Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.019 seconds
Contractor, Ankur D; Gaikwad, Avinash J.; Kumar, Rajesh; Chakraborty, G.; Vhora, S.F.
Proceedings of the 2006 international congress on advances in nuclear power plants - ICAPP'062006
Proceedings of the 2006 international congress on advances in nuclear power plants - ICAPP'062006
AbstractAbstract
[en] The 540 MWe Indian Pressurised Heavy Water Reactor (PHWR) incorporates many new features as compared to the earlier 220 MWe PHWRs. To evaluate the new design features like Primary Heat Transport (PHT) system configuration with two loops, four Primary Circulating Pumps (PCPs) and four passes through core, addition of a Pressurizer (surge Tank) in the PHT system along with Feed/Bleed system and their safety related implications, simulation model have been developed. A reactor step-back is proposed following one PCP trip. The corresponding PCP in the healthy loop is tripped to avoid asymmetrical flow and pressure distribution in the two identical loops. In spite of such elaborate provisions, the margins from high/low PHT pressure are small following tripping of one PCP. Mathematical models for all the major components and sub-systems of the proposed 540 MWe PHWR were developed based on the conservation equations of mass, momentum, energy and equation of state. All the associated control systems are also modeled. The PHT system includes the reactor core with nuclear fuel, PCP, PHT system pressure controller with feed/bleed system and Pressurizer (Surge Tank). The secondary system includes mainly the Steam Generators (SGs), the SG level and pressure controllers, apart from the various steam cycle components. All these models are integrated together to form the Plant Transient Analysis Computer Code Dyna540. The scenario following one PCP trips leads to different states (high/low pressure in Reactor Outlet Header (ROH)) depending upon the banks in which the PCP trips. The pressurizer is connected to two ROHs on one side of the reactor. The system pressure is controlled based on average of four ROHs pressure. In the case of asymmetrical pump operation, this logic leads to a situation where individual ROH pressure goes very near the low/high PHT system pressure trip set point, even though the controlled average pressure is very close to the set pressure. The PHT high/low trips are based on individual ROH pressures. New logic was proposed for controlling the PHT system pressure that controls the pressure of the ROH with the least margin to the high or low-pressure trip set points. Investigations were performed to demonstrate this approach is helpful in over coming header pressure imbalance and will improve margins to trip set points. To overcome such situation, parametric studies were carried out to evaluate new logic to select pressure of the appropriate ROH for controlling purpose which can avoid high or low pressure trip during these transients. These logics help in improvement of margin from high/low PHT pressure trip set points. (authors)
Primary Subject
Source
American Nuclear Society, 555 North Kensington Avenue, La Grange Park, IL 60526 (United States); 2734 p; ISBN 0-89448-698-5; ; 2006; p. 1157-1193; 2006 International congress on advances in nuclear power plants - ICAPP'06; Reno - Nevada (United States); 4-8 Jun 2006; Country of input: France; 14 refs.
Record Type
Book
Literature Type
Conference
Country of publication
Reference NumberReference Number
Related RecordRelated Record
INIS VolumeINIS Volume
INIS IssueINIS Issue