Dependence of seasonal hindcast skill on different mechanisms influencing European summers during the 20th century

Nele-Charlotte Neddermann^{1,2}, Wolfgang A. Müller³, André Düsterhus¹, Holger Pohlmann³, and Johanna Baehr¹

¹ Institute of Oceanography, Universität Hamburg ² International Max Planck Research School on Earth System Modelling, Hamburg ³ Max Planck Institute for Meteorology, Hamburg

Seasonal Summer Hindcast Skill

July-August (JA) 500hPa geopotential height (Z500)

- Anomaly Correlation (ACC) between model (MPI-ESM-MR) and reanalysis (ERA-20C)
- no seasonal prediction skill over Europe

European Seasonal Summer Hindcast Skill

- MPI-ESM-MR, fully coupled seasonal prediction system
- 10 independent ensemble members, initialised in May
- 1900-2010

European Seasonal Summer Hindcast Skill

- MPI-ESM-MR, fully coupled seasonal prediction system
- 10 independent ensemble members, initialised in May
- 1900-2010

European Seasonal Summer Hindcast Skill

- MPI-ESM-MR, fully coupled seasonal prediction system
- 10 independent ensemble members, initialised in May
- 1900-2010

Why do ensemble members show such a large spread?

- various physical mechanisms influence European summers
- Is skill of model influenced by those mechanisms?

Which mechanisms influence European summers?

- North Atlantic Oscillation (NAO)
- Zonal Pressure Difference (PD)
- Can we identify which mechanism dominates which summer?
 - → Cluster analysis

North Atlantic Oscillation (NAO) +

Zonal Pressure Difference (PD) +

Analyse mechanisms in 1900-2010

• ERA-20C, Z500

- ERA-20C, Z500
- different patterns in positive and negative phase

- ERA-20C, Z500
- different patterns in positive and negative phase
- cluster analysis for first 30 years

- ERA-20C, Z500
- different patterns in positive and negative phase
- cluster analysis for first 30 years
- identified cluster in each year is based on clusters of last 30 years

- ERA-20C, Z500
- different patterns in positive and negative phase
- cluster analysis for first 30 years
- identified cluster in each year is based on clusters of last 30 years
- → allow for pattern to change over time

- ERA-20C, Z500
- different patterns in positive and negative phase
- cluster analysis for first 30 years
- identified cluster in each year is based on clusters of last 30 years
- → allow for pattern to change over time
 - → identify which mechanism dominates each year

- ERA-20C, Z500
- different patterns in positive and negative phase
- cluster analysis for first 30 years
- identified cluster in each year is based on clusters of last 30 years
- → allow for pattern to change over time
 - → identify which mechanism dominates each year

Is skill of model influenced by mechanisms?

- each ensemble member can be assigned to one mechanisms with pattern matching algorithm
- in each year several mechanisms are predicted, but only one is dominant
- → How would skill be influenced if we select ensemble members for dominant mechanism?

Ensemble Selection

Ensemble Selection

selection of ensemble members based on known dominant mechanism

Ensemble Selection

- selection of ensemble members based on known dominant mechanism
- new ensemble mean over selected members
- higher variability

Seasonal Summer Hindcast Skill

Ensemble Mean

July-August (JA) 500hPa geopotential height (Z500)

Ensemble Selection

July-August (JA) 500hPa geopotential height (Z500)

Reliability

- comparison of probability of forecast to actually observed frequency
- Z500 over Europe
- → improved reliability
- → improved distribution of forecasts

Summary

- we apply cluster analysis to ERA-20C
- identify which mechanisms dominate European summer climate in individual years by analysing
 - North Atlantic Oscillation +/-
 - Zonal Pressure Difference +/-

- model is able to represent these mechanisms
- if known mechanism is considered in hindcast analysis, hindcast skill is improved
 - → predictors for mechanisms needed to use method in real forecast set up

