Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.018 seconds
AbstractAbstract
[en] Even though pressure tubes are major components of a CANDU reactor, only small proportions of pressure tubes are sampled for in-service inspections due to execution cost, outage duration, and site cumulative radiation exposure limits. In general, a realistic core assessment was not carried out based on all known information related to in-service degradation mechanisms. Recently, a hybrid deterministic and probabilistic core assessment (HDPCA) has been introduced to address the uncertainties associated with uninspected pressure tubes and diverse degradation mechanisms. In the present paper, the HDPCA was carried out for a CANDU unit based on cumulative operating experience and history in order to satisfy the requirements of Clause 7 of CSA Standard N285.8 by considering the uncertainties associated with the estimated distribution parameters, the limited inspected data, and pressure tube properties. The HDPCA is composed of two parts: a simulation part and a deterministic evaluation part. The outcome of the core assessment is the expected pressure tube failure frequency due to pressure tube flaws. In the simulations, pressure tube material properties were sampled from distributions derived from material surveillance and testing programs. The flaw dimensions and intensities were sampled from distributions fitted to in-service inspection data. The pressure tubes were then populated with flaws. Each simulated flaw was evaluated for DHC initiation under constant loading conditions. When Delayed Hydride Cracking initiation from a flaw was predicted, the pressure tube was evaluated for rupture in the Leak-Before-Break evaluation. Based on all the predicted pressure tube ruptures from simulations, the failure frequency was calculated on an annual basis. The largest expected mean and the 95% upper bound of the mean failure frequencies for any evaluation subinterval to the end of pressure tube design life of 210,000 EFPH are significantly below the allowable failure frequency limits in Table C.1 of CSA Standard N285.8. (author)
Primary Subject
Source
Canadian Nuclear Society, Toronto, Ontario (Canada); 139 Megabytes; ISBN 978-1-926773-06-3; ; 2011; [10 p.]; 9. International conference on CANDU maintenance; Toronto, Ontario (Canada); 4-6 Dec 2011; Available as a slide presentation also.; Available from the Canadian Nuclear Society, Toronto, Ontario (Canada); Paper B3.4, 3 refs., 2 figs.
Record Type
Miscellaneous
Literature Type
Conference
Country of publication
Reference NumberReference Number
Related RecordRelated Record
INIS VolumeINIS Volume
INIS IssueINIS Issue