Non-equilibrium perturbations of the vertically unstable mode in tokamaks

N. ISERNIA* AND F. VILLONE*

THIRD IAEA TECHNICAL MEETING ON PLASMA DISRUPTIONS AND THEIR MITIGATION

3 SEPTEMBER 2024

* Università degli Studi di Napoli, Federico II (Italy)

Non-equilibrium perturbations of the vertically unstable mode in tokamaks

SPECIAL ACKNOWLEDGEMENT:

F. J. ARTOLA, M. HOELZL, N. SCHWARZ

3 SEPTEMBER 2024

Outline

- ❑ Motivation: translating physics requirements to control engineers
- ❑ The rigid filament model: asymptotic solution and phase portrait
- ❑ Mapping dynamic perturbations to quasistatic models
- ❑ Validation of the theory on a TCV-like geometry
- Comparison of Thermal Quench perturbation in dynamic and massless MHD models [preliminary!]

Motivation

❑ **Maximum allowable vertical displacement**: a mass-less definition

- ❑ Comparing **massy models** with engineering oriented **mass-less models**
- ❑ Make physicists and engineers **agree on models and definitions!**

During the ITER Design Review (2007–2008), the plasma VS system was revised, in particular from the point of view of the margin in the plasma VS required for reliable plasma operation $[7, 8]$. Major results of the analysis of VS performance in existing devices were reported in $[8]$. To characterise the performance of the VS systems, a parameter $max(Z_0)$ was defined as the maximum value of plasma vertical displacement due to free drift (VS system is switched off) that can be reversed, if the VS system is switched on when $Z = Z_0$ ('Minor VDE'). The conclusions reached in relation to the requirements for the VS capability were that the performance of the VS system in the tokamaks studied could be described in terms of the parameter max (Z_0) normalised to a, the (horizontal) minor radius of the plasma:

- (1) 'reliable' operation corresponds to max(Z_0) / $a > 5\%$ (for ITER, $max(Z_0) > 100$ mm);
- (2) typical 'robust' operation corresponds to max($Z_0/a \approx$ 10% (for ITER, max $(Z_0) \approx 200$ mm)

Y. Gribov *et al* 2015 *Nucl. Fusion* **55** 073021

ASSUMPTIONS

- \Box plasma = rigid, axisymmetric, currentcarrying ring
- ❑ Only vertical displacements allowed
- ❑ State variables:
	- \Box vertical position z_p
	- \Box vertical velocity v_p
	- \Box wall currents I_w
- ❑ Eventual input:
	- \Box active coil currents I_a

WALL SINGLE-MODE MODEL

$$
\frac{d}{dt} \begin{bmatrix} i_u \\ v_p \\ z_p \end{bmatrix} = \begin{bmatrix} -1/\tau_u & -F_I^u/L_u & 0 \\ F_I^u/m_p & 0 & F_Z^{a0}/m_p \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} i_u \\ v_p \\ z_p \end{bmatrix}
$$

 \Box plasma mass: m_p

□ inductance and resistance wall: L_u , R_u

 \Box time constant wall single mode: $\tau_u = L_u/R_u$

 \Box stabilising force per unit wall current: F_I^u

 \Box destabilising force per unit displace: F_z^{a0}

ASYMPTOTIC SOLUTION VIA SINGULAR PERTURBATION METHOD*:

Unstable mode

$$
z_0(t) = \left[\Delta z_0 + \frac{1}{m_u F_z^{a0}} \left(F_l^u \Delta i_{u,0} + F_z^{a0} \Delta z_0 \right) \right] \exp(\gamma_u t) +
$$

$$
Growth rate: \gamma_u = \frac{1}{m_u \tau_u}
$$

Hypothesis:

$$
-\frac{1}{m_u F_z^{a0}} \left[F_l^u \Delta i_{u,0} + F_z^{a0} \Delta z_0 \right] \cos \left(\frac{\sqrt{m_u}}{\tau_A} t \right) \exp \left[-\frac{m_u + 1}{2} \gamma_u t \right] +
$$

+ $\frac{\tau_A}{\sqrt{m_u}} \Delta v_0 \sin \left(\frac{\sqrt{m_u}}{\tau_A} t \right) \exp \left[-\frac{m_u + 1}{2} \gamma_u t \right]$

$\overline{\tau_A}$ ≪ 1

 $m_u > 0 \rightarrow$ the instability is brought to the electromagnetic time scale!

 τ_u

Damped oscillatory modes*

ASYMPTOTIC SOLUTION

\nUnstable mode

\n
$$
z_{0}(t) = \left[\Delta z_{0} + \frac{1}{m_{u}F_{z}^{a0}} \left(F_{I}^{u} \Delta i_{u,0} + F_{z}^{a0} \Delta z_{0} \right) \right] \exp(\gamma_{u}t) + \frac{1}{m_{u}F_{z}^{a0}} \left[F_{I}^{u} \Delta i_{u,0} + F_{z}^{a0} \Delta z_{0} \right] \cos\left(\frac{\sqrt{m_{u}}}{\tau_{A}} t\right) \exp\left[-\frac{m_{u} + 1}{2} \gamma_{u} t\right] + \frac{\tau_{A}}{\sqrt{m_{u}}} \Delta \nu_{0} \sin\left(\frac{\sqrt{m_{u}}}{\tau_{A}} t\right) \exp\left[-\frac{m_{u} + 1}{2} \gamma_{u} t\right]
$$

Damped oscillatory modes*

MAIN PROPERTIES

❑ Direction of unstable motion is determined both by Δz_0 and $\Delta i_{u,0}$

■ The unstable motion is not solicited if the wall response is: $\Delta i_{u,0}$ + F_l^{μ} L_u $\Delta z_0 = 0$ ❑Oscillatory modes are not solicited if the perturbation is quasi-static: **Ideal wall**

 $\Box \Delta v_0 = 0$

Mech. Equilibrium

$$
\prod F_l^u \Delta i_{u,0} + F_z^{a0} \Delta z_0 = 0
$$

PHASE PORTRAIT (APPROXIMATE) Z_A i_μ

#2 stronger wall reaction than in the quasi-static limit **weaker than ideal wall limit**

Unstable direction (**equilibrium**!)

Trace in the (z, i_u) plane of damped oscillatory mode plane (**ideal wall** response!)

MAIN PROPERTIES

❑ Unstable direction: $e_1 = [F_l^u \quad 0 \quad F_z^{a0}]'$

❑ Plane damped oscillatory modes: $e_2 = [(F_l^u)^2/L_u]$ 0 F_l^u $e_3 = [0 \ 1 \ 0]$ '

❑ Initial electro-mechanical equilibrium point is a saddle!

 i_μ

PHASE PORTRAIT (APPROXIMATE)

 Z_A

#3 stronger wall reaction than in the quasi-static limit **even stronger than ideal wall limit**

Unstable direction (**equilibrium**!)

Trace in the (z, i_u) plane of damped oscillatory mode plane (**ideal wall** response!)

MAIN PROPERTIES

❑ Unstable direction: $e_1 = [F_l^u \quad 0 \quad F_z^{a0}]'$

❑ Plane damped oscillatory modes: $e_2 = [(F_l^u)^2/L_u]$ 0 F_l^u $e_3 = [0 \ 1 \ 0]$ '

❑ Initial electro-mechanical equilibrium point is a saddle!

Dynamic to massless map

PROJECTION IN PHASE SPACE

■ Projection to the massless model should be «parallel» to the **ideal wall response** (hyper-)plane

$$
\Delta z_{qs,0} = \frac{m_u + 1}{m_u} \Delta z_0 + \frac{F_l^u}{m_u F_z^{a0}} \Delta i_{u,0}
$$

❑ Highlighting the force-imbalance correction: $\Delta z_{qs,0} = \Delta z_0 +$ 1 $\frac{1}{m_u F_z^{a0}} \Big(F_z^{a0} \Delta z_0 + F_l^u \Delta i_{u,0} \Big)$

TCV-like example

❑ «Virtual» experiment: plasma ring moved with constat velocity in a specified time Δt

 $\Box \rightarrow$ scan in the normalized time $\Delta t/\tau_u$

The final stabilizing current is given by:
\n
$$
\Delta i_{u,0} = -\frac{F_l^u}{L_u} \left[\frac{\Delta z_0}{\Delta t / \tau_u} \cdot \left(1 - e^{-\Delta t / \tau_u} \right) \right]
$$
\n
$$
F_l^u \Delta i_u + F_z \Delta z = 0
$$
\n
$$
\frac{\Delta t}{\tau_u} \simeq 1
$$

$$
(20)\ \frac{\Delta t}{\tau_u} \simeq (e-2)\frac{m_u+1}{e-m_u-1}
$$

MHD models comparison

JOREK-CARIDDI

- ❑ Reduced Magneto-Hydro-Dynamic 3D
- □ Single temperature, no neutrals, axisymmetric, without v_{\parallel}

Identical wall model!

CARMA0NL

❑ Magneto-Hydro-Static 2D with 3D wall

❑ Equilibrium parameters are an input

JOREK-CARIDDI

❑ ASDEX-U like initial MHD equilibrium

❑Scan simulations with [⊥] perturbation, *i.e.* with different Thermal Quench times

■ Diffusion coefficients scaled properly so that the **ratio among diffusion times*** is the same for all simulations (η , k_{\parallel} , D_{\perp} , D_{\parallel})

❑ Alfvén time and wall time constants are the same for all simulations

Thermal quench time:**

 $\Delta t_{TQ} =$ $t_{90\%}-t_{20\%}$ 0.7 $t_{X\%}$ = time when the thermal energy reaches the X % of the pre-disruption value

JOREK-CARIDDI

❑ ASDEX-U like initial MHD equilibrium

❑Scan simulations with [⊥] perturbation, *i.e.* with different Thermal Quench times

■ Diffusion coefficients scaled properly so that the **ratio among diffusion times*** is the same for all simulations (η , k_{\parallel} , D_{\perp} , D_{\parallel})

❑ Alfvén time and wall time constants are the same for all simulations

Thermal quench time:**

 $\Delta t_{TQ} =$ $t_{90\%}-t_{20\%}$ 0.7 $t_{X\%}$ = time when the thermal energy reaches the $X\%$ of the pre-disruption value

JOREK-CARIDDI

CarMa0NL

- \Box CarMa0NL is run imposing a β_0 evolution consistent with the JOREK-CARIDDI thermal energy;
- ❑ The plasma current is either kept fixed or varied as in JOREK-CARIDDI
- ❑ Remainder equilibrium parameters are kept fixed
- ❑ Time step scaled in each simulation according to the TQ time

$$
j_{\varphi}(\tilde{\psi},R) = R \left[\lambda \frac{\beta_0}{R_0} \left(1 - \tilde{\psi}^{\alpha_{m,p}} \right)^{\alpha_{n,p}} \right] + \frac{1}{R} \left[\lambda R_0 \left(1 - \beta_0 \right) \left(1 - \tilde{\psi}^{\alpha_{m,f}} \right)^{\alpha_{n,f}} \right]
$$

Comparison Z_p

 $\tau_A =$ $m_p^{}$ $\frac{P}{F_Z^{a0}} \simeq 2 \mu s$ $m_p \simeq 2.2 \ \mu g$ $F_{Z}^{a0} \simeq 602$ kN/m

Comparison Z_p

❑ **Interpretation #1**: we find oscillations at the end of TQ when TQ time gets closer to the Alfvén time

❑ **Interpretation #2**: oscillations persist at the end of TQ when we are in the "ideal wall limit" region

 \Box How to discriminate? Either scan in τ_A or in τ_u , TQ time fixed at the threshold between persistent/damped oscillation

Ideal wall limit region

20 μs $\tau_{iw} = 200 \,\mu s$

Test region TQ time

Comparison Z_p

QHow to discriminate? Either scan in τ_A or in τ_u , for the TQ time which seems to represent the threshold between persistent/damped oscillation

Discussion

CONCLUSIONS

- ❑ Comparison of dynamic and massless models require careful **mapping of initial conditions** (along the «ideal wall reaction» hyper-plane)
- \Box Simple β_p drop of massless models may be not so accurate for fast TQ times (and eventually conservative)
- \Box For $\Delta t_{TO} \rightarrow \tau_A$ we may observe inertial phenomena on the magnetic axis vertical position during/after the TQ

POSSIBLE FUTURE WORK

❑ Investigate the role of **plasma current diffusion** in simple rigid filament models;

❑The role of other possible **damping factors** for the oscillation shall be studied (both in rigid and fluid models)

❑ Translate the **mapping** between dynamic and mass-less models from the rigid to the **fluid context**

References

[1] Nicola Isernia and Fabio Villone 2023 *Plasma Phys. Control. Fusion* **65** 105007

[2] F. J. Artola *et al* 2024 *Plasma Phys. Control. Fusion* **66** 055015

[3] Y. Gribov *et al* 2015 *Nucl. Fusion* **55** 073021

[4] T. Barberis *et al* 2022 *Journal of Plasma Physics* **88** 905880511

[5] G. Arnoux *et al* 2009 *Nucl. Fusion* **49** 085038

[6] E. A. Lazarus, J. B. Lister, and G. H. Neilson 1990 *Nucl. Fusion* **30** 111

[7] N. Isernia *et al* 2023 *Phys. Plasmas* **30** 113901

[8] M. Hoelzl *et al* 2021 *Nucl. Fusion* **61** 065001

[9] F. Villone *et al* 2013 *Plasma Phys. Control. Fusion* **55** 095008

BACKUP slides

ASSUMPTIONS

- \Box plasma = rigid, axisymmetric, currentcarrying ring
- ❑ Only vertical displacements allowed
- ❑ State variables:
	- \Box vertical position z_p
	- \Box vertical velocity v_p
	- \Box wall currents I_w
- ❑ Eventual input:
	- \Box active coil currents I_a

STRATEGY OF SOLUTION

Stability margin:
$$
m_u = \left[\frac{(F_l^u)^2}{L_u} - F_z^{a0}\right] / F_z^{a0}
$$

Alfvèn time: $\tau_A = \sqrt{m_p / F_z^{a0}}$

$$
\Box
$$
 "Small" parameter: $\varepsilon = \tau_A / \tau_u$

❑ Truncated expansion:

$$
z_p = z_0 + \varepsilon\,z_1 + \,\ldots\,
$$

❑ Two time scale separation: \overline{d} 1∂

$$
\frac{a}{dt} = \frac{1}{\varepsilon} \frac{\partial}{\partial t_1} + \frac{\partial}{\partial t_2}
$$

 ∂

WALL SINGLE-MODE MODEL

$$
\left(\frac{\tau_A}{\tau_u}\right)^2 \left[\ddot{z}_p + \frac{1}{\tau_u} \ddot{z}_p\right] + \frac{m_u}{\tau_u^2} \dot{z}_p - \frac{1}{\tau_u^3} z_p = 0
$$

\square plasma mass: m_p

- □ inductance and resistance wall: L_u , R_u
- \Box time constant wall single mode: $\tau_u = L_u/R_u$
- \Box stabilising force per unit wall current: F_I^u
- \Box destabilising force per unit displace: F_z^{a0}

 $m_u > 0 \rightarrow$ the instability is brough to the electromagnetic time scale!

MAIN PROPERTIES

Rigid Filament Model

1

ASYMPTOTIC SOLUTION

 $z_0(t) = |\Delta z_0| +$

 $\partial M_{u,p}$

Unstable mode

 $\frac{1}{m_u F_z^{a0}} \left(F_l^u \Delta i_{u,0} + F_z^{a0} \Delta z_0 \right) \exp(\gamma_u t)$ +

Direction of unstable motion is determined solely by initial wall current and initial displacement

$$
z_u \ge 0 \leftrightarrow (1 + m_u) F_z^{a0} \Delta z_0 + F_l^u \Delta i_{u,0} \ge 0
$$

$$
z_u \ge 0 \leftrightarrow F_l^u \cdot \left(\frac{F_l^u}{L_u} \Delta z_0 + \Delta i_{u,0}\right) \ge 0
$$

 $\overline{\mathbf{v}}$

 $F_l^u = I_{pl} \frac{\partial M_{u,p}}{\partial z}$ Opposite of the electric current inductively $|\Delta i_{u,0}| \leq \frac{I_l}{L_u} |\Delta z_0|$ $\partial z \big|_{I_u, V_p, Z_p}$ induced by a plasma ring displacement Δz_0 ! $l_l^u = l_{pl} \frac{\partial u_l u_l}{\partial z}$

Upward/downward direction determined only by the sign of Δz_0 when:

$$
\Delta \mathbf{i}_{u,0} \bigr| \leq \tfrac{F_l^u}{L_u} \lvert \Delta z_0 \rvert
$$

ASYMPTOTIC SOLUTION $z_0(t) = |\Delta z_0| +$ 1 $\frac{1}{m_u F_z^{a0}} \left(F_l^u \Delta i_{u,0} + F_z^{a0} \Delta z_0 \right) \exp(\gamma_u t)$ + − 1 $\frac{1}{m_u F_z^{a0}} \left[F_l^u \Delta i_{u,0} + F_z^{a0} \Delta z_0 \right] \cos$ $\overline{m_u}$ τ_A t \vert exp \vert – $m_u + 1$ 2 $\gamma_u t$ + $+$ τ_A $\overline{m_u}$ Δv_0 sin $\overline{m_u}$ τ_A t $|exp|$ – $m_u + 1$ 2 $\gamma_{u}t$ ❑ Unstable direction: $e_1 = [F_l^u \quad 0 \quad F_z^{a0}]'$ ■ Plane damped oscillatory modes: $e_2 = [(F_l^u)^2/L_u]$ 0 F_l^u $e_3 = [0 \ 1 \ 0]$ ' ❑ Initial electro-mechanical equilibrium point is a saddle! MAIN PROPERTIES Unstable mode

Damped oscillatory modes*

Comparison R_p

$$
\text{Comparison } Z_p \qquad \qquad \tau_A = \sqrt{\frac{m_p}{F_Z^{a0}}} \approx 2 \mu s \qquad \qquad \frac{m_p}{F_Z^{a0}} \approx 602 \text{ kN/m}
$$

