Atom counting of long-lived radionuclides using neutron activation analysis

J. Kučera¹, J. Kameník¹, P. P. Povinec², I. Krausová¹, I. Světlík¹, M. Fikrle¹

¹Nuclear Physics Institute of CAS, Husinec-Řež, 25068, Czech Republic

²Centre for Nuclear and Accelerator Technologies (CENTA), Faculty of Mathematics, Physics and Informatics,

Comenius University, Bratislava, 84248, Slovakia

Keywords: Long-lived radionuclides, Decay counting, Atom counting, Neutron activation analysis

J. Kučera, e-mail: kucera@ujf.cas.cz

Introduction

It is obvious from equation (1) that measurement of longlived radionuclides can be carried out by both decay counting (radiometric method) and atom counting

$$A = \lambda N \tag{1}$$

where A is the activity, N is the number of atoms, and λ is the decay constant related to the half-life $T_{1/2}$ by equation $\lambda = \ln 2/T_{1/2}$. Despite the advances in radiometric technologies, atom counting has recently received much more attention for measurement of long-lived radionuclides. Recently, mass spectrometry techniques, namely ICP-MS and AMS, proved to be superior for determination of long-lived radionuclides, when compared to radiometric counting (Povinec et al., 2018). Another possibility is neutron activation analysis (NAA) provided that a long-lived radionuclide has favorable nuclear characteristics, i.e., the nuclide has a large neutron capture cross section for formation of a product nuclide (or its daughter) with good measurement properties, such as a short half-life and suitable gamma-ray spectrometric characteristics (Byrne and Benedik, 1999). The activity, A, after the irradiation time, t_i , decay time, t_d , and counting time, t_c , is given by equation (2)

$$A = N(\Phi_{th}\sigma_{th} + \Phi_{epi}I_0)SDC \tag{2}$$

where *N* is the number of atoms, Φ_{th} is the thermal neutron fluence rate, Φ_{epi} is the epithermal neutron fluence rate, σ_{th} is the thermal neutron cross section, I_0 is the resonance integral cross section, *S* is the saturation factor ($S = (1 - e^{-\lambda t_i})$), *D* is the decay factor ($D = e^{-\lambda t_d}$), and *C* is the counting factor ($C = (1 - e^{\lambda t_c})/\lambda t_c$).

The above authors calculated advantage factors (AFs) of long-lived alpha-emitters as a ratio of signals obtained in NAA and decay counting, whereas AFs for other longlived radionuclides were calculated by another author for different NAA and radiometric conditions (Hou, 2008). Table 1 shows differences in both sets of values. It should be pointed out here that the AFs only indicate a potential for NAA relative to radiometry. Important factors to consider in practice are the counting efficiency and background of both measurement modes.

Since we have favorable conditions for NAA using a LVR-15 reactor at Řež, we explored the determination of ⁹⁹Tc, ¹²⁹I, ²³²Th, ²³⁸U in environmental and other samples by NAA as reported in this work.

Table 1. AFs for NAA of some long-lived radionuclides

Nuclide pair	$T_{1/2}$ of target (y)	AF ^a	AF ^b
⁹⁹ Tc/ ¹⁰⁰ Tc	2.1 x 10 ⁵	-	2.1 x 10 ⁴
$^{129}I/^{130}I$	1.57 x 10 ⁷	-	1.3 x 10 ⁶
¹³⁵ Cs/ ¹³⁶ Cs	2.06 x 10 ⁶	-	$3.86 \ge 10^3$
²³⁰ Th/ ²³¹ Th	7.54 x 10 ⁴	27	8.6 x 10 ³
²³² Th/ ²³³ Pa	1.40 x 10 ¹⁰	4.0 x 10 ⁵	2.5 x 10 ⁶
²³¹ Pa/ ²³² Pa	8.27 x 10 ⁴	106	$1.2 \text{ x } 10^4$
²³⁸ U/ ²³⁹ U	4.46 x 10 ⁹	7.0 x 10 ⁶	3.4 x 10 ⁸
²³⁸ U/ ²³⁹ Np	4.46 x 10 ⁹	8.0 x 10 ⁵	3.4 x 10 ⁸
²³⁷ Np/ ²³⁸ Np	2.14 x 10 ⁶	640	3.6 x 10 ⁵
²⁴² Pu/ ²⁴³ Pu	3.75 x 10 ⁵	-	$3.6 \ge 10^4$

^a – Byrne and Benedik 1999, ^b – Hou 2008

Technetium–99 ($T_{1/2} = 2.1 \times 10^5 \text{ y}$)

The ⁹⁹Tc determination by NAA is based on parameters given in Table 2.

Table 2. Nuclear parameters for ⁹⁹Tc determination

Nuclear	σ	I ₀	$T_{1/2}$ of	Main y-line
reaction	(barn)	(barn)	product	(keV);
				int. (%)
99 Tc(n, γ) 100 Tc	20	30	15.8 s	539.5; 6.6

We employed both instrumental NAA (INAA) and epithermal NAA (ENAA) with irradiation and counting parameters given in Table 3 together with the resulting limits of detection (LOD).

Table 3. Irradiation and counting parameters

INAA	ENAA
$\Phi_{\rm th}=3 \ {\rm x} \ 10^{13} \ {\rm cm}^{-2} \ {\rm s}^{-1}$	$\Phi_{epi}=1 \text{ x } 10^{13} \text{ cm}^{-2} \text{ s}^{-1}$
t _i =15 s	t _i =20 s
t _d =12-17 s	t _d =16-21 s
t _c =30 s	t _c =30 s
LOD=200 mBq	LOD=50-70 mBq

Irradiations were carried out using a pneumatic transfer system with a transport time of 3.5 s, however, due to manual repacking and sample transfer to a coaxial HPGe detector with relative efficiency of 21 % and FWHM resolution of 1.75 keV (both for the 1332.5 keV photons of ⁶⁰Co) the decay time, t_d, was somewhat longer compared to the transport time. In ENAA, thermal neutrons were shielded off with the aid of a Cd box with wall thickness of 1 mm. The LODs achieved in both NAA modes were insufficient for the Tc determination in environmental samples, such as algae Fucus serratus from the vicinity of La Hague reprocessing plant and Novo-Shepelyci soil from the vicinity of the crashed Chernobyl nuclear power plant (NPP). In these samples, the Tc concentration was determined by liquid scintillation counting (LSC) after pre-separation with TOGDA-PAN resin and extraction using methyl ethyl ketone (Fikrle, 2011, cf. Table 4). The accuracy of the ⁹⁹Tc determination by LSC measurement was proved by analysis of NIST SRM 4359 Seaweed Radionuclide Standard. Our values agree with the NIST noncertified value (median 38 mBq g^{-1} , range 17– 48 mBq g^{-1}).

Table 4. Concentrations of ⁹⁹Tc determined by LSC

Sample	Tc (mBq g^{-1})
Fucus serratus 1	26.8 ± 5.4
Fucus serratus 2	22.7 ± 5.1
Soil Novo-Shepelyci	14.1 ± 2.6
NIST SRM 4359 Seaweed	20.2 ± 7.6 ; 29.6 ± 7.4

Although pre-irradiation separation may improve LOD of ⁹⁹Tc determination by NAA (Hou, 2008), there are other methods, namely resonance ionization mass spectrometry (RIMS), thermal ionization mass spectrometry (TIMS), ICP-MS and accelerator mass spectrometry (AMS), which provide much more favourable LOD of ⁹⁹Tc (Hou and Roos, 2008).

Iodine–129 ($T_{1/2} = 1.57 \times 10^7 \text{ y}$)

The 129 I determination by NAA is based on parameters given in Table 5.

Table 5. Nuclear parameters for ¹²⁹I determination

Nuclear	σ	I ₀	T _{1/2} of	Main y-line
reaction	(barn)	(barn)	product	(keV);
			-	int. (%)
129 Tc(n, γ) 130 I	27±3	36±4	12.36 h	536.1; 15.7

There are several nuclear interferences in the ¹²⁹I determination by NAA, which should be accounted for (Hou, 2008).

We employed NAA with both pre-irradiation and postirradiation separation, so-called radiochemical NAA (RNAA) with irradiation and counting parameters as follows: $\Phi_{th} = 4 \times 10^{13} \text{ cm}^{-2} \text{ s}^{-1}$, $t_i = 4-10 \text{ h}$, $t_d = 10-15 \text{ h}$, $t_c = 2-4$ h. First we used the NAA procedures for largescale studies of ¹²⁹I concentration and the ¹²⁹I/¹²⁷I ratio in samples from the Baltic Sea (Hou et al. 2002), thyroid and urine samples from Ukraine and Denmark (Hou et al., 2003a), and in Chernobyl contaminated soil (Hou et al., 2003b). In these studies, we employed NAA with both pre-irradiation and post-irradiation separation (RNAA) described in the above publications. Later we measured both ¹²⁹I and the ¹²⁹I/¹²⁷I ratio in biomonitors from the vicinity of Temelín NPP. The samples comprised thyroids of cattle grazing in the NPP vicinity, moss Pleurozium Schreberi and three river sediments collected in the catchment of the NPP, upstream and downstream of the NPP water outlets. The thyroid samples, highly sensitive biomonitors of radio-iodine pollution, were collected prior to the start of NPP operation and after several years of its functioning to investigate whether releases of ¹²⁹I occur into the environment during normal operation of the NPP. In this work, we developed pre-irradiation separation based on sample combustion followed by trapping of the released iodine in a LiOH solution and

RNAA procedure consisting of extraction of elementary iodine in CHCl₃. LOD of 129 I of our procedure was in the range of 8 – 10 mBq kg⁻¹ (Krausová et al., 2013).

Results for the ¹²⁹I/¹²⁷I ratio in the bovine thyroids are schematically depicted in Figure 1 and compared with world-wide values of animal thyroids.

Figure 1. ¹²⁹I/¹²⁷I ratios in bovine thyroids from the vicinity of Temelín NPP and their comparison with world-wide values.

Figure 1 shows no local contamination with ¹²⁹I due to the Temelín NPP releases. A similar conclusion can be derived from results of the ¹²⁹I and ¹²⁹I/¹²⁷I ratio determination in moss and sediment samples, other biomonitors of ¹²⁹I pollution (cf. Table 6).

Table 6. ¹²⁹I levels and ¹²⁹I/¹²⁷I ratio in biomonitors

Sample	Year of	¹²⁹ I	$^{129}\mathrm{I}/^{127}\mathrm{I}$
_	sampling	(mBq kg ⁻¹)	x 10 ⁻⁹
	(N)		
Moss P. Schreberi	2004 (5)	23 ± 16	2.3 ± 1.9
Sediment	2004 (4)	< 10	-
upstream NPP			
Sediment NPP	2004 (7)	< 8	-
catchment area			
Sediment	2004 (4)	< 10	-
downstream NPP			

Quality control of the study was pursued by analysis of reference algae sample F. Serratus, and good agreement was obtained with published results (Krausová et al., 2013). Our LOD values for the ¹²⁹I/¹²⁷I ratio were better than those of other methods, except for AMS (cf. Table 7). However, ICP-MS and AMS techniques recently further improved their LOD values for ¹²⁹I (and other long-lived radionuclides), as was reported at this symposium.

Table 7. LOD for ¹²⁹I achieved by different methods (Rosenberg, 1993)

Method	Number of	¹²⁹ I/ ¹²⁷ I ratio
	atoms	
LSC	3.5 x 10 ¹³	> 10 ⁻⁶
γ-spectrometry	1013	> 10 ⁻⁶
ICP-MS	3 x 10 ¹¹	> 10 ⁻⁸
TIMS	107	-
NAA	107	$10^{-12} - 10^{-13}$
AMS	2×10^{6}	10-13

Thorium-232 ($T_{1/2} = 1.40 \times 10^{10} \text{ y}$)

The ²³²Th determination by NAA is based on parameters given in Table 8.

Table 8. Nuclear	parameter	5 101	Th deten	innation
Nuclear	σ	I_0	$T_{1/2}$ of	Main γ-line
reaction	(barn)	(barn)	product	(keV);
				int. (%)
232 Th(n, γ) 233 Th	7.3±0.1	84 ± 4	27.0 d	311.9; 38.5
\rightarrow^{233} Pa				

Table 8. Nuclear parameters for ²³²Th determination

In underground nuclear physics experiments focused on investigations of rare nuclear processes and decays, radiopurity of construction parts of the detectors and all materials used is crucial for background reduction. For SuperNEMO experiment, which aims at detection of neutrinoless double beta decay of 82Se (Arnold et al., 2010), we measured levels of ²³²Th in the ⁸²Se source material (with ~ 80 % enrichment) and in Cu, a part of the detection system, by RNAA using the following irradiation and counting conditions: $\Phi_{th} = 4 \text{ x } 10^{13} \text{ cm}^{-2} \text{ s}^{-1}$, $t_i = 20 \text{ h}$, $t_d = 10-15 \text{ d}$, $t_c = 4-8 \text{ h}$. Counting was carried out with a coaxial HPGe detector (rel. efficiency 77 %, FWHM resolution 1.85 keV, both for the 1332.5 keV photons of ⁶⁰Co). Two types of RNAA procedures were employed. First (denoted A in Figure 2) was based on ²³³Pa extraction with 5% TOPO in toluene from 7 M HNO₃ according to Byrne and Benedik (1999). It turned out that one of the enriched ⁸²Se samples was contaminated with Te, which produced ¹³¹I upon neutron irradiation by the reaction 130 Te(n, γ) 131 Te (T_{1/2} = 1.26 d) \rightarrow ¹³¹I (T_{1/2} = 8.04 d) and significantly increased background in the measured γ -ray spectra (cf. Figure 2) Therefore, second RNAA procedure (denoted B) was designed, which was based on ²³³Pa separation from 7 M HNO₃ with Triskem TRU resin (Kučera et al., 2017). Using RNAA-B procedure, LODs for ²³²Th in Cu and ⁸²Se of 0.08 µBq and 1 µBq, respectively, were achieved (Kučera et al. 2017). It can be seen from a comparison of LODs for the ²³³Pa determination in Cu with different methods in Table 9 that RNAA provided the third lowest LOD, after AMS and ICP-MS.

Figure 2. Comparison of γ -ray spectra in RNAA determination of ²³³Pa in ⁸²Se. (A) – TOPO extraction method, (B) – TRU resin method.

Table 9. Comparison of LODs for ²³³Pa determination in Cu with different methods (Povinec, 2017)

Method	LOD (µBq)
α-ray spectrometry	100
Underground γ-ray spectrometry	2400
BiPo-3 detector	1.4
ICP-MS	0.003
AMS	0.0003
RNAA	0.08

Uranium–238 (T_{1/2}=4.5x10⁹ y)

The ²³⁸U determination by NAA can be based on parameters given in Table 10.

Table 10. Nuclear parameters for ²³⁸U determination

Nuclear reaction	σ (barn)	I ₀ (barn)	T _{1/2} of product	Main γ-line (keV);
			1	int. (%)
238 U(n, γ) 239 U	2.7±0.7	280±10	23.5 min	74.7; 53.2
238 U(n, γ) 239 U	2.7±0.7	280±10	2.36 d	106.1; 25.3
$\rightarrow^{239}Np$				

For SuperNEMO experiment we also measured levels of ²³⁸U in the enriched ⁸²Se and in Cu by RNAA. Of the two possibilities given in Table 10, the use of ²³⁹U measurement was chosen, because this option has a higher potential for obtaining a better AF, it is faster and easier to perform. We employed the following irradiation and counting parameters: $\Phi_{th}= 2 \times 10^{13} \text{ cm}^{-2} \text{ s}^{-1}$, $t_i = 3 \text{ min}$, $t_d = 20-30$ min, $t_c = 3000-5400$ s. Three versions of RNAA were used based on ²³⁹U extraction with 50 % tributyl phosphate (TBP) in toluene from 7 M HNO₃. In the first version (denoted A in Figure 3), the organic phase was double scrubbed with 7 M HNO₃ in the presence of Se or Cu hold-back carrier before counting with a welltype HPGe detector (active volume of 150 cm³, FWHM resolution 2.1 keV for the 1332.5 keV photons of ⁶⁰Co). A high ⁸³Br activity was present in the organic fraction separated from the irradiated ⁸²Se sample, which was created by the reaction ${}^{82}Se(n,\gamma){}^{83}Se(T_{1/2}=22.3 \text{ min}) \rightarrow$ 83 Br(T_{1/2}=2.4 h, E_{\gamma}=529.6 keV) and significantly increased background in the measured γ -ray spectra (cf. Figure 3). After stripping of ²³⁹U with saturated solution of Na₂CO₃, the interfering activity of ⁸³Br (spectrum B in Figure 3) decreased. A further decrease was obtained by precipitation of the formed ⁸³Se as Ag₂SeO₃ and precipitation of ⁸³Br as AgBr prior to extraction of ²³⁹U by TBP with ²³⁹U stripping from the organic phase with saturated solution of Na₂CO₃ as the last separation step (spectrum C in Figure 3).

