Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.028 seconds
Cho, Yeong Garp; Chae, H. T.; Ryu, J. S.; Kim, H. R.
Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)2000
Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)2000
AbstractAbstract
[en] In the course of the visual inspection of the fuel assemblies un-loaded from the reactor core in December 1996, it was observed that many of fuel assemblies had mechanical damages on some components. The major damage was the freting-wear on spacer plates and endplates due to the flow induced vibration of the fuel assembly in the flow tube. Since the reactor is activated and the system modification for complete removal of the driving factors of the vibration of fuel assemblies is practically very difficult, the focus has been on the design change of the fuel assemblies. Consequently, various design changes were proposed to strengthen the wear resistance of the components based on the evaluation of the visual inspection results. The validity of the proposals was verified through the performance tests for the modified components, and the vibration test and endurance test for the fuel assemblies using the single-channel test rig(SCTR) in AECL.The subsequent design changes were additionally proposed based on the visual inspections for the fuel assemblies that had been fabricated according to the first design change and loaded in the core. As the effects of the first design change, the fretting-wear of spacer plates was remarkably reduced and the period until fretting-wear damage was extended by 60% for the first modified 36-rod fuel assembly. It is too early to say the endurance life time for the first modified 18-rod fuel assembly because of insufficient statistical data of only two bundles damaged, but the fretting-wear at the bottom endplate slot was reduced to about 50%. The second modified fuel assemblies, that were not loaded into the core yet, are expected to meet the design requirements for the core residence time due to strengthening the weak parts from the fretting-wear point of view. This report describes design changes and tests for fuel assemblies of HANARO to reduce the fretting-wear, and estimates the effects of design improvement quantitatively compared with the original fuel assemblies through the visual inspections of the fuel assemblies loaded in the reactor
Primary Subject
Source
Jun 2000; 56 p; 9 refs, 25 figs, 8 tabs
Record Type
Report
Report Number
Country of publication
ENRICHED URANIUM REACTORS, FUEL ELEMENTS, IRRADIATION REACTORS, ISOTOPE PRODUCTION REACTORS, MATERIALS TESTING REACTORS, POOL TYPE REACTORS, REACTOR COMPONENTS, REACTORS, RESEARCH AND TEST REACTORS, RESEARCH REACTORS, TEST FACILITIES, TEST REACTORS, TESTING, WATER COOLED REACTORS, WATER MODERATED REACTORS
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue