Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.017 seconds
AbstractAbstract
[en] In this article we want to explain how groups are used in quantum physics. We use the simplest example, the rigid rotator. In Sect. 1 we briefly review of quantum mechanical notions. Section 2 presents the symmetry group, Sect. 3 the spectrum generating group in nonrelativistic physics. Section 4 describes how these ideas can be generalized to the nonrelativistic case, when the combination of symmetry group and spectrum generating group is no more trivial. (orig./HSI)
Primary Subject
Source
Hennig, J.D.; Luecke, W. (Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany, F.R.). Arnold-Sommerfeld-Institut fuer Mathematische Physik); Tolar, J. (Ceske Vysoke Uceni Technicke, Prague (Czechoslovakia). Fakulta Jaderna a Fysikalne Inzenyrska) (eds.); Lecture notes in physics; no. 379; 291 p; ISBN 3-540-53941-7; ; 1991; p. 207-226; Springer; Berlin (Germany, F.R.)
Record Type
Book
Literature Type
Progress Report
Country of publication
CASIMIR OPERATORS, COMMUTATION RELATIONS, DE-EXCITATION, EIGENSTATES, EIGENVALUES, EXTENDED PARTICLE MODEL, GROUP THEORY, HAMILTONIANS, HILBERT SPACE, IRREDUCIBLE REPRESENTATIONS, LECTURES, LINEAR MOMENTUM OPERATORS, LORENTZ GROUPS, MOLECULES, PARTICLE MULTIPLETS, PAULI SPIN OPERATORS, PROGRESS REPORT, QUANTUM MECHANICS, RELATIVISTIC RANGE, ROTATIONAL STATES, SO-3 GROUPS, SPACE-TIME, SYMMETRY GROUPS, VIBRATIONAL STATES
ANGULAR MOMENTUM OPERATORS, BANACH SPACE, DOCUMENT TYPES, ENERGY LEVELS, ENERGY RANGE, ENERGY-LEVEL TRANSITIONS, EXCITED STATES, LIE GROUPS, MATHEMATICAL MODELS, MATHEMATICAL OPERATORS, MATHEMATICAL SPACE, MATHEMATICS, MECHANICS, MULTIPLETS, PARTICLE MODELS, POINCARE GROUPS, QUANTUM OPERATORS, SO GROUPS, SPACE
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue