Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.019 seconds
Ward, Andy L.; Gee, Glendon W.; Zhang, Z. F.; Keller, Jason M.
Pacific Northwest National Lab., Richland, WA (United States). Funding organisation: US Department of Energy (United States)2004
Pacific Northwest National Lab., Richland, WA (United States). Funding organisation: US Department of Energy (United States)2004
AbstractAbstract
[en] The BC Cribs and Trenches, part of the 200 TW 1 OU waste sites, received about 30 Mgal of scavenged tank waste, with possibly the largest inventory of 99Tc ever disposed to the soil at Hanford and site remediation is being accelerated. The purpose of this work was to develop a conceptual model for contaminant fate and transport at the 216-B-26 Trench site to support identification and development and evaluation of remediation alternatives. Large concentrations of 99Tc high above the water table implicated stratigraphy in the control of the downward migration. The current conceptual model accounts for small-scale stratigraphy; site-specific changes soil properties; tilted layers; and lateral spreading. It assumes the layers are spatially continuous causing water and solutes to move laterally across the boundary if conditions permit. Water influx at the surface is assumed to be steady. Model parameters were generated with pedotransfer functions; these were coupled high resolution neutron moisture logs that provided information on the underlying heterogeneity on a scale of 3 inches. Two approaches were used to evaluate the impact of remedial options on transport. In the first, a 1-D convolution solution to the convective-dispersive equation was used, assuming steady flow. This model was used to predict future movement of the existing plume using the mean and depth dependent moisture content. In the second approach, the STOMP model was used to first predict the current plume distribution followed by its future migration. Redistribution of the 99Tc plume was simulated for the no-action alternative and on-site capping. Hypothetical caps limiting recharge to 1.0, 0.5, and 0.1 mm yr-1 were considered and assumed not to degrade in the long term. Results show that arrival time of the MCLs, the peak arrival time, and the arrival time of the center of mass increased with decreasing recharge rate. The 1-D convolution model is easy to apply and can easily accommodate initial contaminant inventory and water content depth distributions of any complexity. However, the results are somewhat conservative in that the model does not take credit for stratification and its dimensionality effects. Transient analysis shows transport to be controlled by small-scale stratification that resulted in laterally movement of contaminants and their failure to reach the ground water. Multiple discharges quickly merged into a single plume that migrated beyond the domain boundaries. However, it appears that this very feature that was effective in mitigating deep transport of the contaminants for almost 50 years now functions to confound expected barrier effects. Simulations suggest that a barrier provides no additional protection above the no-action alternative. Although continuous layers are assumed, in reality, there may be discontinuities that could lead to vertical movement. Episodic recharge events could also be conducive to downward movement. As more data becomes available, the conceptual model will be revised. Based on the analyses, capping appears to be no better than the no-action alternative. Projected 99Tc concentrations reaching the groundwater suggest that alternate source control actions may be necessary to reach soil screening levels. The benefits of active remediation are therefore readily apparent. Because none of the alternatives reduce soil concentrations, they effect no active reduction in the groundwater concentrations therefore the residual risk will remain high
Primary Subject
Secondary Subject
Source
14 Oct 2004; vp; 830403000; AC06-76RL01830; Available from http://www.pnl.gov/main/publications/external/technical_reports/PNNL-14907.pdf; PURL: https://www.osti.gov/servlets/purl/894884-WPv5F8/
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue