
1 

 

A STUDY ON THE APPLICATION OF ARTIFICIAL 

NEURAL NETWORK TO PREDICT K-EFF AND PEAKING 

FACTOR OF A SMALL MODULAR PWR 
 

LE TRAN CHUNG
1
, NGUYEN THI DUNG

1
, TRAN VIET PHU

2
 
 

1
Institute for Nuclear Science and Technology, VINATOM 

2
Bac Tu Liem, Hanoi 

Email: chungletran@gmail.com 
 
Abstract:  

Machine learning (ML) using artificial neural network (ANN) methods is being strongly applied in 

nuclear reactor research. It is used to predict required parameters based on learning from big data sets. 

The ML models usually give much faster calculation speed while the accuracy is good and can be 

even better than the normal calculation tools. In this work, a Multi-layer perceptron network was built 

and trained to predict k-eff and peaking factor of a small modular PWR core. The obtained results are 

compared with the SRAC2006 code to evaluate the performance of the models. The comparisons 

show good accuracy and performance of the models. 

Keywords: small modular reactor, machine learning, artificial neuron network, multi-layer 

perceptron. 

 

I. INTRODUCTION 

Over the past decade, along with the development of computer science and big data, machine 

learning (ML) has had tremendous development. ML has penetrated almost all human activities 

such as supporting scientific research, self-driving cars, virtual assistants, image recognition and so 

on. For nuclear reactor research, ML has also been applied quite a lot to replace simulation tools in 

predicting necessary parameters in the reactor such as kinetic parameters, power distribution, 

thermal-hydraulic [1]-[5]. The nuclear reactor is a multi-physics system with complex geometries, 

so the simulation and calculation of the reactor parameters require complex computationally 

intensive programs and take a long time to compute. Studies on applying ML show that the 

program algorithm is simple to predict the necessary parameters with acceptable accuracy, and the 

calculation speed is also greatly increased. 

Research on application of ML, especially artificial neural networks (ANN) to predict 

parameters, analyze safety, and design nuclear reactors has been vigorously deployed for more than 

10 years [6]-[11]. The results show the great potential of ANN in building high-performance 

precision simulation tools for nuclear reactor. Great support in reactor design, analysis and safety 

assessment, building digital-twin models to support reactor operation. However, for specific 

problems, ML models still need to be studied and improved to achieve appropriate accuracy [6]-

[8]. In addition, ANN models require relatively large amounts of data to train. Therefore, studying 

algorithms with high generalizability on a limited data set (especially for experimental data) is also 

a challenging problem today [12].  

This study applies a multi-layer perceptron (MLP) neuron network [13] to predict k-eff and 

peaking factor for pressurized water-type small modular reactors. The dataset used to train the 

model is generated by the SRAC2006 code [14], [15]. MLP neural network structure is built and 
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trained to achieve high accuracy when compared with simulation results. Studying the necessary 

features to train the model as well as reduce the size of the dataset while ensuring the accuracy of 

the model is also performed. 

II. METHODOLOGY 

2.1. Core modeling and data preparation 

The analyzed small modular PWR reactor (SMR) is a simplified core that contains 

37 shortened PWR fuel assemblies and light water as a reflector. Each assembly consists of 

289 rods with 264 fuel rods, 24 control rod guide tubes and 1 instrument tube at the center 

arranged on a 17x17 grid. The fuel pellets made of UO2 with three different U-235 

enrichment of 2.35%, 3.40% and 4.45% are loaded into three types of assembly named 

F235, F340 and F445, respectively. The characteristics of the fuel assembly and the SMR 

core are given in Table 1 [16].  

Table 1. Main design parameters for small modular PWR core 

Parameters Values 

Reactor thermal power, MW 200 

Number of fuel assembly 37 

Assembly pitch, cm 21.4173 

Assembly height, cm 220 

Fuel rod pitch, cm 1.2598 

Fuel pellet radius, cm 0.4096 

Fuel inner cladding radius, cm 0.4178 

Fuel outer cladding radius, cm 0.475 

Fuel enrichment, %wt U235 2.35, 3.40, 4.45 

Fuel temperature, K 1145 

Average coolant temperature, K 583 

Operation pressure, MPa 15.5 

 

SRAC2006 is a deterministic code system with many modules used to calculate 

neutronic characteristics for various types of thermal reactors [14],[15]. It has been 

validated for core calculations of small modular PWRs through several studies [16], [17]. 
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The advantage of this code is the fast calculation while ensuring accuracy compared to 

other codes. Therefore, this code is suitable to calculate for a large number of loading 

patterns (LPs) to create training data for machine learning. 

The calculations are performed by module PIJ for fuel assembly and COREBN for 

3D core calculations. In PIJ module, the assemblies are modeled according to the ¼-

symmetric model. Each fuel rod is divided into 5 zones (3 fuel zones with equal cross-

sectional area, 1 zone for gap between fuel and cladding and 1 cladding zone). The guide 

tubes are also divided into 5 zones with 4 water zone and 1 cladding zone. The assembly 

model is shown in Figure 1. 

 

Figure 1. PWR assembly model (quarter symmetry) 

The obtained calculation results for three types of assemblies include the infinitive 

multiplication factor, k-inf, and the homogeneous cross-section (group constants) data at 

the beginning of cycle for 3 energy groups (Table 2). These data are used as input features 

for training machine learning models. The burn-up calculations for fuel assemblies were 

also conducted to make the dataset for core calculation with COREBN code. 

Table 2. Features of assemblies 

Assembly Index Enrichment (%) 

U235 

k-inf Energy group Fission XS Diffusion 

coefficient 

 

 

F235 
1 2.35 1.221 

1 1.467E-03 1.575E+00 

2 5.969E-03 8.274E-01 

3 4.396E-02 3.790E-01 

 

 2 3.40 1.306 
1 1.686E-03 1.577E+00 

2 8.478E-03 8.230E-01 
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F340 3 5.995E-02 3.776E-01 

 

 

F445 
3 4.45 1.356 

1 1.902E-03 1.578E+00 

2 1.091E-02 8.189E-01 

3 7.446E-02 3.754E-01 

 
In COREBN, the PWR core is modeled as Figure 2. The core contains 37 fuel 

assemblies arranged with quarter-core symmetry. So that at each position of a quarter-core, 

one of the three types of the fuel assembly is randomly placed to create different LPs. To 

make the training dataset for the machine learning model in this study, 20000 LPs were 

calculated. The calculated parameters include the effective multiplication factor (k-eff) and 

the power peaking factor at the beginning of the cycle. In the next sections, the dataset will 

be divided into 3 parts including test set (1000 LPs ~ 0.5% of dataset), validation set (3800 

LPs ~ 20% rest of the dataset) and training set (15200 LPs). 

 
Figure 2. Core model in CORENBN code 

2.2. Multilayer perceptron neuron network 

The multilayer perceptron (MLP) is a type of artificial neural network (ANN) that consists of 

multiple layers of interconnected artificial neurons, or nodes (Figure 3). It is a feedforward neural 

network, meaning that information flows in one direction, from the input layer through the hidden 

layers to the output layer. The MLP is widely used in various fields for tasks such as classification, 

regression, and pattern recognition. 

The architecture of the MLP consists of an input layer, one or more hidden layers, and an 

output layer. Each layer is characterized by its nodes, where each node performs a weighted 

computation on the input signals received from the previous layer. The introduction of activation 

functions within these nodes allows for non-linear transformations of the data, enabling the MLP to 

model intricate relationships beyond the limitations of linear classifiers.  

A perceptron (node) was inspired by structure of neurons, that is illustrated in Figure 4. The 

computation in each node is performed in 2 steps. First the input data is summed by weight: 
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𝑠 =  ∑ 𝑤𝑖𝑥𝑖 + 𝑏 
(1) 

where, wi are weighting factors, xi are input signals and b is bias 

Then, the output is calculated from the above sum through a nonlinear activation function 

f(s) to be able to build a multi-layer model. The following formula represents the sigmoid 

activation function: 

𝑓(𝑠) =  
1

1 + 𝑒−𝑠
 

(2) 

 

Figure 3. Multilayer perceptron illustration 

 

 

Figure 4. neuron (a) and perceptron (b) illustration 

In this study, the MLP network structure is built based on some preliminary surveys and 

experience of the research team. The number of nodes in the input layer are equal to the number of 

considered input features. The input features include the arrangement of the fuel assemblies in 

quarter-core and the neutronic characteristics of the assemblies (these characteristics are calculated 

by the SRAC code, see Table 2). Since the quarter-core has 10 positions, the number of input 
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features will be a multiple of 10. There are a variety of ways to select the input features including: 

fuel assemblies (assemblies index) corresponding to 10 positions in 1/4 core, k-inf of the 

assemblies corresponding to the 10 position, enrichment of the assemblies corresponding to the 10 

position, combination of the k-inf and the enrichment corresponding to the 10 positions, ... Table 3 

presents some examples of input features selection. The influence of input features on the 

prediction results were investigated and shown in Section 3.2. 

Table 3. Samples of input features selections 

Number 

of input 

features 

Case of 

features 
Sample 

10 
assembly 

index 
3, 3, 4, 3, 4, 2, 2, 4, 2, 3 

10 assembly k-inf 1.306, 1.306, 1.356, 1.306, 1.356, 1.221, 1.221, 1.356, 1.221, 1.306 

10 
assembly 

enrichment 
3.4, 3.4, 4.45, 3.4, 4.45, 2.35, 2.35, 4.45, 2.35, 3.4 

20 
k-inf and 

enrichment 

1.306, 1.306, 1.356, 1.306, 1.356, 1.221, 1.221, 1.356, 1.221, 1.306 

3.4, 3.4, 4.45, 3.4, 4.45, 2.35, 2.35, 4.45, 2.35, 3.4 

 

The MLP network consists of 4 hidden layers with the number of nodes per layer being 256, 

512, 512, 256 respectively. Dropout classes with 10% probability are inserted between hidden 

layers to avoid overfitting during training. The sigmoid function will be used as the activation 

function. The output layer only has one node to predict one type of output (k-eff or peaking factor). 

The using only one node at the output layer allows to best evaluate the effectiveness of the ANN 

for predicting each neutronic characteristic of reactor. This means that k-eff and peaking factor are 

predicted by 2 different models. The structure of the MLP network is present in Figure 5. 
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Figure 5. MLP neuron network structure 

III. RESULTS AND DISCUSSION 

3.1. Survey of number of trained loading patterns 

In this section, effect of number of trained loading patterns on the accuracy of predicted 

outputs was surveyed. This survey is performed in order to determine the minimum suitable 

number of trained LPs for k-eff and peaking factor prediction problems. The features of input 

include k-inf of assemblies arranged in one-fourth of LP, it mean that input LPs have 10 features 

associated with k-inf of assemblies in 10 position of the one-fourth of core. The number of trained 

LPs is varied from 1000 to 15000 with the step of 1000. Size of validation set and test set are kept 

as 3800 and 1000, respectively. The number of epochs is 200. In this survey, each case was run 

three times and the results were averaged.  

Figure 6 shows the survey results of loss functions values and deviation of predicted and 

real outputs. Minimum of training losses and validation losses of the all cases after 200 epochs of 

training processes have been collected and shown in sub-figures (a) and (b). In each case, the 

model with minimum of validation loss has been chosen to predict the outputs for 1000 LPs of the 

test set. The average absolute deviations and the maximum absolute deviations of the 1000 LPs are 

shown in sub-figures (c) and (d). One can see that the loss values and deviation values decrease as 

the number of trained LPs increase. The loss values decrease slowly after 3000 and 6000 trained 

LPs in the problem of k-eff prediction and peaking prediction, respectively. In these numbers of 

trained LP, the values of maximum absolute deviation of k-eff are 1315pcm and 912pcm, 

meanwhile the values of maximum absolute deviation of peaking factor are 12.15 and 8.5%. These 

deviations are much larger than the deviation between core simulations code.  
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Figure 6. Dependency of loss function values and predicted outputs accuracy on number of trained 

LPs. Minimum of training loss and validation loss in k-eff prediction (a) and peaking prediction 

(b); average and absolute deviation in k-eff prediction (c) and peaking prediction (d) 

For deeply evaluation, the training processes were increased to 500 epochs for the two cases 

in which the input numbers are 3000 and 6000. Table 4 shows the comparison of the two cases of 

3000 and 6000 trained LPs and the case of all trained LPs (15200 LPs). The minimum loss function 

values are average of three runs for each case and the deviations are aggregated from predictions 

for the 1000 test LPs. The results show a decrease of the loss functions and the deviations when 

increasing the number of trained LPs. In all cases, the average deviations of k-eff and peaking 

factor are comparable with other reactor core simulators. In the case of 3000 trained LPs, however, 

the maximum deviation of k-eff and peaking factor are quite large (640pcm and 1.66%) when 

compare the predictions for the 1000 test LPs). One can see that the prediction results are 

acceptable agreement with SRAC2006 when the number of trained LPs is at least 6000 LPs. In 

other words, MLP models can be trained well with at least 6000 LPs in this problem. Nevertheless, 

the following chapters will present the results of the model trained with the entire training set 

(15200 LPs) so that the best performance of the model can be seen. 

Table 4. Comparison of cases with different number of trained LPs 

Parameters k-eff Peaking factor 

Number of trained LPs 3000 6000 15200 3000 6000 15200 

Minimum of training loss function 5.8E-04 2.7E-04 1.5E-04 7.4E-04 2.9E-04 1.0E-04 
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Minimum of validation loss function 1.5E-04 7.8E-05 4.4E-05 2.7E-04 7.0E-05 1.7E-05 

Average of absolute deviations (%) 0.095 0.069 0.054 1.185 0.565 0.280 

Maximum absolute deviations (%) 0.640 0.269 0.208 7.665 5.651 2.444 

 

3.2. Survey of input features 

The number of input features also affect to the accuracy of machine learning models. In this 

research, each loading pattern includes 10 positions of fuel assemblies. Each fuel assembly also 

have many features such as assembly index, k-inf, enrichment, macroscopic cross-sections,... 

Therefore, the number of input features can be chosen is a multiple of 10, depending on the number 

of features of fuel assemblies that we want to use for the prediction. The previous calculations only 

used k-inf of the assemblies as the input features. In this section, a survey of input features is 

performed to evaluate the influence of input features on the prediction results. 

The calculations have been performed for five cases included three cases of one feature per 

assembly (assembly index, k-inf, enrichment), one case of two features per assembly (k-inf and 

enrichment) and one case of all features of assemblies (k-inf, enrichment, group constants). 

Number of epochs is set to 500 and number of trained LPs is 15200 to ensure the best prediction 

resutls. The results are averaged over three runs per case and presented in Table 5. It can be seen 

that the accuracy of predictions decreases when the number of input features increase. In the cases 

of one feature per assembly, k-inf input feature gives worse prediction results than the index and 

enrichment features. This may be because the k-inf of the assemblies are not so different (see 

Table 2) that it is more difficult to predict based on this feature. 

The results of all cases also show good agreement with SRAC2006 in the both of average 

absolute deviation (< 50pcm in k-eff and < 0.3% in peaking factor) and maximum absolute 

deviation (< 300pcm in k-eff and < 2.5% in peaking factor). Therefore, MLP neuron network can 

be used to predict well k-eff and peaking factor based on one or more features of the fuel 

assemblies (even using only the fuel assembly index). In the next section, the two features k-inf and 

enrichment of the assemblies will be used to build the MLP models for predicting k-eff and 

peaking factor of the reactor. This choice ensures both training speed and accuracy of the model. 

Table 5. Comparison of number of input features 

output Parameter 

input features 

Index k-inf enrichment 
k-inf, 

enrichment 
all 

k-eff 

Minimum of training loss function 1.14E-04 1.43E-04 1.12E-04 9.78E-05 6.33E-05 

Minimum of validation loss function 1.34E-05 4.15E-05 1.33E-05 8.73E-06 8.87E-06 
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Average of absolute deviations (%) 0.028 0.049 0.027 0.024 0.022 

Maximum absolute deviations (%) 0.153 0.290 0.181 0.227 0.284 

peaking 

Minimum of training loss function 9.85E-05 1.00E-04 1.00E-04 8.15E-05 5.99E-05 

Minimum of validation loss function 1.27E-05 1.60E-05 1.46E-05 4.16E-06 2.91E-06 

Average of absolute deviations (%) 0.274 0.285 0.269 0.127 0.091 

Maximum absolute deviations (%) 2.004 2.419 1.811 1.996 1.885 

 

3.3. Predicting k-eff and peaking factor using MLP neuron network 

This section shows the training process and prediction results of the two best models 

including the k-eff prediction model and the peaking factor prediction model. The input 

features include k-inf and enrichment of assemblies. The models were trained in 500 epochs and 

the values of loss and validation loss functions during the training process are shown in Figure 7. 

The best models are the ones with the smallest validation loss functions. Both training processes of 

k-eff and peaking factor converge after 450 epochs. In the figure, overfittings do not occur due to 

the large amount of training data and the dropout algorithm in the MLP neuron network 

architecture.  

After 500 epochs, two models with the lowest validation loss value were chosen as the best 

models. The two best models were used to predict k-eff and peaking factor of 1000 test LPs (the 

LPs did not use in training and validating processes). The results of comparison with SRAC2006 

code are presented in Figure 8 and Table 6. It can be seen that the deviations of k-eff are mostly 

between -50pcm to 50pcm and the deviations of peaking factor are mostly between -0.4% to 0.4%. 

The maximum deviation of k-eff and peaking factor are 268pcm and 1.764%, respectively. These 

results show good agreement between the MLP models and SRAC2006 code. In addition, MLP 

models only need about 5 seconds to compute for 1000 LPs, while the time required for 

SRAR is about 1 hour. Therefore, it can be seen that when there are enough data for 

training, MLP models are able to predict k-eff and peaking factor of nuclear reactor 

accurately and at high speed. 
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Figure 7. Loss and validation loss functions during training process of k-eff prediction model (a) 

and peaking factor prediction model (b).  

 
Figure 8. Deviation distribution of k-eff prediction (a) and peaking factor prediction (b) predicted 

by the best models 

Table 6. Summary results of the best models 

Parameters k-eff peaking 

Loss function of the best models 1.01E-04 8.15E-05 

Validation loss function of the best models 8.73E-06 4.16E-06 

Average of absolute deviations (%) 0.024 0.135 

Maximum absolute deviations (%) 0.268 1.764 

 

IV. CONCLUSIONS 

This study has built a MLP network structure to apply to predict k-eff and peaking factor of 

SMR reactor. The MLP network consists of more than 500000 parameters with 1 input layer, 4 

hidden layers and 1 output layer with 1 output. A dataset of 20000 LPs and necessary features has 

been calculated by SRAC2006 code to train the MLP network. The dataset was divided into test set 

(1000 LPs), validation set (3800 LPs) and test set (15200 LPs). The trained model was used to 

predict the k-eff and peaking factor of the test set and compared with the results of SRAC2006 to 

evaluate the accuracy of the models. 
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The survey results show that it takes about 6000 LPs to train MLP models with acceptable 

accuracy. When there is enough training data, models can use only 1 or more features of the fuel 

assembly to train the model while maintaining accuracy. The best MLP models show a good 

agreement with SRAC2006 code. Calculations for 1000 test LPs show that the average and 

maximum deviations of k-eff are 24pcm and 268pcm, respectively, and the average and maximum 

deviations of peaking factor are 0.135% and 1.764%, respectively. In addition, the calculation 

speed of MLP models outperform SRAC2006 code (5 seconds vs 3600 seconds for 1000 LPs). 

These show great promise for applying machine learning models to nuclear reactor research, design 

and operation. 

 

ACKNOWLEDGMENTS 

This research is funded by Vietnam Atomic Energy Institute under grant 103.04-2019.37. 

 

REFERENCES 

[1]. Nissan, Ephraim; An Overview of AI Methods for in-Core Fuel Management: Tools for the 

Automatic Design of Nuclear Reactor Core Configurations for Fuel Reload, (Re)arranging 

New and Partly Spent Fuel; Designs. 3. 37. 10.3390/designs3030037, 2019. 

[2]. Ahmad Pirouzmand, Morteza Kazem Dehdashti; Estimation of relative power distribution and 

power peaking factor in a VVER-1000 reactor core using artificial neural networks; Progress 

in Nuclear Energy, Volume 85, 17-27, 2015 

[3]. M. El-Sefy, A. Yosri, W. El-Dakhakhni, S. Nagasaki, L. Wiebe; Artificial neural network for 

predicting nuclear power plant dynamic behaviors; Nuclear Engineering and Technology; 

Volume 53, Issue 10, 3275-3285, 2021 

[4]. Sobes, V., Hiscox, B., Popov, E. et al; AI-based design of a nuclear reactor core; Scientific 

Reports 11, 19646, 2021.  

[5]. Ngoc Dat Nguyen, Van Thai Nguyen; Development of ANN structural optimization 

framework for data-driven prediction of local two-phase flow parameters; Progress in Nuclear 

Energy, Volume 146, 104176, 2022. 

[6]. Hakim Mazrou; Performance improvement of artificial neural networks designed for safety 

key parameters prediction in nuclear research reactors; Nuclear Engineering and Design, 

Volume 239, Issue 10, 2009, 

[7]. Afshin Hedayat, Hadi Davilu, Ahmad Abdollahzadeh Barfrosh, Kamran Sepanloo; Estimation 

of research reactor core parameters using cascade feed forward artificial neural networks; 

Progress in Nuclear Energy, Volume 51, Issues 6–7, 2009, 

[8]. José Luis Montes, Juan Luis François, Juan José Ortiz, Cecilia Martín-del-Campo, Raúl 

Perusquía; Local power peaking factor estimation in nuclear fuel by artificial neural networks; 

Annals of Nuclear Energy, Volume 36, Issue 1, 2009, 

[9]. S.M. Mirvakili, F. Faghihi, H. Khalafi; Developing a computational tool for predicting 

physical parameters of a typical VVER-1000 core based on artificial neural network; Annals 

of Nuclear Energy,Volume 50,2012, 



13 

 

[10]. Yinghao Chen, Dongdong Wang, Cao Kai, Cuijie Pan, Yayun Yu, Muzhou Hou; Prediction of 

safety parameters of pressurized water reactor based on feature fusion neural network; Annals 

of Nuclear Energy, Volume 166, 2022, 

[11]. Asim Saeed, Atif Rashid; Development of Core Monitoring System for a Nuclear Power Plant 

using Artificial Neural Network Technique; Annals of Nuclear Energy, Volume 144, 2020, 

[12]. Qingyu Huang, Shinian Peng, Jian Deng, Hui Zeng, Zhuo Zhang, Yu Liu, Peng Yuan; A 

review of the application of artificial intelligence to nuclear reactors: Where we are and what's 

next; Heliyon 9 (2023) e13883 

[13]. Popescu, Marius-Constantin & Balas, Valentina & Perescu-Popescu, Liliana & Mastorakis, 

Nikos. (2009). Multilayer perceptron and neural networks. WSEAS Transactions on Circuits 

and Systems. 8. 

[14]. K Okumura, T Kugo, K Kaneko, K Tsuchihashi, “SRAC2006: A Comprehensive Neutronics 

Calculation Code System”, JAEA-Data/Code, 2007, 2007-004 

[15]. Keisuke Okumura , “COREBN: A Core Burn-up Calculation Module for SRAC2006”, JAEA-

Data/Code, 2007, 2007-003. 

[16]. Hoang Van Khanh, “Core Design of a Small Pressurized Water Reactor with AP1000 Fuel 

Assembly Using SRAC2006 and COBRA-EN Codes”, Science and Technology of Nuclear 

Installations. 2020. 1-7. 10.1155/2020/8847897. 

[17]. Rahmi N. Ramdhani et al., “Neutronics Analysis of SMART Small Modular Reactor using 

SRAC2006 Code”, Journal of Physics: Conference Series. 877.012067. 10.1088/1742-

6596/877/1/012067. 

  



14 

 

NGHIÊN CỨU ÁP DỤNG MẠNG THẦN KINH NHÂN TẠO ĐỂ 
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ỨNG MÔ ĐUN NHỎ LOẠI NƯỚC ÁP LỰC 
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Tóm tắt: Học máy (ML) sử dụng các phương pháp mạng thần kinh nhân tạo đang được ứng dụng mạnh 

mẽ trong nghiên cứu lò phản ứng hạt nhân. Nó được sử dụng để dự đoán các tham số cần thiết dựa trên 

việc học hỏi từ các bộ dữ liệu lớn có trước. Các mô hình ML cho tốc độ tính toán nhanh hơn rất nhiều 

trong khi độ chính xác tốt và thậm chí có thể tốt hơn các công cụ tính toán thông thường. Do đó, trong 

nghiên cứu này, một mạng Perceptron nhiều lớp được xây dựng để dự đoán k-eff và hệ số đỉnh công suất 

của vùng hoạt lò phản ứng mô đun nhỏ loại PWR. Kết quả thu được được so sánh với chương trình 

SRAC2006 để đánh giá hiệu suất của mô hình học máy. Kết quả tính toán cho thấy độ chính xác và hiệu 

suất cao của các mô hình học máy. 

 

KEYWORDS: lò mô đun nhỏ, học máy, mạng thần kinh nhân tạo, mạng Perceptron nhiều lớp 


