ПЛОТНОСТЬ ПОРОШКОВЫХ И МОНОЛИТОВ ПОЛУПРОВОДНИКОВЫХ СИСТЕМ CdSb-NiSd₂ В ЗАВИСИМОСТИ ОТ ТЕМПЕРАТУРЫ

Ёдалиева З.Н., Зарипова М.А.

Таджикский технический университет им. акад.М.С.Осими, Душанбе edalieva71@mail.ru, mohira.zaripova@list.ru,

Аннотация. В данной статье приводятся результаты исследования плотности порошков и монолитов полупроводниковых систем (CdSb-NiSb₂), в зависимости от температуры.

К сожалению, до настоящего времени такие сведения о теплофизических и термодинамических свойствах весьма скупы даже для элементов рассматриваемых материалов, а имеющиеся данные носят разрозненный и часто противоречивый характер. Так, практически нет систематизированных данных, необходимых для увязывания между собой термодинамическое тождество плотности. Вопросы надёжности полупроводниковых приборов, повышения процентов выхода годных изделий стабильности параметров остаются весьма актуальными. В последние годы в солнечных батареях, используемых в космических аппаратах, применяют водные растворы гидразина (в определённом соотношении). В эти растворы добавляют некоторое количество порошка CdSb, который вследствие химической реакции разлагается на наночастицы Cd и Sb. Наночастицы CdSb выделяют некоторое количество энергии, а частицы Cd высвечиваются, выделяя тем самым дополнительное количество теплоты. Поэтому мы перед собой поставили задачу изучить теплофизические свойства несимметричного диметилгидразина (водный раствор гидразина) с добавкой порошка CdSb-NiSb₂ от 0,5 до 2,5% при высоких параметрах состояния. Полученные результаты позволяют оценить влияние концентрация данного порошка на свойства и поведение несимметричного диметилгидразина, а также могут быть использованы для численных расчётов калорических и термодинамических свойств изучаемых систем (несимметричный диметилгидразин и CdSb-NiSb₂) при различных температурах и давлениях. Плотность, монолитов полупроводниковых материалов системы CdSb-NiSb₂ в зависимости от температуры приведены в таблице 1[1-4].

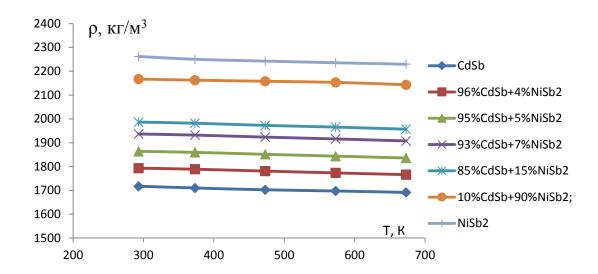

В таблице 1 приведена плотность исследуемых образцов, имеющих цилиндрическую форму при комнатной температуре.

Таблица 1. Плотность ρ , $(\kappa 2/M^3)$ монолитов полупроводниковых материалов системы CdSb-NiSb₂ в зависимости от температуры.

№	Образцы	Температура Т,К				
		293	373	473	573	673
1	CdSb	6870,0*	6840,3	6810,8	6790,0	6766,0
2	96%CdSb+4%NiSb ₂	6896,8	6880,4	6850,2	6820,5	6792,6
3	95%CdSb+5%NiSb ₂	6903,5	6887,5	6856,9	6828,4	6799,2
4	93%CdSb+7%NiSb ₂	6916,9	6900,8	6869,7	6842,7	6812,5
5	85%CdSb+15%NiSb ₂	6970,5	6954,2	6921,7	6896,9	6865,6
6	10%CdSb+90%NiSb ₂	7473,0	7457,3	7441,2	745,3	7363,6
7	NiSb ₂	7540 ×	7500,5	7475,2	7450,7	7430,0

Их геометрические размеры (диаметр, высота) измерены штангенциркулем, масса определена электронными весами, а при высоких температурах произведён расчёт по методу аддитивности. Плотность порошков полупроводниковых систем CdSb-NiSb₂ в зависимости от температуры и концентрации второго компонента приведена на рисунке 1.

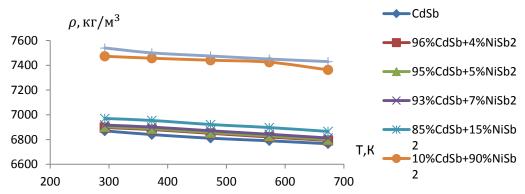

Как видно из рисунков 1 и 2, с ростом температуры наблюдается уменьшение плотности исследуемых веществ CdSb- $NiSb_2$ как в виде порошка, так и в виде монолита. Необходимо отметить, что в порошках из тех же материалов наблюдается уменьшение плотности в 1,6%.

Рисунок 1. Плотность порошков полупроводниковых систем CdSb-NiSb₂ в зависимости от температуры и концентрации второго компонента.

Для ракетных топлив и растворителей, в том числе и диметилгидразина, характерен большой интервал параметров состояния теплофизических и термодинамических свойств. Для промышленных целей и для получения высокоактивных топлив применяются вещества с хорошими теплофизическими и термодинамическими характеристиками [4].

Плотность монолитов полупроводниковых систем $CdSb-NiSb_2$ в зависимости от температуры и концентрации второго компонента приведена на рисунке 2.

Рисунок 2. Плотность ρ , $(\kappa z/M^3)$ монолитов полупроводниковых систем CdSb-NiSb₂ в зависимости от температуры и концентрации второго компонента.

Для определения плотности исследуемых систем при комнатной температуре и атмосферном давлении использован пикнометрический метод. Общая относительная погрешность измерения плотности при доверительной вероятности α =0,95, составляет 0.005%.

ЛИТЕРАТУРА

[1]. Зарипова М.А. Теплоёмкость водных растворов аэрозина в зависимости от температуры и давления/ М.М.Сафаров, **М.А.Зарипова**, Ф.С.Раджабов// Измерительная техника. - М.№5,1996, С.46-48.

- [2]. Сафаров М.М. Теплопроводность водных растворов диметилгидразина в широком интервале температур и давлений. /М.М. Сафаров, М.А. Зарипова. // ИФЖ. Т71, №3.1998, Минск, С.375-383.
- [3]. Ёдалиева З.Н. Интенсификация азотосодержащих ракетных топлив с учетом добавки наночастиц и расчет термодинамических характеристик. / М.М. Сафаров, Н.Б. Давлатов, М.А.Зарипова, М.М. Гуломов. З.Н. Ёдалиева //8-Международная научно-техническая конференция «Проблемы и перспективы развития авиации наземного транспорта и энергетики», (АНТЭ-2015), 19-21 октября 2015, КАИ С.517-522.
- [4]. Ёдалиева З.Н. Калориметрия и температуропроводность твёрдых полупроводниковых систем CdSb /З.Н. Ёдалиева, Э.Ш. Тауров, Х.С.Содыков, М. М. Сафаров, Дж.А. Зарипова //МТФШ-9, Душанбе-Тамбов, 2014.-С.187-190.