Filters
Results 1 - 10 of 22
Results 1 - 10 of 22.
Search took: 0.029 seconds
Sort by: date | relevance |
Leal, Luiz; Mueller, Don; Arbanas, Goran; Wiarda, Dorothea; Derrien, Herve
Paul Scherrer Institut - PSI, 5232 Villigen PSI (Switzerland)2008
Paul Scherrer Institut - PSI, 5232 Villigen PSI (Switzerland)2008
AbstractAbstract
[en] The error estimation for calculated quantities relies on nuclear data uncertainty information available in the basic nuclear data libraries such as the U.S. Evaluated Nuclear Data File (ENDF/B). The uncertainty files (covariance matrices) in the ENDF/B library are generally obtained from analysis of experimental data. In the resonance region, the computer code SAMMY is used for analyses of experimental data and generation of resonance parameters. In addition to resonance parameters evaluation, SAMMY also generates resonance parameter covariance matrices (RPCM). SAMMY uses the generalized least-squares formalism (Bayes' method) together with the resonance formalism (R-matrix theory) for analysis of experimental data. Two approaches are available for creation of resonance-parameter covariance data. (1) During the data-evaluation process, SAMMY generates both a set of resonance parameters that fit the experimental data and the associated resonance-parameter covariance matrix. (2) For existing resonance-parameter evaluations for which no resonance-parameter covariance data are available, SAMMY can retroactively create a resonance-parameter covariance matrix. The retroactive method was used to generate covariance data for 235U. The resulting 235U covariance matrix was then used as input to the PUFF-IV code, which processed the covariance data into multigroup form, and to the TSUNAMI code, which calculated the uncertainty in the multiplication factor due to uncertainty in the experimental cross sections. The objective of this work is to demonstrate the use of the 235U covariance data in calculations of critical benchmark systems. (authors)
Primary Subject
Secondary Subject
Source
2008; 7 p; Paul Scherrer Institut - PSI; Villigen PSI (Switzerland); PHYSOR'08: International Conference on the Physics of Reactors 'Nuclear Power: A Sustainable Resource'; Interlaken (Switzerland); 14-19 Sep 2008; ISBN 978-3-9521409-5-6; ; Country of input: France; 10 refs.; proceedings are available as a CD-ROM on request to info'at'physor08.ch
Record Type
Book
Literature Type
Conference
Country of publication
ACTINIDE NUCLEI, ALPHA DECAY RADIOISOTOPES, DIMENSIONLESS NUMBERS, EVEN-ODD NUCLEI, HEAVY NUCLEI, INTERNAL CONVERSION RADIOISOTOPES, ISOMERIC TRANSITION ISOTOPES, ISOTOPES, MATHEMATICAL SOLUTIONS, MATRICES, MAXIMUM-LIKELIHOOD FIT, MINUTES LIVING RADIOISOTOPES, NUCLEI, NUMERICAL SOLUTION, RADIOISOTOPES, SPONTANEOUS FISSION RADIOISOTOPES, URANIUM ISOTOPES, YEARS LIVING RADIOISOTOPES
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Arbanas, Goran; Brown, Jesse; Wiarda, Dorothea
Book of Abstracts: Wonder 2023. 6th International Workshop on Nuclear Data Evaluation for Reactor Applications (WONDER)2023
Book of Abstracts: Wonder 2023. 6th International Workshop on Nuclear Data Evaluation for Reactor Applications (WONDER)2023
AbstractAbstract
[en] We present recent advances in the R-matrix formalism as well as the Bayesian evaluation framework for improved nuclear data evaluations. The advances in the R matrix formalism include: 1) direct processes, 2) doorway, as well as multistep, processes, and 3) various forms of the Reich-Moore approximation for eliminated capture channels. Furthermore, to address unreasonably small posterior uncertainties often encountered in nuclear data evaluations of large data sets using the conventional form of the Bayes' theorem, we introduce imperfections (of the data or the model) as a formal evaluation tool for taming the evaluated uncertainties in harmony with Bayes' theorem. These theoretical advances were motivated by the nuclear data evaluations of differential resolved resonance cross section data using the code SAMMY, as well as the integral benchmark experiments using the SCALE code system, being performed at Oak Ridge National Laboratory for the Nuclear Criticality Safety Program. Some pedagogical applications of the new formalism, as well as a snapshot of the SAMMY modernization efforts, will be presented. (authors)
Primary Subject
Secondary Subject
Source
Danon, Y.; Brain, P.; Cook, K.; Fritz, D.; Golas, A.; Siemers, G.; Singh, S.; Wang, B. (Gaerttner LINAC Center Rensselaer Polytechnic Institute, Troy, NY, 12180, (United States)); Andrzejewski, J.; Gawlik, A.; Perkowski, J. (University of Lodz, Pomorska 149/153, Lodz, 90-236, (Poland)); Barry, D.; Daskalakis, A.; Epping, B.; Lewis, A.; Rapp, M.; Trumbull, T. (Naval Nuclear Laboratory, P.O. Box 1072, Schenectady, NY 12301, (United States)); Atsushi Kimura; Shunsuke Endo; Shoji Nakamura (Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, (Japan)); Sanchez-Caballero, A.; Alcayne, V.; Cano-Ott, D.; Gonzalez-Romero, E.; Martinez, T.; Mendoza, E.; Perez de Rada, A. (Centro de Investigaciones Energeticas, Medioambientales y Tecnoligicas - CIEMAT, Av. Complutense 40, Madrid, 28040, (Spain)); Cardinaels, T.; Dries, P.; Leinders, G.; Van Hecke, K.; Vanaken, K.; Verguts, K.; Verwerft, M. (SCK CEN, Belgian Nuclear Research Centre, Boeretang 200, Mol, B-2400, (Belgium)); Heyse, J.; Moens, A.; Plompen, A.; Paradela, C.; Schillebeeckx, P.; Sibbens, G.; Vanleeuw, D.; Wynants, R.; Oprea, A. (European Commission, Joint Research Centre (JRC), Retieseweg 111, Geel, B- 2440, (Belgium)); Perez-Maroto, P.; Guerrero, C.; Millan, M.A.; Rodriguez, T. (Centro Nacional de Aceleradores, Universidad de Sevilla, 41092 Sevilla, (Spain); Dept. de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, 41012 Sevilla, (Spain)); Casanovas, A.; Calvino, F.; Tarifeno, A. (Universitat Politecnica de Catalunya, 08034 Barcelona, (Spain)); Babiano, V.; Balibrea, J.; Domingo-Pardo, C.; Ladarescu, I.; Lerendegui-Marco, J (Instituto de Fisica Corpuscular - IFIC-CSIC, 4680 Valencia, (Spain)); Cabellos, O. (Universidad Politecnica de Madrid - UPM, 28040 Madrid, (Spain)); Capote, R. (International Atomic Energy Agency - IAEA, 1220 Vienna, (Austria)); Cristallo, S. (INFN Sezione Perugia, 06123 Perugia, (Italy)); Kopecky, S.; Paradela, C.; Schillebeeckx, P. (EC Joint Research Centre - JRC, 2440 Geel, (Belgium)); Leal, L. (Institut de Radioprotection et de Surete Nucleaire - IRSN, 92260 Fontenay-aux- Roses, (France)); Chatel, Carole; Kerveno, Maelle; Dessagne, Philippe; Henning, Greg (Universite de Strasbourg, CNRS, IPHC/DRS UMR 7178, 23 Rue du Loess, F-67037 Strasbourg, (France)); Wilson, Jonathan (CNRS, IJClab Orsay, bat 100, 15 rue G. Clemenceau, 91406 Orsay Cedex, (France)); Mathieu, L.; Aiche, M.; Marini, P.; Czajkowski, S.; Kattikat-Melcom, D.; Kurtukian, T.; Tsekhanovich, I. (Univ. Bordeaux, CNRS, LP2I, UMR 5797, F-33170 Gradignan, (France)); Bouland, O.; Serot, O.; Chebboubi, A.; Litaize, O.; Sabathe, M.; Tamagno, P.; Bazelaire, Guillaume; Bernard, David (CEA, DES, IRESNE, DER, SPRC, Physics Studies Laboratory, Cadarache, F-13108 Saint-Paul-lez-Durance, (France)); Chatel, C. (Universite de Strasbourg, CNRS, IPHC/DRS UMR 7178, 23 Rue du Loess, F-67037 Strasbourg, (France)); Oberstedt, S. (European Commission, DG Joint Research Centre, Directorate G - Nuclear Safety and Security, Unit G.2 SN3S, 2440 Geel, (Belgium)); Chasapoglou, S.; Vlastou, R.; Diakaki, M.; Kokkoris, M.; Amanatidis, L. (Department of Physics, National Technical University of Athens, Zografou Campus, Athens, 15772, (Greece)); Axiotis, M.; Harissopulos, S.; Lagoyannis, A. (Tandem Accelerator Laboratory, Institute of Nuclear and Particle Physics, N.C.S.R. 'Demokritos', Athens, 15341, (Greece)); Stamatopoulos, A.; Koehler, P.; Leal-Cidoncha, E.; Couture, A.; Ullmann, J. (Physics Division, Los Alamos National Laboratory, 87545, NM, (United States)); Rusev, G. (Chemistry Division, Los Alamos National Laboratory, 87545, NM, (United States)); Chevalier, A.; Lecolley, FR.; Lecouey, JL.; Marie-Nourry, N.; Lehaut, G. (LPC Caen, 6 Bd Marechal Juin, Caen 14000, (France)); Manduci, L. (EAMEA, BP 19 50115, Cherbourg Armees 50100, (France)); Ledoux, X. (GANIL, Bd Henri Becquerel, Caen 14000, (France)); Beyer, R.; Junghans, A. (HZDR, Bautzner Landstrasse 400, Dresden 01328, (Germany)); Leconte, Pierre (CEA Cadarache, DES/IRESNE/DER/SPRC/LEPh, 13108 Saint Paul Lez Durance Cedex, (France)); Geslot, Benoit; Kooyman, Timothee (CEA Cadarache, DES/IRESNE/DER/SPESI/LP2E, 13108 Saint Paul Lez Durance Cedex, (France)); Tadafumi Sano; Takashi Kanda; Jun-ichi Hori (Atomic Energy Research Institute, Kindai University, Kowakae, Higashi-Osaka, Osaka, 577-8502, (Japan)); Satoshi Chiba (NAT Research Center, Tokai, Naka Ibaraki 319-1112, (Japan); Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8550, (Japan)); Kazuya Shimada (Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8550, (Japan); Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195, (Japan)); Chikako Ishizuka (Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8550, (Japan)); Dore, D.; Berthoumieux, E.; Ballu, M.; Herran, P.; Kaur, G.; Letourneau, A.; Materna, T.; Miriot-Jaubert, P.; Mom, B.; Thulliez, L.; Vandebrouck, M. (Irfu, CEA, Universite Paris-Saclay, 91191 Gif-sur-Yvette, (France)); Ramos, D.; Ducret, J.E.; Ledoux, X.; Pancin, J.; Frelin, A.M.; Sharma, P.; Jangid, I. (GANIL, Caen,14000, (France)); Marini, P. (GANIL, Caen,14000, (France); Univ. Bordeaux, CNRS, LP2I, UMR 5797, F-33170 Gradignan, (France)); Porta, A.; Estienne, M.; Fallot, M.; Bonnet, E.; Pepin, J. (Laboratoire Subatech, University of Nantes, CNRS/IN2P3, Institut Mines Telecom Atlantique, 44307 Nantes, (France)); Marini, P. (LP2I Bordeaux, UMR5797, Universite de Bordeaux, CNRS, F-33170, Gradignan, (France); CEA, DAM, DIF, F-91297 Arpajon, (France)); Taieb, J.; Belier, G.; Chatillon, A.; Laurent, B.; Morfouace, P. (CEA, DAM, DIF, F-91297 Arpajon, (France); Universite Paris-Saclay, CEA, LMCE, 91680 Bruyeres-le-Chatel, (France)); Neudecker, D.; Devlin, M.; Gomez, J.A.; Haight, R.C.; Kelly, K.J.; O'Donnell, J.M. (Los Alamos National Laboratory, Los Alamos, NM-87545, (United States)); Etasse, D. (Normandie Univ, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, 14000 Caen, (France)); Tudora, Anabella (University of Bucharest, Faculty of Physics, str. Atomistilor 405, Magurele, Ro-77125, (Romania)); Sidorova, Olga; Zeynalov, Shakir (Joint Institute for Nuclear Research, Dubna, (Russian Federation)); Ogawa, Tatsuhiko (Japan Atomic Energy Agency, 2-4, Shirakata, Tokai, Naka, Ibaraki 319-1195, (Japan); Universite Paris-Saclay, CEA, Service d'Etudes des Reacteurs et de Mathematiques Appliquees, Gif-sur-Yvette 91191, (France)) (and others); CEA IRESNE, DES, CEA Cadarache, St Paul lez Durance (France); NEA France, 2, rue Andre Pascal 75775 Paris Cedex 16 (France); Metropole Aix-Marseille-Provence Le Pharo 58, boulevard Charles-Livon 13007 Marseille (France); 59 p; 2023; p. 42; Wonder 2023: 6. International Workshop on Nuclear Data Evaluation for Reactor Applications; Aix-en-Provence (France); 5-9 Jun 2023; Available from the INIS Liaison Officer for France, see the INIS website for current contact and E-mail addresses
Record Type
Miscellaneous
Literature Type
Conference
Report Number
Country of publication
Reference NumberReference Number
Related RecordRelated Record
INIS VolumeINIS Volume
INIS IssueINIS Issue
Arbanas, Goran; Bertulani, Carlos A.; Dean, David Jarvis; Kerman, Arthur K.
