei. The density approach enables us to immediately predict

the pion production amplitude for a broad range of nuclei with the appropriate density matrix since the

evaluation of the pion production operator is required only once. This is the advantage of our density

approach compared to the Monte Carlo integration of Lenkewitz et al. So far, we applied the density

method to nuclei with spin J = 0, 1/2, and 1, but in principle, our approach is applicable to arbitrary nu-

clei. The S-wave amplitudes for 2H, 3H, and 3He were already predicted in the literature [26, 113]. We

compared our results with the predictions in the literature and found that we are in agreement about the

one- and two-nucleon contribution to the S-wave amplitudes. The experimental result for the pion pho-

toproduction off 2H [19] is about 11% larger than our prediction. This deviation can be explained

by considering that the dominant two-nucleon results are not fully converged with respect to emax.
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Therefore, we have to reconsider our numerical approach in the two-body sector. Currently, we are

limited to emax ≤ 4 model spaces so that we cannot reach full convergence in our pion production am-

plitude, especially for nuclei beyond the s-shell. In addition, there are several natural extensions to this

work such as the investigation of higher order contributions to the threshold neutral pion photopro-

duction and the calculation of pion production amplitudes above threshold. Since experimental setups

generally measure the pion production above threshold, the extension to this energy regime would sim-

plify the comparison with experimental data. Furthermore, this would enable us to describe even more

nuclei since the pion production amplitude above threshold yields non-vanishing results even for spin

zero nuclei, such as 4He. Further work in this direction is in progress.

A more detailed conclusion on the Halo EFT and the pion production results can be found separately

at the end of each chapter, i.e. in Sec. 4.11 and 5.8, respectively.
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A Halo EFT Calculations

A.1 Self Energy of the D -Wave Propagator

We calculate the one-loop self energy of the D-wave propagator, depicted in the top panel of Fig. 4.2, in

Cartesian representation, cf. Sec. 4.3.2. The incoming and outgoing relative momentum indices for the

D-wave polarization are denoted by i, j and o, p, respectively. Eventually, we couple the neutron spin

with the relative momentum and project out the appropriate total angular momentum J . The self energy

reads
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(A.1)

where the ellipses stand for the same momentum terms as in the first bracket inside the corresponding

parenthesis and d denotes the space dimension. We divide the calculation into the evaluation of the

numerator and the integration over l0.

For the numerator in the equation above, i.e. the last two lines only, we derive

N = (−i)2
�

li l j −
1
d

l2δi j

�

(−i)2
�

lo lp −
1
d

l2δop

�

(A.2)

= li l j lo lp −
li l j

d
l2δop −

lo lp

d
l2δi j +

1
d2

l4δi jδop (A.3)

=
l4

d(d + 2)

�

δioδ jp +δipδ jo −
2
d
δi jδop

�

, (A.4)

where we used the following identities

li l j = l2
δi j

d
(A.5)

li l j lo lp = l4
δi jδop +δioδ jp +δipδ jo

d(d + 2)
. (A.6)
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The integration over l0 yields

I =

∫

d4l
(2π)4

i

M
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�2
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(A.7)

= i2(−2πi)

∫

d3l
(2π)4

1

E − p2

2Mnc
− l2

2mR
+ iε

. (A.8)

After defining

Σd
i j,op(p) =Σ

d(p)

�

δioδ jp +δipδ jo − 2
dδi jδop

�

2
, (A.9)

we obtain for the self energy

−iΣd(p) = −i g2
2

2
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(−2mR)
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= −i g2
2

2
15

2mR

4π

�

2mR

�
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��2�√
√

−2mR

�

E − p2

2Mnc

�

− 15
8
µ

�

, (A.11)

where we employed PDS as regularization scheme. In PDS, also the poles in d = 2, which correspond to

power law divergences at d = 3, are subtracted

I =
�µ

2

�3−d 2
d(d + 2)

∫

dd l
(2π)d

l4

l2 − a
(A.12)

= (4π)−d/2 Γ (1− d/2− 2)
Γ (d/2+ 2)
Γ (d/2)

(−a)2+d/2−1
�µ

2

�3−d 2
d(d + 2)

, (A.13)

with a = 2mR

�

E − p2/(2Mnc)
�

. Thus, we deduce for d = 3 under consideration of the pole in d = 2

I = − 1
4π

2
15

a2
�

(−a)1/2 − 15
8
µ

�

. (A.14)

A.2 Minimal Substitution in the D -Wave Interaction

Photons are included via minimal substitution in the effective Lagrangian (4.4) in our theory. The D-wave

Galilean invariant interaction in Cartesian representation is given by

−g2

�

d†
s,i j ns

�

1
2

h↔∇ j

↔∇ j +
↔∇ j

↔∇i

i

− 1
d

↔∇
2
δi j

�

c + h.c.
�

, (A.15)
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where we ensure Galilean invariance with the adoption

n
↔∇c = n

�

M
←∇−m

→∇
�

Mnc
c . (A.16)

The left and right arrows indicate operators acting on the neutron and core fields, respectively. For the

inclusion of photons we replace ∂µ→ Dµ = ∂µ + ieQ̂Aµ, which leads to

n
h

M
←∇−m

→∇
i

c→ n
h

M
←
D−m

→
D
i

c = n
h

M
←∇−m

→∇+ imeQcA
i

c , (A.17)

where we used that the charge operator acting on the neutron field yields zero and on the core Q̂c =Qcc.

Thus, for the term in Eq. (A.15) it follows

n
h

M
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D−m

→
D
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i
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D−m
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D
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j
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c (A.18)

= n
h
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→∇ j −Mm
→∇i

←∇ j +m2
→∇i

→∇ j +Mm ieQc

←∇iA j

+Mm ieQcAi

←∇ j −m2 ieQc

�→∇iA j + Ai

→∇ j − ieQcAiA j

�i

c . (A.19)

In Coulomb gauge, ∇ ·A= 0, and if we consider only vertices contributing to the one-photon exchange,

we deduce from the equation above

n
�

Mm ieQc

←∇iA j +Mm ieQcAi

←∇ j −m2 ieQc

h→∇iA j + Ai

→∇ j

i�

c . (A.20)

This yields the following Feynman rule for the one A-photon exchange derived from the D-wave interac-

tion in Eq. (A.15)

(−g2)

�

i
eQcm
M2

nc

�

�

�

mp c −M pn

�

i ε j +
�
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j εi −
2
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δi j
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mp c −M pn

� · ε+ m
2

�

k iε j + k jεi

�

�

,

(A.21)

with the photon momentum k, the photon polarization vector ε, and the neutron and core momentum

pn and p c, respectively.

In the following sections of App. A we will discuss the calculation of Feynman diagrams that con-

tribute to electric transitions and electric form factors. In principle, the Feynman diagrams that con-

tribute to the equivalent magnetic observables are similar. The evaluation follows the same steps as

outlined in the electric sector and thus, is not explicitly presented in this work. The main difference is

the additional vertex due to the coupling of the photon to the magnetic moment of the halo neutron in

Eq. (4.76) and further local gauge-invariant operators in the magnetic sector.
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A.3 B(E2) Transition from the S -to-D -Wave State

In this section, we calculate the diagrams that contribute to the B(E2) transition from the S-to-D-wave

state at LO. The two relevant Feynman diagrams for this process are shown in Fig. 4.5 (a). We divide the

calculation into three subsections. In the first two subsections, the two diagrams in Fig. 4.5 (a), which

contribute to the space-space vertex function, are computed with an A-photon vertex while in the last

subsection, the corresponding space-time vertex function with an A0-photon vertex is evaluated, which

yields the same result using current conservation.

A.3.1 First Loop Diagram

We start with the left diagram in Fig. 4.5 (a), where the Feynman rule for the A-photon vertex is given

in Eq. (4.42). This yields for the total amplitude in Cartesian coordinates

D1=(−i g0)(−i g2)
�

i
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· · ·
�2

δi j

�

ε · (l+ p) , (A.22)

where the ellipses inside the brackets stand for the same momentum term as in the first bracket, ω de-

notes the photon energy and i, j are the relative angular momentum indices of the D-wave polarization.

First, we consider the part that depends on l0 and integrate over l0

I1=

∫

d4l
(2π)4

i

l0 − (p+l)2

2M + iε

i
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. (A.24)

Then, the Feynman parameters are employed

1
AB
=

1
∫

0

d x [Ax + B(1− x)]−2 , (A.25)

and we derive
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With the following variable substitution

l= l′ − mR

M
k(1− x)− mR

M
p , (A.27)

we consequently obtain
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∫
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where we adopt the following definition
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. (A.29)

In the heavy baryon approximation, k2/(2Mnc)≈ 0 and k2/(2M)≈ 0, and with the assumption p ·k= 0,

the expression above simplifies to

−a(x)≈ −2mR

�
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2Mnc
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�

(A.30)

= γ2
0 x + γ2

2(1− x) , (A.31)

where we used in the last step that
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= −B0 , ω= B0 − B2 , and Bi =
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. (A.32)

For the numerator that we neglected so far it follows
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and after the substitution in Eq. (A.27) we derive
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=(−i)2
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d
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+
Mm2

M3
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. (A.35)
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In the last step, Eq. (A.5) was used and we exploited that

∞
∫

−∞

dli
li
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= 0 . (A.36)

Combining the results for I1 and N1, the total integral reads
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First, we consider the integration over l and divide the integral into two parts. The first part is propor-

tional to l2 and the second proportional to l0.

In PDS, the part proportional to l2 in the numerator yields

L2=
�µ

2

�3−d
∫

dd l
(2π)d

l2

[l2 − a(x)]2
(A.38)
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2
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. (A.39)

Under consideration of the pole in d = 2, we obtain for d = 3

L2= − 1
4π
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3
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. (A.40)

The second part proportional to l0 in the numerator reads
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2
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There are no poles in d = 3 or in d = 2 and thus, we derive

L0=
1

8π
(−a(x))−1/2 . (A.43)
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Then we integrate over x and eventually deduce the total amplitude
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A.3.2 Second Loop Diagram

Next, we consider the right diagram in Fig. 4.5 (a)
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where the Feynman rule for the photon vertex was derived in Eq. (A.21). First, the integration over l0
yields
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With the substitution

l= l′ − mR

M
p , (A.47)

and under consideration of Eq. (A.36), we derive
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We employ PDS and obtain

L0=
�µ

2
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∫

dd l
(2π)d
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where we adopted the definition

−a = −2mR

�

E − p2

2Mnc

�

= γ2
0 . (A.50)

In d = 3 and taking the pole in d = 2 into account, this yields

L0= − 1
4π

�

(−a)1/2 −µ� . (A.51)

The total result for the second diagram then reads
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Combining both results for the left (A.44) and right diagram (A.52) in Fig. 4.5 (a), we find that

the divergent parts cancel each other. This is expected since gauge invariance precludes additional

counterterms that could absorb divergences at this order. The remaining steps in the derivation of the

B(E2) transition are discussed in Sec. 4.8.1.

A.3.3 A0 Diagram

Eventually, we calculate the diagram with an A0-photon vertex that contributes to the B(E2) transition.

Hence, we reconsider the left diagram in Fig. 4.5 (a). In principle, the computation is similar to the D1

calculation in Sec. A.3.1, but we replace the A-photon vertex with the A0-photon vertex, cf. Eq. (4.42),

to derive
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where the ellipses inside the brackets stand for the same momentum term as in the first bracket.

We follow the steps in the D1 calculation, i.e. l0 integration, Feynman parameterization and substi-

tution in Eq. (A.27), and we consequently deduce for the numerator

N3=(−i)2
�

m
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�
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2
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. (A.54)
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The total integral thus reads

D3= (−i g0)(−i g2)(−ieQcε0)
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where a was defined in Eq. (A.31).

In PDS, the integral over l yields
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There are no poles in d = 3 or in d = 2 so that we obtain for d = 3

L0=
1

8π
(−a)−1/2 . (A.57)

After the integration over x , the total result for the A0 vertex is eventually given by

D3= i g0 g2eQcε0
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.

Using current conservation

kµΓi j,µ = 0 (A.58)

kkΓi j,k =ωΓi j,0 , (A.59)

we derive the same result for ΓE from the A0-photon vertex as from the A-photon vertex, cf. Sec 4.8.1.
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A.4 Electric Form Factors

In this section, we calculate the Feynman diagrams contributing to the electric form factors in Fig. 4.3

(a) and (b). For a better readability, we divide the calculation of the left and right diagram into two

subsections.

A.4.1 Direct Photon Coupling

We start with diagram (a) in Fig. 4.3. It represents three different topologies for the coupling of an A0-

photon. Two diagrams stem from the minimal substitution in the bare D-wave propagator in Eq. (4.4),

while the last one arises from the local gauge-invariant operator in Eq. (4.43).

We consider only terms with one A0-photon and evaluate the diagrams in the Breit frame, where the

photon carries no energy q = (0,q). The diagram proportional to η2 thus reads

D1= −ieQcη2

�

δioδ jp +δipδ jo − 2
3δi jδop

�

2
, (A.60)

with the relative angular momentum indices i, j and o, p for the incoming and outgoing polarization of

the D-wave state, respectively.

For the derivation of the Feynman rule for the vertex proportional to c2, we evaluate
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+ i2 ∇2

2Mnc
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�

di j , (A.62)

where we considered only the relevant terms for the one A0-photon exchange. Under consideration that

the energy of the photon is zero and that the energy of the D-wave state is given by

E =
q2

4
1

2Mnc
− γ2

2

2mR
, (A.63)

we eventually obtain the result for the diagram proportional to c2

D2= ieQcc2
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2
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�
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. (A.64)
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The additional diagrams for the two local gauge-invariant operators, L(d)C01 and L(d)C02, yield in Carte-

sian coordinates

D3= i

�

q2 L(d)C01

�

δioδ jp +δipδ jo − 2
3δi jδop

�

2
+ L(d)C02Q̃ i j,op

�

, (A.65)

where Q̃ i j,op was defined in Eq. (4.52). These counterterms are required to absorb the divergences from

the loop diagram in the next section.

A.4.2 Loop Diagram

In this section, we consider the loop diagram (b) in Fig. 4.3. In principle, we calculated a similar

diagram in Sec. A.3.3 before. This time, however, there is an incoming and outgoing D-wave dimer with

momentum ∓q/2, respectively, while the photon momentum is q . This yields
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where the ellipses in the brackets stand for the same momentum terms as in the first bracket of the

corresponding line.

After the l0 integration, the application of Feynman parameters, and the following substitution

l = l ′ +
mR

2M
q(2x − 1) , (A.67)

we obtain

D4= −(−i g2)
2(−ieQc)

∫ 1

0

d x

∫

d3l
(2π)3

(−2mR)2

[l2 + a(x)]2
× N4 , (A.68)

with the appropriate expression for the numerator

N4= (−1)
�
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M
qx
i

i
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M
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− 1
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δi j
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M
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o
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i
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mR

M
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i2�

. (A.69)
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Moreover, we adopt the definition

a(x) = −2mR

�

E − q2

8M

�

1− mR

M
(2x − 1)2

�

�

(A.70)

= γ2
2 + q2 f 2 x(1− x) , (A.71)

where the energy of the D-wave state is given by Eq. (A.63) and we further set f = mR/M .

The expansion of the numerator N4 above yields several terms that can be grouped into three

different subgroups proportional to l4, l2, and l0.

l4 Part

For the tensor structure of the l4 part, we find (cf. Sec A.1)

N4L4=
2

d(d + 2)
l4

�

δioδ jp +δipδ jo − 2
3δi jδop

�

2
(A.72)

:=
2l4

d(d + 2)
Ei j,op . (A.73)

Employing PDS for the integration over l, it follows

L4=
�µ

2

�3−d 2
d(d + 2)

∫

dd l
(2π)d

l4

[l2 + a(x)]2
(A.74)

= (4π)−d/2 Γ (2− d/2− 2)
Γ (d/2+ 2)
Γ (d/2)

(a(x))2+d/2−2
�µ

2

�3−d 2
d(d + 2)

. (A.75)

Under consideration of the pole in d = 2, we obtain in d = 3

L4=
1

12π
a(x)

�

Æ

a(x)− 3
2
µ

�

. (A.76)

After the integration over x , we eventually derive

D4L4= − ieQc g2
2 m2

R

3π

∫ 1

0
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= − ieQc g2
2 m2
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192π f q
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3arctan
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Hence, the part that depends on the PDS scale µ is given by

D4L4µ=
ieQc g2

2 m2
R

2π

�

f 2

6
q2 + γ2

2

�

µ Ei j,op . (A.79)

The part proportional to γ2
2 is renormalized by D2 in Eq. (A.64) if we reconsider the matching procedure

to the effective range expansion in Eq. (4.35)

P2 =
15π
g2

2 m3
R

c2 +
15
2
µ . (A.80)

The µ scale of the second part proportional to q2 is absorbed by the counterterm L(d)C01 in Eq. (A.65).

l2 Part

Next, we consider the tensor structure of the l2 part

N4L2=
4 f 2 x(x − 1)

d
l2 Q̃ i j,op, (A.81)

where we adopt the definition of Q̃ i j,op in Eq. (4.52). The integration over l, employing PDS, yields

L2=
�µ

2

�3−d 1
d

∫

dd l
(2π)d

l2

[l2 + a(x)]2
(A.82)

=(4π)−d/2 Γ (2− d/2− 1)
Γ (d/2+ 1)
Γ (d/2)

(a(x))1+d/2−2
�µ

2

�3−d 1
d

. (A.83)

Taking the pole in d = 2 into account, it follows in d = 3

L2= − 1
8π

�Æ

a(x)−µ
�

. (A.84)

Subsequently, we integrate over x and finally derive

D4L2=
ieQc4g2

2 m2
R

8π

∫ 1

0

d x
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= − ieQc g2
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Thus, we obtain for the µ dependent part only

D4L2µ=
ieQc g2

2 m2
R

2π
f 2

6
µ Q̃ i j,op , (A.87)

where the divergence is absorbed by the counterterm L(d)C02 in Eq. (A.65).

l0 Part
Eventually, the tensor structure of the l0 part is given by

N4L0= f 4 x2(x − 1)2 H̃i j,op , (A.88)

with H̃i j,op defined in Eq. (4.53). Employing PDS, we obtain for the integration over l

L0=
�µ

2

�3−d
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(2π)d

1
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which yields in d = 3
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1

8π
1
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. (A.90)

After the integration over x , we finally derive

D4L0= − ieQc4g2
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(A.92)

The remaining steps for the extraction of the form factors at LO and NLO are explained in Sec. 4.7.1.
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B P -Wave State in Beryllium-11
As discussed in the introduction to halo nuclei in Sec. 2.2.2, 11Be is an example of a one-neutron halo

nucleus with a weakly-bound 1/2+ S-wave ground state and an 1/2− P-wave first excited state. In this

section, we review parts of the work on 11Be by Hammer and Phillips in Ref. [64]. They computed electric

form factors, E1 transitions, and the B(E1) strength for the Coulomb dissociation of the 11Be nucleus to

the continuum up to NLO in Halo EFT. Based on their results, we outline the inclusion of P-wave states

in the effective Lagrangian (4.4) of the Halo EFT approach.

Similar to the discussion of the S-wave and D-wave interaction in Sec. 4.3, the strong P-wave inter-

action of the halo neutron with the core is incorporated through the auxiliary field πs, which corresponds

to the J P = 1/2− state. With the convention that repeated spin indices are summed, the P-wave part of

the non-relativistic Lagrangian is then written as [64]

L = π†
s

�

η1

�

i∂t +
∇2

2Mnc

�

+∆1

�

πs − g1

�
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s

h
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i

1
2 ,s
+
h

c†i
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i

1
2 ,s
πs

�

, (B.1)

where the Galilean invariant derivative is defined as

h

ni
↔∇c
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2 ,s
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∑
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�

1
2
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�
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�

Mnc
c . (B.2)

The P-wave Lagrangian contains three unknown constants η1, ∆1, and g1. However, only two of them

are linearly independent. We follow the traditional approach and set η1 = ±1, which depends on the

sign of the P-wave effective range r1.

The dressed propagator of the πs field is derived by summing the bubble diagrams for the g1-

interaction to all orders, cf. Fig. 4.2. We quote only some key results and refer the reader to Ref. [64]

for more details. The P-wave propagator takes the form

Dπ(p̃0)i j = −
6π

mR g2
1

�

− 6π
mR g2

1

(∆1 +η1 p̃0) + 2mR p̃0

�

i
p

2mR p̃0 +µ
�

�−1

δi j , (B.3)

with the Galilean invariant energy p̃0 = p0− p2/(2Mnc) and i, j denote the polarization of the incoming

and outgoing relative momentum of the P-wave, respectively. After matching the P-wave scattering

amplitude to the effective range expansion for this channel

t1(p
′,p; E) =

6π
mR

p′ · p
1/a1 − 1

2 r1k2 + ik3
, (B.4)
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with E = k2/(2mR) and k = |p′| = |p| for on-shell scattering, we obtain the dressed P-wave propagator

near the bound state pole

Dπ(p) = Zπ
1

p0 − p2

2Mnc
+ B1

+ Rπ(p) with Zπ = −
6π

m2
R g2

1

1
r1 + 3γ1

, (B.5)

where Zπ denotes the wave-function renormalization, B1 = γ2
1/(2mR) denotes the binding energy and

Rσ(p) is regular at the pole. Following the power-counting scheme in Sec. 4.4, only r1 contributes at LO

in the denominator in Eq. (B.5) since we assume that r1 ∼ 1/Rcore and γ1 ∼ 1/Rhalo. This assumption can

be verified in the case of 11Be because Hammer and Phillips extracted the P-wave effective range from the

B(E1) transition strength at LO and found that r1 = 0.66 fm−1 [64]. Compared to the expectation from

the power-counting scheme that r1 ∼ 1/Rcore = 0.39 fm−1, this is consistent up to the 40% corrections

of this Halo EFT.
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