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1. Statement of the problem. Various mathematical models of two-phase filtration in a porous medium
have been developed, which are used for a theoretical study of the oil displacement process. They differ
among themselves as completeness of the account of physical factors of the process, and the form of their
account. For example, the Buckley-Leverett model does not take into account the difterence between phase
pressures, and the Leas-Rapoport model takes into account the action of capillary forces [1-2]. In the first
model, the distribution of the saturation function of the displacing phase in the one-dimensional two-phase
filtration problem without allowance for gravitational forces for a given volumetric flow rate of a two-phase
liquid is described by a nonlinear equation

m-0S /0t +W -8¢(S)/0x =05 (1)
where S = S(x, 1) is the required function, m - the porosity of the oil-bearing medium, W - the volume flow
of the two-phase liquid, @(S) is a known function expressed in functions of the relative permeability of the
displaced and displacing phases f,(S) and £, (S), the ratio of the dynamic viscosities of the phases
Mo =ty !y 9(S) =, - £,(S) /[f1 (S)+ - /’2(S)], x andt, respectively, the spatial and time variables.
In the second model, a parabolic equation
m-0S /0t +W - 0p(S)/ ox = 0la(S)-8S / x|/ ox @)

is obtained with respect to the function S(x, 1), where a(S)=—k - p(S)- R/( 8)>0, k=k/u - f(S) k
is the absolute permeability of the medium, P,(S) - is the capillary pressure function [1-3]. The functions
£,(S) and £,(S) are determined from natural experiments on displacement and have the properties
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£®=1, fi()=0, £,(5=1, £E)=0, 3)
where S and S - respectively, the lower and upper limit value of the function S(x, f).
In the Buckley-Leverett model, the injection condition of the displacing phase in the injection well I,
generates a boundary condition v

§=8013]l. &

In the Leas-Rapoport model this condition has the form

Wl = [q)(S) W —a(S)- 68/5x]|1,H =W = const )
and generates a boundary condition

(@s/2x)|,, =—{1-9]- W /aS)I,,. (©)

The selection condition on the production well of both phases in proportion to their phase permeability
k, =k/u, - f,(S), i =1,2 generates the boundary condition

(08 /8x)|., = 01]. €]
It is also assumed that a certain initial distribution of the saturation function of the displacing phase is given:
S(x, 0)=S,(x). 8)

2. Numerical method for solving of problems. Problems (1), (4), (8) and (2), (6), (7), (8) are solved
numerically by a finite-difference method in the domain D ={0< x < L; 0 <z < T}which is covered by a
uniform grid x, =i-h ol =j7i=0,1,..,N, j=0,1,.., M, handr are, respectively, the step of the
difference grid in space and time. For the solving of problem (1), (4), (8) an explicit finite-difference scheme
"central diﬂ‘erence"m‘(s,”' -5/ )/r+W-((p,{,,2 -0, 1,2)/ h=0is used, where @, = o((S’, +S’)/2)» and
for solving the problem (2), (6), (7), (8) is used a finite-difference scheme
UL '(Sin -5/ )/1+W'(¢i{rl/z _';asilrz)/h = [aij;uz ( Siu _S’) a '(Sij =S/ )]th , 9

where @i = (8, +5/)/2).

3. Algorithm for numerical realization of boundary conditions. The injection well is located at a point

x =0, and the operating well is at a point x = L. By virtue of the properties (3) of the functions of the
relative phase permeability, it follows that in the Leas-Rapoport mode

9(8)=0, p(S)=1, a(S)=a(§)=0 (10)
Consequently, in the boundary condition (6) ljm_(@S / 6x)| 1, =—o0. For values of a function § =S(x, 1)

close to S, the numerical realization of the boundary condition (6) causes certain difficulties, such as

shredding the difference grid  in the vicinity of the injection well [1-4]. In the numerical solving of problem
(2), (6), (7), (8) it is possible to realize the boundary condition not in the form (6), but in the form (5), with
the help of the constructed difference and initial differential equations. A detailed exposition of such an
algorithm for numerical realization of the boundary condition is given in [1-3].The difference equation (9)
at the node (i = 0, + 1) takes the form

S =S +2-t/m-hy-(1-p,,)- W +a},, -(S/ =S¢ )1H], (11
which allows to calculate the value of the saturation function on the injection well at each subsequent time
step (j+1) of the difference grid. If the initial saturation of the oil-bearing stratum by the displacing phase

is equal to the residual S, then the ratio (11) in the first step with respect to time takes the form
Sy =Sy +2-7/(m-h)-W , whence it is seen that the saturation of the displacing phase on the injection

well begins to increase with some finite rate in proportion to the injected volume of the displacing phase
and the time step of the difference grid 7 , inversely proportional to the step of the difference grid along the

space hand the coefficient of porosity m . Further, as the value of §/"'is growing values of (1 — qof /2)

and a{;yzdecrease, and, according to (11), it is should be expected a slowdown in the growth of saturation of
the displacing phase in the injection well. When the upper limiting value of the saturation of the displacing
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phase § is reached at the injection well and in its vicinity, according to the properties (10) of the functions
@(S) and a(S), the relation (11) takes the form S7'' =5/, i.e. the realization of the boundary condition
(5) in the form (11) reflects the fact that the further saturation of the displacing phase on the injection weil
is stopped.

The boundary condition on the producing well is realized similarly to the boundary condition on
the injection well and it is obtained the relation

S =8, =2-thm-h)- (@l = @lhsn ) W+, -(S) =), )/ h][1-3], from which it can be seen that
the saturation of the displacing phase on the production well begins to increase only after the arrival of the
displacement front, in this case(s/ _g; )<, (qo,’v = (olf,,_,)< 0 andS;" > S7.

“ls

4. Nature of the oil displacement process. Computational experiments on the numerical solving of a one-
dimensional two-phase filtration problem with respect to the oil-displacement process are carried out.

Functions of relative phase permeability of the form £,(S) = ((0,8 - 5)/0,6), £,(S)={((5-0,2)/0,8) .,
for which §=02 and S = I, as well as the function of capillary pressure

P(S)=0-cosB- Jmik - (0,0072/ S-8/2+ 0.391) are used [1-2]. The physical parameters and parameters
of the computational algorithm have the following values: L =40sm, m=0.2, £ =0.0000000302 md, @ =
0.5, x, =0.010 poise, u, =0.001 poise, W =0.012sm*/sec, o =75 dynes/sm, N =20, h=2sm, T=
0.02 sec, 4, = 4, / 4,=10. Distributions of the displacing phase saturation obtained in the framework of the

considered mathematical models of two-phase filtration at time t=180 seconds atS(x, 0) = 0.2 are shown
in Fig.1. From the graph of the saturation function (upper line), it is seen that in the Buckley-Leverett model
a relatively "piston” displacement character with a displacement front altitude of 0.4662 is observed. In
calculations based on the Leas-Rapoport model (bottom line), it can be seen that in this model a "piston”
displacement character with a displacement front height of 0.3326 is observed also, but less pronounced
than in the Buckley-Leverett model. As the value of the saturation function approaches the residual value
S =0.2 (initial distribution), the value of the diffusion coefficient decreases and tends to 0 because of the

properties of the function a(S) . Convective transfer under the action of the pressure gradient prevails over

diffusion redistribution of phases under the action of capillary forces and the process of displacement
becomes "piston". On the injection weil, the value of the saturation function of the displacing phase increases
with time at a certain finite rate, which agrees with the results of natural experiments [5-6]. At the production
well, the saturation of the displacing phase begins to increase with the arrival of the displacement front.
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Fig.1. Distribution of the saturation function of the displacing phase

5. Dynamics of the current oil recovery factor. Figure 2 shows the dependence of the current oil recovery
factor on time. The oil recovery factor k, (t) at the current time t is the ratio of the currently extracted oil to
its initial stock. It can be seen from the graphs that in the calculations for the Buckley-Leverett mode! (the
upper line) until about time t = 300 seconds, the current oil recovery coefficient grows in direct proportion
to time, and then a decrease in growth occurs. This time corresponds to the arrival time of the displacement
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front to the production well and the start of the joint selection of both phases, and displaced and displacing,
the share of the oil phase in the bleed stream decreases, which is the reason for the decrease in the growth
of the current oil recovery factor. In the framework of the Leas-Rapoport model (the bottom line), the linear
growth of the current oil recovery coefficient is violated at the time t = 240 sec, earlier than in the Buckley-
Leverett model. This reflects the fact that the Leas-Rapoport model takes into account the influence of
capillary forces. Under the action of these forces, the process of displacement has a less "piston” character.
the displacement front comes to the producticn well earlier than the Buckley-Leverett model, and earlier
the joint selection of both phases begins.
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Fig. 2. Graph of the dependence of the current oil recovery factor on time.
7. Conclusion. The results of computational experiments on the computer show that with the
functional dependencies, the values of the physical parameters and the parameters of the
computational algorithm used in this paper, the Leas-Rapoport model, which takes into account the
effect of capillary forces, gives results that are close to the results of natural experiments. The
Buckley-Leverett model gives higher values of the current oil recovery factor. It is more applicable
to modeling such processes of oil displacement, in which predominates convective transfer under the
effect of pressure drop.
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Annotation. The paper presents the results of computational experiments on modeling a one-
dimensional oil displacement process and forecasting the values of the current oil recovery coefficient
within the framework of the mathematical models of Buckley-Leverett and Leas-Rapoport.
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BLIYHCIIMTEJABHBIE OKCINIEPUMEHTHBI ITO MOJAEJIUPOBAHUIO
OJHOMEPHOI'O IPOLIECCA CMEIHEHNA HE®TH
¥Y3akon 3.Y.

AHHOTauuMsi. B cTaTbe TMpeACTaBAEHBl pE3yNbTAThl BHIYUCIHTENBHBIX JKCMEPHMEHTOB [0
MOJENHMPOBAHUIO OJHOMEPHOIO MNpOHEcca BBITECHEHWS HEPTH M MPOrHO3UPOBAHMIO 3HAYEHHH
KoappuuMenTa Tekyuleid HedTeoTaauM B paMkax MaTeMaruueckux mozeneil baknes-Jleseperta u
JIuca-Panonopra.
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