Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.023 seconds
Zhong, Lirong; Hart, Andrea T.; Szecsody, James E.; Zhang, Z.F.; Freedman, Vicky L.; Ankeny, Mark; Hull, Laurence; Oostrom, Martinus; Freshley, Mark D.; Wellman, Dawn M.
Pacific Northwest National Lab., Richland, WA (United States). Funding organisation: US Department of Energy (United States)2009
Pacific Northwest National Lab., Richland, WA (United States). Funding organisation: US Department of Energy (United States)2009
AbstractAbstract
[en] Research proposals were submitted to the Scientific and Technical Basis for In Situ Treatment of Metals and Radionuclides Technical Working Group under the US Department of Energy (DOE) Environmental Management Office (specifically, EM-22). After a peer review and selection process, the proposal, 'Foam Delivery of Remedial Amendments to Deep Vadose Zone for Metals and Radionuclides Remediation,' submitted by Pacific Northwest National Laboratory (PNNL) was selected for support by the program. A research plan was requested for this EM funded project. The overall objective of this project is to develop foam delivery technology for the distribution of remedial amendments to deep vadose zone sediments for in situ immobilization of metal and radionuclide contaminants. The focus of this research in FY 2009 is on the physical aspects of the foam delivery approach. Specific objectives are to (1) study the foam quality (i.e. the gas volume fraction in foam) influence on injection pressure, (2) study the sediment air permeability influence on injection pressure, (3) investigate liquid uptake in sediment and determine whether a water front will be formed during foam delivery, (4) test amendment distance (and mass) delivery by foam from the injection point, (5) study the enhanced sweeping over heterogeneous systems (i.e., low K zones) by foam delivery relative to water-based delivery under vadose zone conditions, and (6) numerically simulate foam delivery processes in the vadose zone. Laboratory scale experiments will be conducted at PNNL to study a range of basic physical aspects of the foam propagation in sediments, including foam quality and sediment permeability influence on injection pressure, liquid uptake, and foam sweeping across heterogeneous systems. This study will be augmented with separate studies to be conducted at MSE Technology Applications, Inc. (MSE) to evaluate foam transport and amendment delivery at the intermediate-scale. The results of intermediate-scale tests will be used to bridge the gap between the small-scale foam transport studies and the field-scale demonstration. Numerical simulation studies on foam delivery under vadose conditions will be performed to simulate observed foam transport behavior under vadose zone conditions and predict the foam delivery performance at field-scale
Primary Subject
Source
16 Jan 2009; vp; AC05-76RL01830; Available from http://www.pnl.gov/main/publications/external/technical_reports/PNNL-18143.pdf; PURL: https://www.osti.gov/servlets/purl/966301-CIFGSO/; doi 10.2172/966301
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue