Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.019 seconds
AbstractAbstract
[en] The wall drag model in the TRAC/RELAP5 Advanced Computational Engine computer code (TRACE) has certain known deficiencies. For example, in an annular flow regime, the code predicts an unphysical high liquid velocity compared to the experimental data. To address those deficiencies, a new wall frictional drag package has been developed and implemented in the TRACE code to model the wall drag for two-phase flow system code. The modeled flow regimes are (1) annular/mist, (2) bubbly/slug, and (3) bubbly/slug with wall nucleation. The new models use void fraction (instead of flow quality) as the correlating variable to minimize the calculation oscillation. In addition, the models allow for transitions between the three regimes. The annular/mist regime is subdivided into three separate regimes for pure annular flow, annular flow with entrainment, and film breakdown. For adiabatic two-phase bubbly/slug flows, the vapor phase primarily exists outside of the boundary layer, and the wall shear uses single-phase liquid velocity for friction calculation. The vapor phase wall friction drag is set to zero for bubbly/slug flows. For bubbly/slug flows with wall nucleation, the bubbles are presented within the hydrodynamic boundary layer, and the two-phase wall friction drag is significantly higher with a pronounced mass flux effect. An empirical correlation has been studied and applied to account for nucleate boiling. Verification and validation tests have been performed, and the test results showed a significant code improvement. (authors)
Primary Subject
Source
Chinese Nuclear Society, Beijing (China); American Society of Mechanical Engineers (United States); Japan Society of Mechanical Engineers (Japan); International Atomic Energy Agency Collaboration; 604 p; ISBN 7-5022-3400-4; ; 2005; p. 452; 13. international conference on nuclear engineering; Beijing (China); 16-20 May 2005
Record Type
Book
Literature Type
Conference
Country of publication
Reference NumberReference Number
Related RecordRelated Record
INIS VolumeINIS Volume
INIS IssueINIS Issue