Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.026 seconds
AbstractAbstract
[en] The complex PPN+ CpV(CO)3H- (Cp=eta5-C5H5 and PPN = (Ph3P)2) was prepared in 70% yield and its physical properties and chemical reactions investigated. PPN+ CpV(CO)3H- reacts with a wide range of organic halides. The organometallic products of these reactions are the vanadium halides PPN+[CpV(C)3X]- and in some cases the binuclear bridging hydride PPN+ [CpV(CO)3]2H-. The borohydride salt PPN+[CpV(CO)3BH4]- has also been prepared. The reaction between CpV(CO)3H- and organic halides was investigated and compared with halide reductions carried out using tri-n-butyltin hydride. Results demonstrate that in almost all cases, the reduction reaction proceeds via free radical intermediates which are generated in a chain process, and are trapped by hydrogen transfer from CpV(CO)3H-. Sodium amalgam reduction of CpRh(CO)2 or a mixture of CpRh(CO)2 and CpCo(CO)2 affords two new anions, PPN+ [Cp2Rh3(CO)4]- and PPN+[Cp2RhCo(CO)2]-. CpMo(CO)3H reacts with CpMo(CO)3R (R=CH3,C2H5, CH2C6H5) at 25 to 500C to produce aldehyde RCHO and the dimers [CpMo(CO)3]2 and [CpMo(CO)2]2. In general, CpV(CO)3H- appears to transfer a hydrogen atom to the metal radical anion formed in an electron transfer process, whereas CpMo(CO)3H transfers hydride in a 2-electron process to a vacant coordination site. The chemical consequences are that CpV(CO)3H- generally reacts with metal alkyls to give alkanes via intermediate alkyl hydride species whereas CpMo(CO)3H reacts with metal alkyls to produce aldehyde, via an intermediate acyl hydride species
Primary Subject
Source
May 1979; 178 p; Available from NTIS., PC A09/MF A01
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue