Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.033 seconds
AbstractAbstract
[en] Full text: A double-stranded oligodeoxynucleotide containing 125I-dC in a defined location, with 5'- or 3'-32P-end-labelling of either strand, was used to investigate DNA strand breakage resulting from 125I decay. Samples of the 32P-end-labelled and 125I-dC containing oligoDNA were incubated in 20 mM phosphate buffer (PB), or PB + 2 M dimethylsulphoxide (DMSO) at 4 deg during 18-20 days. The 32P-end-labelled DNA fragments produced by 125I decays were separated on denaturing polyacrylamide gels, and the 3P activity in each fragment was determined by scintillation counting after elution from the gel. The fragment size distribution was then converted to a distribution of single stranded break probabilities at each nucleotide position. The results indicate that each 125I decay event produces at least one break in the 125I-dC containing strand, and causes breakage of the opposite strand in 75-80% of events. Thus, the double stranded break is produced by 125I decay with probability ∼0.8. Most of single stranded breaks (around 90%) occurred within 5-6 nucleotides of the 125I-dC, however DNA breaks were detected up to 18-20 nucleotides from the decay site. The average numbers of single stranded breaks per decay are 3.7 (PB) and 3.3 (PB+DMSO) in 125I-dC containing strand, and 1.5 (PB) and 1.3 (PB+DMSO) in the opposite strand. Deconvolution of strand break probabilities as a function of separation from the 125I, in terms of both distance (to target deoxyribosyl carbon atoms, in B-DNA) and nucleotide number, show that the latter is an important parameter for the shorter-range damage. This could indicate a role for attenuation/dissipation of damage through the stacked bases. In summary, the results represent a much more extensive set of data than available from earlier experiments on DNA breakage from l25I-decay, and may provide new mechanistic insights
Primary Subject
Source
Australian Inst. of Nuclear Science and Engineering (AINSE), Lucas Heights, NSW (Australia). Funding organisation: Melbourne Univ., Parkville, VIC (Australia); Queensland Univ., St. Lucia, QLD (Australia); Peter MacCallum Cancer Institute, Melbourne, VIC (Australia); St George Cancer Care Center, Kogarah, NSW (Australia); 97 p; 1996; p. 50; Radiation' 96: 18. AINSE radiation chemistry conference; Lucas Heights (Australia); 10-12 Nov 1996; 15. AINSE radiation biology conference; Lucas Heights (Australia); 10-12 Nov 1996; 3. national workshop on experimental radiation oncology; Lucas Heights (Australia); 10-12 Nov 1996
Record Type
Miscellaneous
Literature Type
Conference
Report Number
Country of publication
BETA DECAY RADIOISOTOPES, BETA-MINUS DECAY RADIOISOTOPES, BIOLOGICAL EFFECTS, COUNTING TECHNIQUES, DAYS LIVING RADIOISOTOPES, ELECTRON CAPTURE RADIOISOTOPES, INTERMEDIATE MASS NUCLEI, INTERNAL CONVERSION RADIOISOTOPES, IODINE ISOTOPES, ISOTOPES, LIGHT NUCLEI, NUCLEI, NUCLEIC ACIDS, ODD-EVEN NUCLEI, ODD-ODD NUCLEI, ORGANIC COMPOUNDS, ORGANIC SULFUR COMPOUNDS, PHOSPHORUS ISOTOPES, RADIATION EFFECTS, RADIOISOTOPES, SULFOXIDES
Reference NumberReference Number
Related RecordRelated Record
INIS VolumeINIS Volume
INIS IssueINIS Issue