AbstractAbstract
[en] A new ansatz for local electron correlation is introduced, which truncates double substitutions subject to a triatomics in molecules (TRIM) criterion. TRIM includes all double substitutions in which one occupied-virtual substitution is atomic while the other substitution can be nonlocal (a cubic number, before cutoffs). With an additional approximation, the TRIM second-order Moeller-Plesset perturbation theory (MP2) model can be noniteratively solved; this is the model that is implemented. Results are shown for absolute energies of alkane and polyene chains, rotational barriers of substituted ethylenes and benzenes, and association energies of the water and neon dimers. Over 99.7% of the untruncated MP2 energy is recovered for the test cases, and the relative energies of small systems are in error by less than 0.1 kcal/mol. By contrast, a diatomics in molecules (DIM) truncation recovers about 95% of the full MP2 energy, and yields errors several times larger for relative energies. (c) 2000 American Institute of Physics
Primary Subject
Record Type
Journal Article
Literature Type
Numerical Data
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] The Krieger, Li, and Iafrate approximation to the optimized effective potential including the self-interaction correction for density functional theory has been implemented in a molecular code, NWChem, that uses Gaussian functions to represent the Kohn and Sham spin-orbitals. The differences between the implementation of the self-interaction correction in codes where planewaves are used with an optimized effective potential are discussed. The importance of the localization of the spin-orbitals to maximize the exchange-correlation of the self-interaction correction is discussed. We carried out exchange-only calculations to compare the results obtained with these approximations, and those obtained with the local spin density approximation, the generalized gradient approximation and Hartree-Fock theory. Interesting results for the energy difference (GAP) between the highest occupied molecular orbital, HOMO, and the lowest unoccupied molecular orbital, LUMO, (spin-orbital energies of closed shell atoms and molecules) using the optimized effective potential and the self-interaction correction have been obtained. The effect of the diffuse character of the basis set on the HOMO and LUMO eigenvalues at the various levels is discussed. Total energies obtained with the optimized effective potential and the self-interaction correction show that the exchange energy with these approximations is overestimated and this will be an important topic for future work. (c) 2000 American Institute of Physics
Primary Subject
Record Type
Journal Article
Literature Type
Numerical Data
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Both Hartree-Fock and density-functional theories have been used to investigate the possible existence of the plutonium dimer. Energy considerations indicate positive binding, while molecular orbital analyses indicate that the f electrons are clearly localized and the bonding between the two Pu atoms is rather weak. (c) 1999 The American Physical Society
Primary Subject
Record Type
Journal Article
Literature Type
Numerical Data
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Electron-impact ionization cross sections for Li+ are calculated using the R matrix with pseudostates method and time-dependent close-coupling theory. The largest R-matrix calculation includes 11 spectroscopic states from the configurations 1s2, 1s2l, and 1s3l; an additional 56 pseudostates from the configurations 1sn(bar sign)l with n(bar sign)=4-10 and l=0-3; and enough continuum orbitals to adequately describe incident energies up to 175 eV. The largest time-dependent close-coupling calculations involved 16 partial differential equations on a 300x300 point radial lattice. The nonperturbative R matrix with pseudostate and time-dependent close-coupling calculations, as well as perturbative distorted-wave calculations, are in good agreement with the crossed-beams experimental measurements of Lineberger et al. [Phys. Rev. 141, 151 (1966)], but are slightly above the Peart and Dolder [J. Phys. B 2, 872 (1968)] and Mueller et al. [Phys. Rev. Lett. 63, 758 (1989)] measurements. (c) 2000 The American Physical Society
Primary Subject
Record Type
Journal Article
Literature Type
Numerical Data
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] The threshold for H atom ionization by circularly polarized microwave fields is discussed within the classical mechanics framework for high microwave frequencies. The Chirikov resonance overlap criterion predictions are compared with estimates obtained adopting the renormalization method. It is shown that the ionization threshold is highly sensitive to the helicity of microwaves. Among all possible initial electronic orbits, those of medium eccentricity are the first to ionize. The results obtained indicate that collisions with the nucleus play a negligible role for the onset of ionization. copyright 1997 The American Physical Society
Primary Subject
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] A general formalism for time-dependent linear response theory is presented within the framework of linear-combination-of-atomic-orbital crystalline orbital theory for the electronic excited states of infinite one-dimensional lattices (polymers). The formalism encompasses those of time-dependent Hartree-Fock theory (TDHF), time-dependent density functional theory (TDDFT), and configuration interaction singles theory (CIS) (as the Tamm-Dancoff approximation to TDHF) as particular cases. These single-excitation theories are implemented by using a trial-vector algorithm, such that the atomic-orbital-based two-electron integrals are recomputed as needed and the transformation of these integrals from the atomic-orbital basis to the crystalline-orbital basis is avoided. Convergence of the calculated excitation energies with respect to the number of unit cells taken into account in the lattice summations (N) and the number of wave vector sampling points (K) is studied taking the lowest singlet and triplet exciton states of all-trans polyethylene as an example. The CIS and TDHF excitation energies of polyethylene show rapid convergence with respect to K and they are substantially smaller than the corresponding Hartree-Fock fundamental band gaps. In contrast, the excitation energies obtained from TDDFT and its modification, the Tamm-Dancoff approximation to TDDFT, show slower convergence with respect to K and the excitation energies to the lowest singlet exciton states tend to collapse to the corresponding Kohn-Sham fundamental band gaps in the limit of K→∞. We consider this to be a consequence of the incomplete cancellation of the self-interaction energy in the matrix elements of the TDDFT matrix eigenvalue equation, and to be a problem inherent to the current approximate exchange-correlation potentials that decay too rapidly in the asymptotic region. (c) 1999 American Institute of Physics
Primary Subject
Record Type
Journal Article
Literature Type
Numerical Data
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Applying closed-orbit theory to the recurrence spectra of the hydrogen atom in a magnetic field, one can interpret most, but not all, structures semiclassically in terms of closed classical orbits. In particular, conventional closed-orbit theory fails near bifurcations of orbits where semiclassical amplitudes exhibit unphysical divergences. Here we analyze the role of ghost orbits living in complex phase space. The ghosts can explain resonance structures in the spectra of the hydrogen atom in a magnetic field at positions where no real orbits exist. For three different types of catastrophes, viz. fold, cusp, and butterfly catastrophes, we construct uniform semiclassical approximations and demonstrate that these solutions are completely determined by classical parameters of the real orbits and complex ghosts. copyright 1997 The American Physical Society
Primary Subject
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] We present an efficient algorithm for generating semiglobal potential energy surfaces of reactive systems. The method takes as input molecular mechanics force fields for reactants and products and a quadratic expansion of the potential energy surface around a small number of geometries whose locations are determined by an iterative process. These Hessian expansions might come, for example, from ab initio electronic structure calculations, density functional theory, or semiempirical molecular orbital theory. A 2x2 electronic diabatic Hamiltonian matrix is constructed from these data such that, by construction, the lowest eigenvalue of this matrix provides a semiglobal approximation to the lowest electronically adiabatic potential energy surface. The theory is illustrated and tested by applications to rate constant calculations for three gas-phase test reactions, namely, the isomerization of 1,3-cis-pentadiene, OH+CH4→H2O+CH3, and CH2Cl+CH3F→CH3Cl+CH2F. (c) 2000 American Institute of Physics
Primary Subject
Record Type
Journal Article
Literature Type
Numerical Data
Journal
Country of publication
AB INITIO CALCULATIONS, ALGORITHMS, CHEMICAL REACTION KINETICS, DENSITY FUNCTIONAL THEORY, ELECTRONIC STRUCTURE, HYDROXYL RADICALS, ISOMERIZATION, MATRIX ALGEBRA, METHANE, METHYL CHLORIDE, METHYL FLUORIDE, MOLECULAR FORCE CONSTANTS, ORBITAL CALCULATIONS, PENTADIENES, POTENTIAL ENERGY, POTENTIAL ENERGY SURFACES, REACTION RATE CONSTANTS, THEORETICAL DATA
ALKANES, CHEMICAL REACTIONS, CHLORINATED ALIPHATIC HYDROCARBONS, DATA, DIENES, ENERGY, FLUORINATED ALIPHATIC HYDROCARBONS, HALOGENATED ALIPHATIC HYDROCARBONS, HYDROCARBONS, INFORMATION, KINETICS, NUMERICAL DATA, ORGANIC CHLORINE COMPOUNDS, ORGANIC COMPOUNDS, ORGANIC FLUORINE COMPOUNDS, ORGANIC HALOGEN COMPOUNDS, POLYENES, RADICALS, REACTION KINETICS
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue