Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.02 seconds
AbstractAbstract
[en] Cerebral metabolic rate of oxygen (CMRO2), oxygen extraction fraction (OEF) and cerebral blood flow (CBF) images can be quantified using positron emission tomography (PET) by administrating 15O-labelled water (H152O) and oxygen (15O2). Conventionally, those images are measured with separate scans for three tracers C15O for CBV, H152O for CBF and 15O2 for CMRO2, and there are additional waiting times between the scans in order to minimize the influence of the radioactivity from the previous tracers, which results in a relatively long study period. We have proposed a dual tracer autoradiographic (DARG) approach (Kudomi et al 2005), which enabled us to measure CBF, OEF and CMRO2 rapidly by sequentially administrating H152O and 15O2 within a short time. Because quantitative CBF and CMRO2 values are sensitive to arterial input function, it is necessary to obtain accurate input function and a drawback of this approach is to require separation of the measured arterial blood time-activity curve (TAC) into pure water and oxygen input functions under the existence of residual radioactivity from the first injected tracer. For this separation, frequent manual sampling was required. The present paper describes two calculation methods: namely a linear and a model-based method, to separate the measured arterial TAC into its water and oxygen components. In order to validate these methods, we first generated a blood TAC for the DARG approach by combining the water and oxygen input functions obtained in a series of PET studies on normal human subjects. The combined data were then separated into water and oxygen components by the present methods. CBF and CMRO2 were calculated using those separated input functions and tissue TAC. The quantitative accuracy in the CBF and CMRO2 values by the DARG approach did not exceed the acceptable range, i.e., errors in those values were within 5%, when the area under the curve in the input function of the second tracer was larger than half of the first one. Bias and deviation in those values were also compatible to that of the conventional method, when noise was imposed on the arterial TAC. We concluded that the present calculation based methods could be of use for quantitatively calculating CBF and CMRO2 with the DARG approach
Primary Subject
Source
S0031-9155(07)31800-9; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
BETA DECAY RADIOISOTOPES, BETA-PLUS DECAY RADIOISOTOPES, BIOLOGICAL MATERIALS, BODY FLUIDS, CARBIDES, CARBON COMPOUNDS, COMPUTERIZED TOMOGRAPHY, DIAGNOSTIC TECHNIQUES, ELEMENTS, EMISSION COMPUTED TOMOGRAPHY, EVEN-ODD NUCLEI, HYDROGEN COMPOUNDS, ISOTOPES, LIGHT NUCLEI, MATERIALS, MINUTES LIVING RADIOISOTOPES, NONMETALS, NUCLEI, OXYGEN COMPOUNDS, OXYGEN ISOTOPES, RADIOISOTOPES, REFRACTORY METAL COMPOUNDS, TANTALUM COMPOUNDS, TOMOGRAPHY, TRANSITION ELEMENT COMPOUNDS
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue