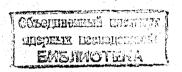


KARPHBIX IIPOBAEA

Г.Ю.Байер, В.С.Бутцев, К.Я.Громов, В.Г.Калинников, К.О.Мортенсен, Г.Л.Нильссен, Н.А.Тихонов


ОПРЕДЕЛЕНИЕ ЭНЕРГИИ РАСПАДА

140 Nd — 140 Pr 1971 Г.Ю.Байер, В.С.Бутцев, К.Я.Громов, В.Г.Калинников, К.О.Мортенсен, Г.Л.Нильссен, Н.А.Тихонов

ОПРЕДЕЛЕНИЕ ЭНЕРГИИ РАСПАДА

140 Nd 140 Pr

Направлено в "Physics Letters"

институт физики университета г. Орхус, Дания.

К настоящему времени о схеме распада 140 Nd \rightarrow 140 Pr \rightarrow 140 Ce имеются довольно полные данные (см.рис.I), однако энергия распада Q_{ϵ} (140 Nd) до сих пор точно не известна. Когда энергия распада Q_{ϵ} не очень сильно превымает энергию связи электрона на К-оболочке атома, то доля К-захвата в электронном захвате (\mathbb{W}_{κ} / \mathbb{W}_{ϵ}) сильно зависит от энергии распада. Поэтому величину Q_{ϵ} можно определить, измерив отношение \mathbb{W}_{κ} / \mathbb{W}_{ϵ} . Сведения о вероятности К-захвата можно получить, измая спектр рентгеновских лучей равновесной смеси 140 Nd + 140 Pr . Естественно, для этого необходим спектрометр с высоким разрешением, поэволяющим разделить линии \mathbb{K}_{κ} (\mathbb{P}_{r}) и \mathbb{K}_{κ} (\mathbb{C}_{e}).

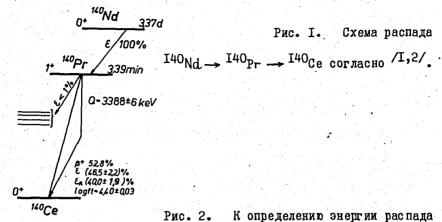
В случае распада 140 Nd и 140 Pr рентгеновские лучи К-серии возникают лишь, за счет К-захвата (пренебрегаем внутренней конверсией γ - лучей 140 Pr). Для вероятностей К-захвата можно записать:

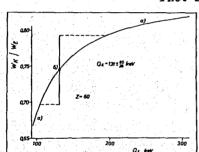
$$W_{K}(Nd)/W_{K}(Pr) = \frac{J_{Kd_{1},d_{2}}(P_{r}) + J_{K\beta_{1}}(P_{r}) + J_{K\beta_{2}}(P_{r})}{J_{Kd_{1},d_{2}}(Ce) + J_{K\beta_{1}}(Ce) + J_{K\beta_{2}}(Ce)} \times \frac{\omega_{K}(Ce)}{\omega_{K}(Pr)}$$

Отношения интенсивностей линий К-серии в \Pr и Се одинаковы и равны $K_{\alpha I}: K_{\alpha 2}: K_{\beta I}: K_{\beta 2}=52: I00: 29: 6 /2/, а выходы флюоресценции <math>\omega_{\kappa}$ (Се) = 0,89 и ω_{κ} (Рг) = 0,90 /2/. Поэтому,

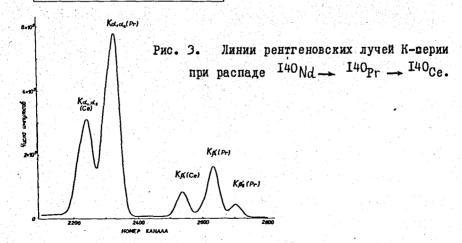
измерив суммарную интенсивность линий К-серии 140 Pr и 140 Ce (или отдельных линий, например, $\mathcal{J}_{\kappa_{d},d_{z}}$) и зная вероятность К-захвата 140 Pr (см. рис. I), мы сможем определить долю К-захвата в электронном захвате 140 Nd. Ветвление W_{κ} / W_{ϵ} для разрешенных бета-переходов является однозначной функцией энергии перехода (рис. 2).

Препарат $^{140}\,\text{Nd}$ был получен в реакции глубокого расшепления при облучении мишени Gd быстрыми протонами на синхроцик лотроне ОИЯИ. Радиохимически выделенная из продуктов реакции фракция $^{\text{Nd}}$ была разделена на отдельные изотопы на электромагнитном масс-сепараторе Лаборатории ядерных проблем ОИЯИ. Спектр рентгеновских лучей был снят на $^{\text{Si}}$ ($^{\text{Li}}$)-спектрометре Института физики университета г. Орхус, разрешение которого составляло 590 эв на линии с $^{\text{E}}_{\text{T}} \approx 40$ кэв.


Для соотношения интенсивностей линий $K_{dI,d2}(Pr)/K_{dI,d2}$ (Се) мы получили величину I,86 \pm 0,03 (рис. 3). Браун и др. /5/ для этого отношения приводят значение 2 (без указания погрешности).


Таким образом, доля К-захвата в электронном захвате 140 Nd будет равна ($\mathbb{W}_{\rm K}/\mathbb{W}_{\rm E}$) $_{\rm эксп}=0.745\pm0.048$. С помощью рис. 2 для энергии распада $^{140}{\rm Nd} \longrightarrow ^{140}{\rm Pr}$ получаем значение ($\mathbb{Q}_{\rm E}=131^{+65}_{-26}$ кзв. Бета-переход между основными состояниями $^{140}{\rm Nd}$ и $^{140}{\rm Pr}$ будет характеризоваться величиной $\log_{10} \mathfrak{ft}=4.18^{+0.48}_{-0.30}$.

В заключение благодарим сотрудников радиохимической группы и группы масс-сепараторов Лаборатории ядерных проблем ОИЯИ за приготовление препарата 140 Nd. Доктору Я.Жиличу авторы призна-тельны за полезные обсуждения и содействие.


ЛИТЕРАТУРА

- В.Г.Калинников, Х.Л.Равн, П.Г.Хансен, Н.А.Лебедев.
 Сообщение ОИЯИ, Р6-4341, Дубна, 1969; Изв.АН СССР, сер.физ., 34, 916 (1970).
- 2. C.M.Lederer, J.M.Hollander, I.Perlman. Table of Isotopes, Sixth Edition, John Wiley, New York, 1907.
- 3. Yu.P.Suslov. Proc. of the Conference on the Electron Capture and Higher Order Processes in Nuclear Decays, v.1, p.51, Budapest, 1958.
- 4. J.P.Renier, H.Genz, K.W.D.Ledingham and R.W.Fink. Phys.Rev., 166, 935 (1968).
- 5. C.Browne, J.Rasmussen, J.Surls, D.Martin. Phys.Rev., 85, 146 (1952).

 $Q_{\mathcal{E}}$ (140 Nd). Кривая α рассчитана для разрешенных β -переходов по формулам из работи Суслова /3/. Вклад М⁺... — захвата определялся из соотношения М/ \mathcal{L} — 0.22 /4/. β — экспериментальное значение $W_{\mathcal{K}}$ / $W_{\mathcal{E}}$ по данной работе.