Using RNAA-C procedure, LODs for ²³⁸U in Cu and ⁸²Se of 0.2 μ Bq and 0.6 μ Bq, respectively, were achieved (Kučera et al. 2017). A comparison of LODs for the ²³⁸U determination in Cu with different methods (cf. Table 11) yields a similar picture as for the ²³²Th determination (cf. Table 10): RNAA provides the third lowest LOD, after AMS and ICP-MS.

Figure 3. Comparison of γ -ray spectra in RNAA determination of 239 U in 82 Se. (A) – scrubbed TBP phase,

(B) – stripped aqueous phase, (C) – stripped aqueous phase preceded by removal of ⁸³Se and ⁸³Br.

Table 11. Comparison of LODs for 238 U determination in Cu with different methods (Povinec, 2017)

cu with different methods (1 0 mee, 2017)			
Method	LOD (µBq)		
α-ray spectrometry	100		
Underground γ -ray spectrometry	2000		
BiPo-3 detector	1.6		
ICP-MS	0.010		
AMS	0.0001		
RNAA	0.2		

Conclusions

Although the LODs of long-lived radionuclides by NAA have recently been surpassed by those achieved by ICP-MS and AMS, NAA as a primary method of measurement will keep its importance for quality control purposes. In most cases, no pre-irradiation chemistry is required (no risk of contamination of analyzed samples) and advanced post-irradiation chemistry (RNAA) has still a potential for further improvements of LOD values.

This work was carried within the CANAM infrastructure of the NPI CAS Řež supported through MŠMT project No. LM2015056.

Arnold, R. Augier, C., Baker, J. et al. 2010. Probing new physics models of neutrinoless double beta decay with SuperNEMO. *Eur. Phys. J.*, *C*, 70, 927–943.

Byrne, A.R. and Benedik, L. 1999. Application of neutron activation analysis in determination of natural and manmade radionuclides, including ²³¹Pa. *Czech. J. Phys.* 49, S1, 263–270.

Fikrle, M. 2011. Development of methods for the ⁹⁹Tc determination in environmental samples. *Dissertation thesis*. Czech Technical University in Prague, Faculty of Nuclear Sciences and Physical Engineering (in Czech).

Hou, X.L., Dahlgaard, H., Nielsen, S.P., Kučera, J. 2002. Level and origin of Iodine-129 in the Baltic Sea. *J. Environ. Radioact.* 61, 331–343.

Hou, X., Malencheko, A.F., Kučera, J. et al. 2003a. Iodine-129 in thyroid and urine in Ukraine and Denmark. *Sci. Total Environ.* 302, 63–73. Hou, X.L., Fogh, C.L., Kučera, J. et al. 2003b. Iodine-129 and Caesium-137 in Chernobyl contaminated soil and their chemical fractionation. *Sci. Total. Environ.* 308, 97–109.

Hou, X. 2008. Activation analysis for the determination of long-lived radionuclides. *Radioactiv. Environ.* 11, 371–405.

Hou, X. and Roos, P. 2008. Critical comparison of radiometric and mass spectrometric methods for the determination of radionuclides in environmental, biological and nuclear waste samples. *Anal. Chim. Acta* 608, 105-139.

Krausová, I. Kučera, J., Světlík, I. 2013. Determination of ¹²⁹I in bio-monitors collected in the vicinity of a nuclear power plant by neutron activation analysis. *J. Radioanal. Nucl. Chem.* 295, 2043–2048.

Kučera, J., Kameník, J., Povinec, P.P. 2017. Determination of ultra-trace levels of Th and U in components of SuperNEMO detector by radiochemical neutron activation analysis. *Proc.* 6th Asia-Pacific Symposium on Radiochemistry (APSORC-2017), September 17-22, 2017, Jeju Island, Korea.

Povinec, P.P. 2017. Analysis of radionuclides at ultra-low levels: A comparison of low and high-energy mass spectrometry with gamma-spectrometry for radiopurity measurements. *Appl. Rad. Isotopes* 126, 26–30.

Povinec, P.P., Benedik, L., Breier, R. et al. 2018. Ultrasensitive radioanalytical technologies for underground physics. J. Radioanal. Nucl. Chem. 318, 677–684.

Rosenberg, R.J. 1993. Non-conventional measurement techniques for the determination of some long-lived radionuclides produced in nuclear fuel. A literature survey. *J. Radioanal. Nucl. Chem.* 171, 465–482.