Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.028 seconds
Kerkhoff, Lee; Williams, Kenneth H.; Long, Philip E.; McGuinness, L.
Pacific Northwest National Laboratory, Richland, WA (United States). Funding organisation: US Department of Energy (United States)2011
Pacific Northwest National Laboratory, Richland, WA (United States). Funding organisation: US Department of Energy (United States)2011
AbstractAbstract
[en] Uranium contaminated groundwaters are a legacy concern for the U.S. Department of Energy. Previous experiments at the Rifle, Colorado Integrated Field Challenge (IFC) site have demonstrated that field-scale addition of acetate to groundwater reduces the ambient soluable uranium concentration, sequestering the radionuclide as uraninite. However, questions remain regarding which microorganism(s) are consuming this acetate and if active groundwater microorganisms are different from active particle-associated bacteria. In this report, 13-C acetate was used to assess the active microbes that synthesize DNA on 3 size fractions (coarse sand, fines (8-approximately 150 micron), groundwater (0.2-8 micron)) over a 24 -day time frame. Results indicated a stronger signal from 13-C acetate associated with the 'fines' fraction compared with smaller amounts of 13-C uptake on the sand fraction and groundwater samples during the SIP incubations. TRFLP analysis of this 13-C-labeled DNA, indicated 31+ 9 OTU's with 6 peaks dominating the active profiles (166, 187, 210, 212, and 277 bp peaks using MnlI). Cloning/sequencing of the amplification products indicated a Geobacter-like group (187, 210, 212 bp) primarily synthesized DNA from acetate in the groundwater phase, an alpha Proteobacterium (166 bp) primarily grew on the fines/sands, and an Acinetobacter sp. (277 bp) utilized much of the 13C acetate in both groundwater and particle-associated phases. These findings will help to delineate the acetate utilization patterns of bacteria during field-scale acetate addition and can lead to improved methods for stimulating distinct microbial populations in situ.
Primary Subject
Source
PNNL-SA--73734; KP1702030; AC05-76RL01830
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue