Exceptional service in the national interest

Used by permission from TEPCO

Source Term Prediction History and Current Practices

Presented at IAEA Source Term Workshop, October 2013 Randall Gauntt Sandia National Laboratories

All materials from UUR Open Source Reports SAND2007-7697 "Accident Source Terms... SAND2010-1633 "Synthesis of VERCORS and Phebus Data

T NATS A

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Outline

- Motivation for this work
- Review of fission product release models
- Assessment of revised release models
 - Phebus FPT-1
 - ORNL VI and French VERCORS
- Examine deposition characteristics affected by release model changes
 - Phebus Circuit depositions
 - Phebus containment deposition
- Revision to model for release from MOX and HBU fuel

Repository of Severe Accident Phenomenology

Modeling and Analysis of Severe Accidents in Nuclear Power Plants

Motivation for Work

- MELCOR models improved and upgraded as new knowledge arrives from ongoing research
 - Phebus, Quench, Rasplav, Masca, etc
- Code assessment is an ongoing process
 - NRC-RES, International Standard Problems, MELCOR users world-wide
- Fission product release models are 1990 vintage
 - Recent assessments from ISP-46 and Phebus program suggest changes are needed
 - Cs speciation now thought to be CsI and Cs2MoO4 versus CsOH
 - Deposition characteristics suggest lower volatility
- Review reflects recent knowledge gained from assessments

Regulatory Source Term

- US regulatory requirements
 - 10 CFR 50 and 10CFR 100
 - Limits on dose to control room and site boundary
 - Consider significant core-melt accident in context of DBA
 - Guidance provided by Reg. Guide 1.183
- Licensee must demonstrate dose limits under design basis events are met by design
 - Can do detailed analysis
 - Safe harbor methodologies outlined in RG 1.183
 - Use alternative regulatory source term
 - Demonstrate adequate containment performance

TID-14844 Regulatory Source Term Sandia (1962)

- Characterized as a maximum credible accident
- Assumed significant core-melt accident releases to the <u>containment</u>...
 - All noble gases
 - 50% iodine
 - 91% elemental gaseous I2
 - 5% particulate (eg. Csl)
 - 4% organic gaseous
 - 1% particulate
- 10CFR100 Site Boundary Criteria
 - Design leakage rate for intact containment
 - Engineered safety features
- Subsequently replaced by NUREG-1465 source term

NUREG-1465 Alternative Source Term (1995)

- Alternative regulatory source term formulated as an alternative to the out-dated TID-14844 source term (to containment)
 - More realistic source term characteristics
 - Defined release phases and durations
 - Iodine recognized as principally aerosol form (CsI)
- AST based on experimental evidence, STCP accident analyses and NUREG-1150 insights gained since mid 1980's
 - Start of risk-informed regulation
 - Intended to be characteristic of likely source term and not bounding or conservative
- Large step in realism since TID and WASH-740

Exceptional service in the national interest

Some Review of Fission Product

Release Modeling and

Implementation into MELCOR

Fractional Release Models

Diffusion Release Model

Effect of Volatility from Assumed Speciation

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

NIS

Fission Product Release Modeling - Booth Diffusion Release Model -

$$\frac{\partial C}{\partial t} = D\nabla^2 C$$

$$C(r,0) = C_0$$
 and $C(a,t) = 0$

$$J = -D\left(\frac{\partial C}{\partial r}\right)_{r=a}$$

$$F(t) = 6\sqrt{\frac{Dt}{\pi a^2}} - 3\frac{Dt}{a^2} \quad for \quad \frac{Dt}{a^2} \le 0.1547$$

$$F(t) = 1 - \frac{6}{\pi^2} \exp\left(\frac{-\pi^2 Dt}{a^2}\right) \quad for \quad \frac{Dt}{a^2} > 0.1547$$

$$D(T) = D_0 \exp(\frac{-Q}{RT})$$

- Booth solution solves the diffusion equation where "C" is concentration of FP in spherical grain
- Assumes uniform initial FP concentration in grain and zero FP concentration at surface
- Release rate is outward flux at surface
- Release fraction well approximated by simple forms
- Diffusion coefficient is temperature dependent
 - Determined by curve fitting

Fission Product Release Modeling - Booth Release Model, cont. -

$$RR_{Diff} = \frac{F(t + \Delta t) - F(t)}{F(t) \cdot \Delta t}$$

$$\dot{m}_{v} = \left[\frac{Nu\mathcal{D}_{k}}{D_{fuel}}\right] \left(\frac{P_{k}-0}{RT}\right) A_{fuel}$$

$$RR_{net} = \left[\frac{1}{RR_{Diff}} + \frac{1}{\dot{m}_{v}}\right]^{-1}$$

- MELCOR determines diffusion fractional release rate by differencing the release fraction F
- A mass transfer limit by vapor transport is calculated using an analogy to heat transfer
 - Vapor pressure is driving potential
- The net release is estimated by inverse of reciprocal sums
 - Low vapor pressure can limit release
 - Low diffusion rate can also limit release

Vapor Pressures of Some Important Species

- Molybdenum vapor pressure extremely low
- Cs₂MoO₄ considerably higher, but...
- Less volatile than CsOH or Csl
- Modified treatment
 - Cs and Mo treated as Cs₂MoO₄ with respect to volatility
 - Csl left unchanged

Fitting of Booth Parameters

$$F(t) = 6\sqrt{\frac{Dt}{\pi a^2}} - 3\frac{Dt}{a^2} \quad for \quad \frac{Dt}{a^2} \le 0.1547$$

or,
$$F(t) = 1 - \frac{6}{\pi^2} \exp\left(\frac{-\pi^2 Dt}{a^2}\right) \quad for \quad \frac{Dt}{a^2} > 0.1547$$

$$\frac{Dt}{a^2} = \frac{2}{\pi} - \frac{F}{3} - 2\sqrt{\frac{1}{\pi^2} - \frac{F}{3\pi}} \qquad \text{for F} < 0.85$$
$$\frac{Dt}{a^2} = \frac{-1}{\pi^2} \ln \left[\frac{\pi^2 (1 - F)}{6} \right] \qquad \text{for F} > 0.85$$

- Release fractions from Booth model
- Invert solution in terms of "D t"
- Allows plotting of instantaneous
 "D" as a function of temperature
- Infer a functional form for D(T)

RT-2 MOX Data

for RT-2 Test **Cs Release in MOX Test RT-2** (release under mixed H_20/H_2 conditions) 1.2 3500 CORSOR-M **ORNL-Booth** 3000 1 -MOX-Booth A MOX Data **Release Fraction** Temperature 0.8 2500 ⊻ Temperature -0.6 0.4 0.2 1000 0 500 45000 55000 50000 60000 65000 time (sec)

Booth Parameters for Different Data Fits

	CORSOR-Booth	ORNL-Booth	Adjusted ORNL-Booth
Diffusion coeff. D_o	2.5x10 ⁻⁷ m ² /sec	1x10 ⁻⁶ m ² /sec	1x10 ⁻⁶ m ² /sec
Activation Energy Q	3.814x10 ⁵ joule/mole	3.814x10 ⁵ joule/mole	3.814x10⁵ joule/mole
Grain radius, a	6 µm	6 µm	6 µm
Class Scale Factors			
Class 1 (Xe)	1	1	1
Class 2 (Cs)	1	1	1
Class 3 (Ba)	3.3x10 ⁻³	4x10 ⁻⁴	4x10 ⁻⁴
Class 4 (I)	1	0.64	0.64
Class 5 (Te)	1	0.64	0.64
Class 6 (Ru)	1x10 ⁻⁴	4x10 ⁻⁴	0.0025
Class 7 (Mo)	0.001	0.0625	0.2
Class 8 (Ce)	3.34x10 ⁻⁵	4x10 ⁻⁸	4x10 ⁻⁸
Class 9 (La)	1x10 ⁻⁴	4x10 ⁻⁸	4x10 ⁻⁸
Class 10 (U)	1x10 ⁻⁴	3.6x10 ⁻⁷	3.2x10 ⁻⁴
Class 11 (Cd)	0.05	0.25	.25
Class 12 (Sn)	0.05	0.16	.16

Exceptional service in the national interest

Phebus FPT-1 ORNL VI VERCORS

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

The Phebus Experiment Facility

PHEBUS facility

- Irradiated fuel heated in test package by Phebus driver core
 - Fuel heatup
 - Zr oxidation, H₂
 - Fission product release
 - Circuit (700 C) transports FP through steam generator tube
 - Deposits in circuit and SG
 - Containment receives FP gas and aerosol
 - Settling
 - Iodine chemistry

- Irradiated BR-3 fuel
- Ag/In/Cd or B₄C control rod
- Grid spacers
- Fuel damage
 - Zr oxidation
 - U-Zr-O interactions
 - Molten pool

FPT-1 Experiment

- Power produced by driver core heats fuel and supports heat losses
- Oxidation power drives rapid fuel heating
 - Clad melting
 - Zr-UO₂ liquefaction
- Late-time oxidation produced by relocation of materials

Cs Release from FPT-1 Fuel

- ORNL Booth model shows improved release kinetics
- CORSOR-M over-predicts early release

Iodine Release

Noble Gas Release

Similar improvement for Xe

Te Release

Ru Release

- Ru release compares well with FPT-1
- CORSOR-M seriously under-predicts Ru

Moly Release

Implementing volatility of Cs₂MoO₄ and adjustments to Csrelease scaling factor produces agreement with FPT-1

- Ba release often not as well predicted
- Ba metal versus BaO affected by reducing conditions
 - Ba boils at ~1900K, BaO shows volatility above ~2100K
 - Volatility sensitive to temperature and Red/Ox conditions (Zr strong reducing agent)

Exceptional service in the national interest

U.S. DEPARTMENT OF

MS

Having produced good comparisons to FPT-1, how do these changes affect comparison to the small scale tests on which original models were developed ? ORNL VI tests French VERCORS tests

> Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

Small Scale Release Tests VERCORS and ORNL VI

G. Ducros et al. / Nuclear Engineering and Design 208 (2001) 191-203

- Small scale tests use only a few pellets
- Conditions are uniform compared to integral tests like FPT-1
- Cladding often fully oxidized prior to release measurements
- Temperature raised in steps with long plateaus

Small Scale Tests Examined

Test	Hydrogen	Steam	Max Temperature
ORNL VI-2	0	1.8 liter/min	2300K
ORNL VI-3	0	1.6 liter/min	2700K
ORNL VI-5	0.4 liter/min	0	2740K
VERCORS 2	0.027 gm/min	1.5 gm/min	2150K
VERCORS 4	0.012 gm/min	1.5 – 0 gm/min	2573K

- Different peak temperatures
- Differing oxidizing potentials

Cs Release in ORNL VI-2

- ORNL-Booth compares better (not terrific however)
- CORSOR-Booth might have done better

Cs Release in ORNL-VI 3

Cs Release in ORNL VI 5

Cs Release in VERCORS 2

Cs Release in VERCORS 4

Iodine Release in VERCORS 4

Te Release in VERCORS 4

Ba Release in VERCORS 4

 Small scale tests often show enhanced release of Ba compared to integral tests

- Present treatment as Cs2MoO4 over-predicts Mo in VERCOR-4, but....
- Still better than CORSOR-M

Conclusions from Release Assessments

- Booth type release treatment provides improved release timing
- ORNL-Booth parameters give significantly improved predictions for FPT-1
- Modifications to Cs and Mo vapor pressure to reflect Cs₂MoO₄ improves Mo release behavior
- Adjustment of Ru release coefficient and vapor pressure produces agreement with FPT-1
- Adjustments to release modeling produces modest improvement in comparisons to small scale tests

Exceptional service in the national interest

Release model implies speciation and volatility

Can affect deposition

FPT-1 circuit deposition examined

Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-AC04-94AL85000.

The Phebus Experiment Facility

Sandia National Laboratories

FPT-1 Deposition using ORNL-Booth Release Model

- Cs release from fuel slightly improved
- Overall transport to containment remains about right
- Retention in plenum and hot leg much improved
- Deposition in steam generator also improved

VANAM-M3 Results Comparison

Summary

- Fission product release models updated to reflect current knowledge
 - Volatility of Cs, Mo, Ru adjusted: FPT-1 basis
 - Good comparison to small scale tests
- Changes to release models improved deposition characteristics in FPT-1
- New data emerging from French VERDON tests provide additional source of new information
- Source term predictive technology on fairly sound footing
 - Chemistry and speciation effects for Ba-class more difficult to capture
- Source Term Estimation Technology on pretty good footing overall