Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.019 seconds
Lin Lin; Chao Yang; Jiangfeng Lu; Lexing Ying; Weinan, E.
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Funding organisation: Computational Research Division (United States)2009
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Funding organisation: Computational Research Division (United States)2009
AbstractAbstract
[en] We present an efficient parallel algorithm and its implementation for computing the diagonal of H-1 where H is a 2D Kohn-Sham Hamiltonian discretized on a rectangular domain using a standard second order finite difference scheme. This type of calculation can be used to obtain an accurate approximation to the diagonal of a Fermi-Dirac function of H through a recently developed pole-expansion technique LinLuYingE2009. The diagonal elements are needed in electronic structure calculations for quantum mechanical systems HohenbergKohn1964, KohnSham 1965,DreizlerGross1990. We show how elimination tree is used to organize the parallel computation and how synchronization overhead is reduced by passing data level by level along this tree using the technique of local buffers and relative indices. We analyze the performance of our implementation by examining its load balance and communication overhead. We show that our implementation exhibits an excellent weak scaling on a large-scale high performance distributed parallel machine. When compared with standard approach for evaluating the diagonal a Fermi-Dirac function of a Kohn-Sham Hamiltonian associated a 2D electron quantum dot, the new pole-expansion technique that uses our algorithm to compute the diagonal of (H-zi I)-1 for a small number of poles zi is much faster, especially when the quantum dot contains many electrons.
Primary Subject
Secondary Subject
Source
25 Sep 2009; 33 p; AC02-05CH11231; Also available from OSTI as DE00974182; PURL: https://www.osti.gov/servlets/purl/974182-6Kbo1j/; doi 10.2172/974182
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue