Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.026 seconds
AbstractAbstract
[en] In the early/mid 1990's Prof. Alvin Radkowsky, former chief scientist of the U.S. Naval Reactors program, proposed an alternate fuel concept employing thorium-based fuel for use in existing/next generation pressurized water reactors (PWRs). The concept was based on the use of a 'seed-blanket-unit' (SBU) that was a one-for-one replacement for a standard PWR assembly with a uranium-based central 'driver' zone, surrounded by a 'blanket' zone containing uranium and thorium. Therefore, the SBU could be retrofit without significant modifications into existing/next generation PWRs. The objective was to improve the proliferation and waste characteristics of the current once-through fuel cycle. The objective of a series of projects funded by the Initiatives for Proliferation Prevention program of the U.S. Department of Energy (DOE-IPP) - BNL-T2-0074,a,b-RU 'Radkowsky Thorium Fuel (RTF) Concept' - was to explore the characteristics and potential of this concept. The work was performed under several BNL CRADAs (BNL-C-96-02 and BNL-C-98-15) with the Radkowsky Thorium Power Corp./Thorium Power Inc. and utilized the technical and experimental capabilities in the Former Soviet Union (FSU) to explore the potential of this concept for implementation in Russian pressurized water reactors (VVERs), and where possible, also generate data that could be used for design and licensing of the concept for Western PWRs. The Project in Russia was managed by the Russian Research Center-?'Kurchatov Institute' (RRC-KI), and included several institutes (e.g., PJSC 'Electrostal', NPO 'LUCH' (Podolsk), RIINM (Bochvar Institute), GAN RF (Gosatomnadzor), Kalininskaja NPP (VVER-1000)), and consisted of the following phases: Phase-1 ($550K/$275K to Russia): The objective was to perform an initial review of all aspects of the concept (design, performance, safety, implementation issues, cost, etc.) to confirm feasibility/viability and identify any 'show-stoppers'; Phase-2 ($600K/$300K to Russia): Continued the activities initiated under Phase-1 with a focus on expanded design and safety analyses, and to address fuel fabrication and testing issues; and, Phase-3 ($300K/$290K to Russia): Focus on thermal-hydraulic testing at Kurchatov for both VVER and PWR lattices
Primary Subject
Source
31 Dec 2006; 4 p; OSTIID--973814; DE-AC02-98CH10886
Record Type
Report
Report Number
Country of publication
ACTINIDES, EASTERN EUROPE, ELEMENTS, ENRICHED URANIUM REACTORS, EUROPE, FLUID MECHANICS, HYDRAULICS, MATERIALS, MECHANICS, METALS, NATIONAL ORGANIZATIONS, NUCLEAR FACILITIES, POWER PLANTS, POWER REACTORS, PWR TYPE REACTORS, RADIOACTIVE MATERIALS, REACTORS, RUSSIAN ORGANIZATIONS, THERMAL POWER PLANTS, THERMAL REACTORS, WASTES, WATER COOLED REACTORS, WATER MODERATED REACTORS
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue