Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.021 seconds
AbstractAbstract
[en] The U.S. Department of Energy in October 2014 awarded the Massachusetts Institute of Technology (MIT) a Nuclear Energy University Program grant (DE-NE0008268) to investigate the design and testing of a symbiotic system to harvest uranium from seawater. As defined in the proposal, the goals for the project are: 1. Address the design of machines for seawater uranium mining. 2. Develop design rules for a uranium harvesting system that would be integrated into an offshore wind power tower. 3. Fabricate a 1/50th size scale prototype for bench and pool-testing to verify initial analysis and theory. 4. Design, build, and test a second 1/10th size scale prototype in the ocean for more comprehensive testing and validation. This report describes work done as part of DE-NE0008268 from 10/01/2014 to 11/30/2017 entitled, “Extraction of Uranium from Seawater: Design and Testing of a Symbiotic System.” This effort is part of the Seawater Uranium Recovery Program. This report details the publications and presentations to date on the project, an introduction to the project’s goals and background research into previous work done to achieve these goals thus far. From there, the report describes an algorithm developed during the project used to optimize the adsorption of uranium by changing mechanical parameters such as immersion time and adsorbent reuses is described. Next, a design tool developed as part of the project to determine the global feasibility of symbiotic uranium harvesting systems. Additionally, the report details work done on shell enclosures for uranium adsorption. Moving on, the results from the design, building, and testing of a 1/50th physical scale prototype of a highly feasible symbiotic uranium harvester is described. Then, the report describes the results from flume experiment used to determine the affect of enclosure shells on the uptake of uranium by the adsorbent they enclose. From there the report details the design of a Symbiotic Machine for Ocean uRanium Extraction (SMORE). Next, the results of the 1/10th scale physical scale prototype of a highly feasible symbiotic uranium harvester are presented. The report then details the design and results of an experiment to examine the hydrodynamic effects of a uranium harvester on the offshore wind turbine it is attached to using a 1/150th Froude scale tow tank test. Finally, the report details the results of an initial cost-analysis for the production of uranium from seawater from such a symbiotic device.
Primary Subject
Source
22 Feb 2018; 147 p; OSTIID--1423067; NE0008268
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue