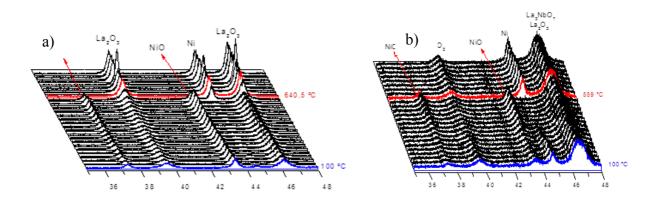
Study of the partial substitution of Ni by Nb in perovskite based catalysts applied on partial oxidation of methane using XPD line


Costa, D. S.¹, Rodella, C. B.², Gomes, R. S.¹ and Brandão, S. T.¹

¹ Universidade Federal da Bahial, Departamendo de Química Geral e Inorgânica, 40170-115, Salvador, Brazil

2 Centro Nacional de Pesquisa em Energia e Materiais, Laboratório Nacional de Luz Síncrotron, 13084-971, Campinas, SP – Brazil

denilson_costa19@hotmail.com

In this work perovskite LaNiO₃ and LaNi_{0.5}Nb_{0.5}O₃ were investigated as catalyst precursors in the partial oxidation of methane (POM). The objective was investigating the influence of the partial substitution of Ni by Nb in the catalytic performance. The catalysts were obtained by reduction of the perovskite precursors under H₂ flow (30mL/min) at 800 °C. Analysis of the post reduction x-ray diffraction (XRD in situ) indicated the presence of Ni and La₂O₃ for the catalyst obtained from LaNiO₃ and Ni, La₂O₃ and La₃NbO₇ for that derived from LaNi_{0.5}Nb_{0.5}O₃. The catalysts were characterized by experiments XRD in situ performed at XPD line (LNLS) at high temperatures and under CH₄ and O₂ flows (2:1 CH₄/O₂ ratio). The diffractograms (Figure 1) indicated that is more difficult to oxidize Ni. Moreover nickel is regenerated at lower temperature in the catalyst containing Nb which was attributed to the presence of La₃NbO₇. Metal oxides such as NiO promote total oxidation of methane instead of partial oxidation producing CO₂ and H₂O [1]. Thus the lower susceptibility to Ni oxidation in the niobium-containing catalyst is quite relevant in the partial oxidation of methane. Tests performed with catalysts obtained from LaNi_{0.5}Nb_{0.5}O₃ during 20h at 750 °C and CH₄/O₂. 2:1, even containing approximately half amount of Ni than the catalyst derived from LaNiO₃, exhibited CH₄ conversion just 15% lower and ratio H₂/CO close to the

stoichiometric to POM. Based on these results it can be proposed that the partial substitution of Ni by Nb lead to a better resistance to oxidation of the Ni sites and which makes possible a H_2 /CO ratio close to the stoichiometric in POM, which can be attributed to the presence of La₃NbO₇ phase.

[1] R. JIN et al. Applied Catalysis A: General 201, 71–80 (2000).

Acknowledgements: This work was supported by CNPq. The authors acknowledge the support of the LNLS/CNPEM for beamline time.