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Abstract

We present the scheme-invariant unpolarized and polarized flavor non–singlet evolution
equation to N3LO for the structure functions F2(x,Q

2) and g1(x,Q
2) including the charm-

and bottom quark effects in the asymptotic representation. The corresponding evolution is
based on the experimental measurement of the non–singlet structure functions at a starting
scale Q2

0. In this way the evolution does only depend on the strong coupling constant
αs(MZ) or the QCD scale ΛQCD and the charm and bottom quark masses mc and mb and
provides one of the cleanest ways to measure the strong coupling constant in future high
luminosity deep–inelastic scattering experiments. The yet unknown parts of the 4–loop
anomalous dimensions introduce only a marginal error in this analysis.

ar
X

iv
:2

10
7.

01
29

3v
1 

 [
he

p-
ph

] 
 2

 J
ul

 2
02

1



1 Introduction

The measurement of the strong coupling constant αs(MZ) from precision data on deep–inelastic
scattering is one of the cleanest ways to obtain this fundamental parameter of the Standard
Model. The present world data allow measurements of δαs(MZ)/αs(MZ) at the level of ∼ O(1%),
[1–3]. In the standard analyses one is fitting the scaling violations of deep–inelastic structure
functions and obtains αs(MZ) together with the parameters of the parton distribution functions,
observing the correlation of all parameters, cf. [4]. Compared to this, the measurement of
αs(MZ) from Re+e− , cf. [5], does not need to fit a larger amount of further parameters. The
different precision determinations of αs(MZ) using different processes do not yet agree and further
precision measurements are therefore needed.

For deep–inelastic scattering a direct determination of αs(MZ) is also possible in the case the
starting distributions of the evolution are measured experimentally. In the flavor non–singlet
case the corresponding non–singlet structure functions at a scale Q2

0 provide the input and the
data at Q2 > Q2

0 are fitted to a physical evolution function, which only depends on αs(MZ),
provided that the input for the values of the heavy quark masses mc and mb is known at high
precision, as also required in the measurement of αs(MZ) from Re+e− . Here Q2 denotes the
virtuality of the exchanged gauge boson. Therefore scheme–invariant evolution equations allow
for a direct determination of the strong coupling constant using measured one dimensional input
distributions which are here functions of the Bjorken variable x. An analysis of this kind has been
performed in Ref. [6] in the unpolarized case, effectively up to N3LO, however, only considering
massless quarks with some further assumptions, see also Ref. [7]. The sensitivity of the structure
function on αs(MZ) or ΛQCD is traditionally illustrated by the slope ∂ ln(Fi(x,Q

2))/∂ ln(Q2)
determined experimentally [8–10].

In the present paper we complete the formalism by the single- and double–mass heavy fla-
vor corrections for the Wilson coefficients up to three–loop order and provide numerical results
for these effects, using the results given in Refs. [11–17]1, as well as the massless contributions.
Scheme–invariant evolution is usually performed in Mellin N space for technical reasons, be-
cause it is simpler in analytic form compared to the corresponding z-space representation. In
the polarized case the reference to factorization scheme–invariant quantities will also solve the
associated γ5 problem, which usually arises performing the loop calculation in D = 4 + ε space–
time dimensions. The strong coupling constant is used in the MS scheme. A main goal of the
present study is to outline the different evolution effects for high precision measurements.

The measurement of scaling violations concerns that of massless parton evolution and is
there implied by the ultraviolet singularity of the respective twist–2 local operators. Referring
to the scale evolution using observables necessarily requests to map to the massless partons,
which implies in N space the algebraic use of the Wilson coefficients, already at the hard scale
Q2, as an obstacle, which are different for the various hard processes. For the latter ones it
has to be guaranteed that only twist–2 terms contribute, cf. [7, 19, 20], by putting the cuts
W 2 > 15 GeV2, Q2 > 10 GeV2, where W is the hadronic mass. The natural scale of evolution
in deep–inelastic scattering is Q2.

The evolution equation is solved analytically and one final numerical contour integral around
the singularities of the corresponding problem delivers the evolved flavor non–singlet structure
function in x space. We first consider the flavor decomposition to provide realistic input distri-
butions and derive the corresponding evolution operators for the structure function. Here we
also discuss the remainder systematics of the yet not completely known four–loop non–singlet
splitting functions PNS,(3),±. Finally we are providing numerical results in the unpolarized and

1A numeric implementation of the heavy flavor Wilson coefficients to two–loop order has been given in [18].
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polarized case. Precision analyses of this kind can be performed in the physics programme at
the future collider experiments at the EIC [21] and LHeC [22].

2 Flavor Decomposition

Since the evolution for the three different flavor non–singlet distributions and the singlet evolution
are different, the experimental input at the starting scale Q2

0 has to be projected correspondingly
by combining different deep–inelastic structure functions. One may refer to the following well–
known decomposition, see also [23]. Let

v±k2−1 =
k∑

l=1

(ql ± q̄l)− k(qk ± q̄k), (1)

with qi the quark distributions and

v±1 = 0 (2)

v±3 = (u± ū)− (d± d̄) (3)

v±8 = (u± ū) + (d± d̄)− 2(s± s̄), (4)

one has

qi + q̄i =
1

NF

Σ− 1

i
v+i2−1 +

NF∑
l=i+1

1

l(l − 1)
v+l2−1, (5)

Σ =

NF∑
l=1

(ql + q̄l). (6)

The nucleon structure functions for pure photon exchange in the case of three light flavors (u, d, s)
are then given at leading order (LO) by

F p
2 = x

[
2

9
Σ +

1

6
v+3 +

1

18
v+8

]
(7)

F d
2 =

1

2
[F p

2 + F n
2 ] = x

[
2

9
Σ +

1

18
v+8

]
. (8)

A synonymous decomposition applies to the structure functions xgp1 and xgd1 . To project onto the
singlet distribution Σ directly one usually needs charged current structure functions, as measured
in neutrino experiments [24] or at facilities like the planned LHeC project [22] or the EIC [21]
in the unpolarized and polarized case, at high luminosity, with [25]

1

2

[
W p,+

2 +W p,−
2

]
= xΣ (9)

above the charm threshold [26]. Here the index ± denotes the exchange of a W+ or a W−

boson, respectively. Otherwise additional information on sea–quarks is necessary. The flavor
non–singlet combinations we are considering are given by

FNS
2 = F p

2 − F d
2 =

1

6
xCNS,+

q ⊗ v+3 (10)
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xgNS
1 = xgp1 − xgd1 =

1

6
x∆CNS,+

q ⊗∆v+3 , (11)

where the Wilson coefficients are Cq and ∆Cq contain light and heavy flavor contributions, and
⊗ denotes the Mellin convolution

[A⊗B](x) =

∫ 1

0

dx1

∫ 1

0

dx2δ(x− x1x2)A(x1)B(x2). (12)

The Mellin transform

M[f(x)](N) =

∫ 1

0

dxxN−1f(x) (13)

turns Eq. (12) into the product

M[(A⊗B)(x)](N) = M[A(x))](N) ·M[B(x))](N). (14)

Before forming the structure function difference in (10, 11) one has to unfold the nuclear cor-
rections of the deuteron structure functions. The lowest Mellin moment of (11) is given by the
polarized Bjorken sum rule [27].

3 The Non–singlet Evolution

The evolution operator of scheme–invariant flavor non–singlet evolution, ENS, is obtained as
follows.2

The evolution equation for the non–singlet structure functions can be written as

d

d ln(Q2)
ln
[
FNS(Q2)

]
=

d

d ln(Q2)
ln
[
CNS(Q2)

]
+

d

d ln(Q2)
ln
[
qNS(Q2)

]
. (15)

Its solution is given by

FNS(Q2) = ENS(Q2, Q2
0) · FNS(Q2

0). (16)

The Wilson coefficient is given by

C(Q2) = 1 +
∞∑
k=1

aks(Q2)Ck, Ck = ck + hk (Lc, Lb) . (17)

Here ck denote the expansion coefficients of the massless Wilson coefficients and hk of the massive
Wilson coefficient, with

Lc = ln

(
Q2

m2
c

)
, Lb = ln

(
Q2

m2
b

)
(18)

and mc,b are the on–shell charm and bottom quark masses.
In the non–singlet case the heavy flavor corrections contribute form O(a2s) onward. One has

h1 = 0 (19)

h2 = ĥ2(Lc) + ĥ2(Lb) (20)

2Here and below we will work in Mellin N space.
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h3 = ĥ3(Lc) + ĥ3(Lb) +
ˆ̂
h3(Lc, Lb), (21)

where ĥi denote the single mass and
ˆ̂
h3 the double mass contributions.

One may rewrite the differential operator

d

d ln(Q2)
=
das(Q

2)

d ln(Q2)
· d

das(Q2)
(22)

with

das
d ln(Q2)

= −
∞∑
k=0

βka
k+2
s . (23)

The evolution equation for the non–singlet quark density is given by

d

das
ln
[
qNS(Q2)

]
= −1

2

∑∞
k=0 a

k+1
s Pk∑∞

k=0 βka
k+2
s

, (24)

where βk are expansion coefficients of the QCD–β function and Pk are the splitting functions.
The anomalous dimensions are related to the splitting functions3 by

γ
(k)
ij (N) = −

∫ 1

0

dxxN−1P
(k)
ij (x). (25)

The solution of Eq. (15) to N3LO reads

ENS(Q2, Q2
0) =

(
a

a0

)− P0
2β0

{
1 +

a− a0
2β2

0

{[
1 + a2C2(Q

2)− a20C2(Q
2
0)
](

2β2
0C1 − β0P1 + β1P0

)
−
(
a2 − a20

)
4β3

0

(
2β2

0C1 − β0P1 + β1P0

)[
2β3

0C
2
1 + β2

0P2 − β0β1P1 +
(
β2
1 − β0β2

)
P0

]
+

(
a2 + aa0 + a20

)
3β2

0

[
2β4

0C
3
1 − β3

0P3 + β2
0β1P2 +

(
β2
0β2 − β0β2

1

)
P1

+
(
β2
0β3 − 2β0β1β2 + β3

1

)
P0

]
+
a− a0

4β2
0

(
2β2

0C1 − β0P1 + β1P0

)2
+

(a− a0)2

24β4
0

(
2β2

0C1 − β0P1 + β1P0

)3 − a+ a0
2β0

[
2β3

0C
2
1 + β2

0P2 − β0β1P1

+P0

(
β2
1 − β0β2

)]}
+ a2C2(Q

2)− a20C2(Q
2
0)− C1

[
a3C2(Q

2)− a30C2(Q
2
0)
]

+a3C3(Q
2)− a30C3(Q

2
0)

}
(26)

and a = as(Q
2), a0 = as(Q

2
0) and Pi(N) ≡ Pi denotes the Mellin transform of Pi(z). The heavy

quark contributions to the Wilson coefficients are given by [15,16,30,31]

ĥ
(Q)
2 = −β0,Q

4
P (0)
qq ln2

(
Q2

m2

)
+

1

2
P̂ (1),NS
qq ln

(
Q2

m2

)
+ a(2),NS

qq +
β0,Q

4
ζ2P

(0)
qq + Ĉq

(2),NS
(27)

3Our normalizations are such that a factor of two has to be applied to those given in [28,29].

5



ĥ
(Q)
3 = −1

6
P (0)
qq β0,Q (β0 + 2β0,Q) ln3

(
Q2

m2

)
+

1

4

[
−2P (1),NS

qq β0,Q + 2P̂ (1),NS
qq (β0 + β0,Q)

−β1,QP (0)
qq

]
ln2

(
Q2

m2

)
− 1

2

[
−P̂ (2),NS

qq −
(

4a
(2),NS
qq,Q + ζ2β0,QP

(0)
qq

)
(β0 + β0,Q)

−P (0)
qq β

(1)
1,Q

]
ln

(
Q2

m2

)
+ 4ā

(2),NS
qq,Q (β0 + β0,Q) + P (0)

qq β
(2)
1,Q +

1

6
P (0)
qq β0β0,Qζ3

+
1

4
P (1),NS
qq β0,Qζ2 − 2δm

(1)
1 β0,QP

(0)
qq − δm

(0)
1 P̂ (1),NS

qq + 2δm
(−1)
1 a

(2),NS
qq,Q + a

(3),NS
qq,Q

+

[
−β0,Q

4
P (0)
qq ln2

(
Q2

m2

)
+

1

2
P̂ (1),NS
qq ln

(
Q2

m2

)
+ a(2),NS

qq +
β0,Q

4
ζ2P

(0)
qq

]
C(1),NS

q

+Ĉ(3),NS
q . (28)

The two–mass three–loop contributions [32] read

ˆ̂
hNS
3 = P (0)

qq β
2
0,Q

[
2

3

(
L3
c + L3

b

)
+

1

2

(
L2
cLb + LcL

2
b

)]
− β0,QP̂ (1),NS

qq

(
L2
c + L2

b

)
−
[
4a

(2),NS
qq,Q β0,Q

−1

2
β2
0,QP

(0)
qq ζ2

]
(Lc + Lb) + 8ā

(2),NS
qq,Q β0,Q + ã

(3),NS
qq,Q (mc,mb, Q

2). (29)

The two–mass term is the same in the unpolarized and polarized case. In the r.h.s. of Eqs. (27–
29) we define

f̂(x,NF ) = f(x,NF + 1)− f(x,NF ). (30)

In the MS scheme the iterative solution for as(Q
2) is [33]

as(Q
2) =

1

β0L
− β1
β3
0L

2
ln(L) +

1

β3
0L

3

[
β2
1

β2
0

(ln2(L)− ln(L)− 1) +
β2
β0

]

+
1

β4
0L

4

[
β3
1

β3
0

(
− ln3(L) +

5

2
ln2(L) + 2 ln(L)− 1

2

)
− 3

β1β2
β2
0

ln(L) +
β3
2β0

]
, (31)

with L = ln(Q2/Λ2
QCD). Here the integration constant for solving (23) is chosen by (β1/β

2
0) ln(β0)

[34]. The expansion coefficients of the β-function to N3LO were calculated in [35]. The flavor
matching conditions were given in [33]. The expansion coefficients of the renormalized mass were
given in [36, 37]. The constant and O(ε) parts of the massive unrenormalized operator matrix

elements at O(aks) are denoted by a
(k)
ij and ā

(k)
ij , respectively, cf. [11,12,38,39].

The three–loop massless Wilson coefficients are expressed by effective representations. Oth-
erwise we use the analytic Mellin space representations. After algebraic reduction [40], they
depend on 32 harmonic sums [41, 42] up to weight w=6 only, which is particular to the flavor
non–singlet case to three–loop orders. Other massive Wilson coefficients have a more involved
structure [43–46]. It is useful to represent harmonic sums with an alternating index by their
Mellin transform, to eliminate spurious (−1)N terms [42] before performing the analytic con-
tinuation from even or odd integers to the complex plane. The singularities of the problem are
located at the non–positive integers, around which the contour integral is performed, cf. [47–50].
For the analytic continuation we follow Refs. [51,52].
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In the case of the structure function F2 the non–singlet anomalous dimensions are PNS,+ and
the expansion coefficients of the Wilson coefficient up to c3 were calculated in [53]. In the case of
the structure function g1 the anomalous dimensions are PNS,−, cf. [28], and the Wilson coefficient
has been given in [54].4 Below we will also use the combination

F h
2 (N,Q2) = [ENS − ENS|h=0]F2(N,Q

2
0). (32)

The four-loop non–singlet anomalous dimensions are not yet completely known as a function
of N . However, a series of moments has been calculated in [79–84]. We follow the earlier
investigation in Ref. [6] and compare these moments with the Padé-approximation

P 3,±,NS
qq (N) ≈

P 2,±,NS
qq (N)2

P 1,±,NS
qq (N)

, (33)

with the exact moments in [79–84] in Table 1. Furthermore, the leading NF terms for the even
moments have been predicted in [85].

From the 2nd moment, which agrees within 21%, cf. also [6], the accuracy improves to 2.2 %
for the known even moments at N = 16 and to 2.6% for the odd moments at N = 15. For the
first moment for γ−,NS the Padé-approximation delivers even the correct result, after using the
l’Hospital rule.

N δγ+,NS N δγ−,NS

2 0.208822541 1 0.0

4 0.123728742 3 0.147102092

6 0.087155544 5 0.101634935

8 0.064949195 7 0.074593595

10 0.049680399 9 0.056598595

12 0.038394815 11 0.043633919

14 0.029638565 13 0.033767853

16 0.022602035 15 0.025956941

Table 1: The relative error comparing the exact moments of the four–loop anomalous dimensions,
γ(3),±,NS, with the Padé approximation (33).

The leading small x terms for PNS,+
3 and PNS,−

2 have been given in [86] after correcting some
misprints there in Ref. [87], see also [88]. However, yet unknown sub–leading terms, having been
studied at the known lower orders, are numerically dominant over the leading small x corrections
and several of these sub–leading terms are needed, cf. [49,87], to be calculated to obtain reliable
quantitative prediction in this region of x. Table 1 shows that (33) provides an excellent model.
The earlier assumption of an error of 100% in [6] on this relation has been very conservative and
still led to an error in ΛQCD of 2 MeV only, which could now be improved in principle. Yet the
experimental accuracy at this level cannot be reached at present, since the current experimental
error amounts to δΛQCD = 26 MeV [6].

4Lower orders of the non–singlet anomalous dimensions and the massless non–singlet Wilson coefficients have
been calculated in [15,55–64] and [63,65–68] and in the polarized case in [69–74] and [75–78].
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4 Numerical Results

The measured input distributions contain correlated errors, which are parameterized by the
respective fits. cf. [6, 19, 89]. Their evolution, including the corresponding correlation matrix,
has to be performed to provide the error prediction of the structure function at every fixed value
of ΛQCD,mc and mb respectively. Here one may use the corresponding formulae for the correlated
error propagation given in Ref. [6] and extensions of them, which are straightforward. Within
future data analyses one will probably import the values of the heavy quark masses from the
world data analyses. For the charm quark mass it has already been shown that its value obtained
from deep–inelastic scattering data fully agrees with other precision measurements [90]. In our
illustrations we will use the values mc = 1.59 GeV [90] and mb = 4.78 GeV [91].

For the input distribution in the unpolarized case we refer to the one of Ref. [6]

FNS
2 (x,Q2

0) = CNS(x,Q2
0)⊗ xqNS(x,Q2

0) (34)

xqNS(x,Q2
0) =

1

3

[
0.262 x0.298(1− x)4.032(1 + 6.042

√
x+ 35.49x)

−1.085 x0.5(1− x)5.921(1− 3.618
√
x+ 16.41x)

]
(35)

at Q2
0 = 4 GeV2. In the polarized case we use the fit to xgNS

1 (x,Q2
0) of the structure function of

Ref. [89] at Q2
0 = 10 GeV2,

xgNS
1 (x,Q2

0) = 2.4312 · 10−5x−0.38573(1− x)2.69522

×(−1 + 279.624
√
x+ 1239.76x+ 7053.93x3/2 + 1866.208x2) (36)
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-4 0.001 0.010 0.100 1

0.00
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0.08

0.10

x

F
2

N
S
(x

,Q
2
)

10
-4 0.001 0.010 0.100 1

0.000

0.005

0.010

0.015

0.020

0.025

x

x
g

1
N

S
(x

,Q
2
)

Figure 1: Left: The structure function FNS
2 at N3LO. Right: The structure function xgNS

1 at N3LO.
Full lines: Q2 = 10 GeV2; dashed lines: 100 GeV2; dash-dotted lines: 1000 GeV2; dotted lines:
10000 GeV2.

In the numeric illustration our reference starting scale will be chosen to be Q2
0 = 10 GeV2 both

in the unpolarized and polarized case. In Figures 1 we show the scheme–invariant evolution of
the non–singlet structure functions FNS

2 and xgNS
1 in the kinematic region Q2 ∈ [10, 104] GeV2.

In Figures 2 we expand the representation for the region of larger values of x. Both structure
functions show a falling behaviour both towards small and large values of x. To improve the
measurement of the strong coupling constant future measurements of these structure functions
are necessary at the 1% level.
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Figure 2: The same as Figure 1 but with expanded large x region.
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Figure 3: Left: The relative contribution of FNS
2 in the evolution from Q2 = 10 GeV2 to 10000 GeV2.

Right: The same for the structure function xgNS
1 .

In Figures 3 we illustrate the relative effect of the scale evolution in Q2 both for FNS
2 and xgNS

1

comparing to the starting scale Q2
0. There is a fixpoint at x0 ∼ 0.1 with a positive evolution

with Q2 at lower x and a negative evolution at larger x.
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Figure 4: Left: The relative contributions from LO (dotted lines), NLO (dashed lines) and NNLO
(full lines) to the structure function FNS

2 at N3LO at Q2 = 100 GeV2 as an example. Right: The
same for the structure function xgNS

1 .
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In Figures 4 we show the ratio of the results obtained at leading order (LO), next-to-leading
order (NLO), and next-to-next-to leading order (NNLO) to the N3LO results at Q2 = 100 GeV2.
This illustrates the convergence of the perturbative series of the corrections and the necessity to
include N3LO corrections at an accuracy of the data in the 1% region.
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)

Figure 5: Left: The relative contribution of the heavy flavor contributions due to c and b quarks
to the structure function FNS

2 at N3LO; dashed lines: 100 GeV2; dashed-dotted lines: 1000 GeV2;
dotted lines: 10000 GeV2. Right: The same for the structure function xgNS

1 at N3LO.

In Figures 5 we illustrate the relative size of the heavy flavor parts for the same region in
Q2 in the unpolarized and polarized cases. In the important region x ≤ 0.4 the heavy flavor
corrections reach the size of ∼ 1%. Therefore they are of importance for precision analyses.
Larger relative effects are found at larger values of x. There, however, the structure functions
and their heavy flavor content drop rapidly.

In Figures 6 we illustrate the effect of the half difference if putting P 3,±,NS
qq = 2P 2,±,NS

qq
2
/P 2,±,NS

qq

and P 3,±,NS
qq = 0 for both FNS

2 and xgNS
1 . This rescaled correction is in the sub–percent range.

Moreover, the impact on ΛQCD comes from the slope in Q2 which is seen to be rather small.
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Figure 6: The effect of the variation of P 3,±,NS
qq around the value in Eq. (33) by ±100%. Dashed

lines: Q2 = 100 GeV2, Dash-dotted lines: Q2 = 1000 GeV2; Dotted lines: Q2 = 10000 GeV2. Left:
FNS
2 ; Right: xgNS

1 .
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5 Conclusions

We have calculated the evolution of flavor non–singlet structure functions in the unpolarized and
polarized case, which become available in high luminosity experiments performed both on proton
and deuteron data with comparable statistics. The evolution has been performed in Mellin N
space using our code QCDEVO. Referring to the structure functions directly has the advantage that
the input distributions are measured. The evolution does only depend on the QCD scale ΛQCD

and the heavy quark masses mc and mb, the latter of which have been measured very precisely
already [91]. Therefore, this method allows for a one parameter fit of ΛQCD only, and provides a
method which is systematically very stable. The input, after corrections for the deuteron wave
function, is given by the difference of two structure functions which both can be measured at very
high statistics at future facilities [21,22]. The heavy flavor corrections amount to a contribution
of ∼ 1% in the region x < 0.4.

Let us finally mention that one may also consider the scheme–invariant singlet evolution [62,
65, 92–100] in addition to the one in the flavor non–singlet case, provided the corresponding
flavor decomposition can be carried out. This will usually require more than just the deep–
inelastic data, because of the sea–quark combinations. A possible way would consist in referring
to the Drell–Yan cross section here. Already this part complicates the analysis. Furthermore,
one needs to measure the slope ∂Fi/∂ ln(Q2) at the input scale Q2

0 together with Fi(Q
2
0) in an

uncorrelated way. A second possibility would consist in using the pair F S
2 (Q2

0), F
S
L(Q2

0). However,
the measurement of the structure function F S

L is much more difficult than that of F S
2 and in the

past not enough statistics has been collected in this case, cf. [101–103], see, however, [104].
To perform the necessary flavor decomposition, one needs to perform all these measurements
both at proton and deuteron targets. By scheme–invariant evolution the fitting problem of
input distributions does not exist and no further optimization by neural network techniques is
necessary since the input distribution is fully determined by its measurement.
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