Oak Ridge National Laboratory (United States). Funding organisation: SC USDOE - Office of Science (United States)2008
Oak Ridge National Laboratory (United States). Funding organisation: SC USDOE - Office of Science (United States)2008
AbstractAbstract
[en] Kawai, Kerman and McVoy (KKM) derived an optical background-plus-fluctuations representation of T-matrix, T = Topt + Tfluct, so that an energy average of Tfluct over a single-particle resonance width is expected to be negligibly small (Ann. of Phys. 75, 156 (1973)). We investigate this property numerically in a simple model with 1,600 compound nuclear levels and 40 channels, coupled via a random interaction. We find that the energy average of the fluctuating term is much smaller than the optical background, Topt, in support of the KKM result. A self-contained derivation of KKM T-matrix is presented.
Primary Subject
Source
1 Jan 2008; 4 p; CNR-2007, Compound-Nuclear Reactions and Related Topics; Fish Camp, CA (United States); 22-26 Oct 2007; KB0301052; ERKBP17; AC05-00OR22725; Available from http://info.ornl.gov/sites/publications/files/Pub9681.pdf; PURL: https://www.osti.gov/servlets/purl/1036536/; pages 160-163
Record Type
Miscellaneous
Literature Type
Conference
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Leal, Luiz C.; Arbanas, Goran; Derrien, Herve; Wiarda, Dorothea
Oak Ridge National Laboratory (United States). Funding organisation: NNSA USDOE - National Nuclear Security Administration (United States)2008
Oak Ridge National Laboratory (United States). Funding organisation: NNSA USDOE - National Nuclear Security Administration (United States)2008
AbstractAbstract
[en] Resonance-parameter covariance matrix (RPCM) evaluations in the resolved resonance region were done for 232Th, 233U, 235U, 238U, and 239Pu using the computer code SAMMY. The retroactive approach of the code SAMMY was used to generate the RPCMs for 233U, 235U. RPCMs for 232Th, 238U and 239Pu were generated together with the resonance parameter evaluations. The RPCMs were then converted in the ENDF format using the FILE32 representation. Alternatively, for computer storage reasons, the FILE32 was converted in the FILE33 cross section covariance matrix (CSCM). Both representations were processed using the computer code PUFF-IV. This paper describes the procedures used to generate the RPCM with SAMMY.
Primary Subject
Source
1 Dec 2008; 6 p; Workshop on Neutron Cross Section Covariances; Port Jefferson, NY (United States); 24-27 Jun 2008; DP0902090; DPDP097; AC05-00OR22725; Available from http://info.ornl.gov/sites/publications/files/Pub11419.doc; PURL: https://www.osti.gov/servlets/purl/992088-EdcOwC/; pages 2868-2873
Record Type
Miscellaneous
Literature Type
Conference
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Dunn, Michael E.; Leal, Luiz C.; Wiarda, Dorothea; Arbanas, Goran
Oak Ridge National Laboratory (United States). Funding organisation: NE USDOE - Office of Nuclear Energy (United States)2008
Oak Ridge National Laboratory (United States). Funding organisation: NE USDOE - Office of Nuclear Energy (United States)2008
AbstractAbstract
[en] The large size of resonance parameter covariance matrices (RPCM) in the actinide region often renders them impractical for dissemination via ENDF. Therefore, a method of approximating the RPCM by a much smaller group-wise covariance matrix (GWCM) is described, implemented, and examined. In this work, 233U RPCM is used to generate GWCM's for the 44 group AMPX, 100 group GE, 171 group VITAMIN-C, and 240 group CSWEG. Each of these GWCM's is then used to compute group-wise uncertainties for the groups of the remaining group structures. The group-wise uncertainties thus obtained are compared with those obtained from a full RPCM, i.e. without the approximation. A systematic comparison of group-wise uncertainties based on GWCM's vs. RPCM, for a variety of group structures, will shed light on the validity of this approximation and may suggest which group structure(s) yield a GWCM that could be used in lieu of the RPCM.
Primary Subject
Secondary Subject
Source
1 Jan 2008; vp; 4. Workshop on Neutron Measurements, Evaluations and Applications - Nuclear Data needs for Generation IV and Accelerator Driven Systems, NEMEA-4; Prague (Czech Republic); 16-18 Oct 2007; AF5820100; NEAF315; AC05-00OR22725; Available from Oak Ridge National Laboratory, Oak Ridge, TN (US)
Record Type
Miscellaneous
Literature Type
Conference
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Wiarda, Dorothea; Arbanas, Goran; Leal, Luiz C.; Dunn, Michael E.
Oak Ridge National Laboratory (United States). Funding organisation: NNSA USDOE - National Nuclear Security Administration (United States)2008
Oak Ridge National Laboratory (United States). Funding organisation: NNSA USDOE - National Nuclear Security Administration (United States)2008
AbstractAbstract
[en] The program PUFF-IV is used to process resonance parameter covariance information given in ENDF/B File 32 and point-wise covariance matrices given in ENDF/B File 33 into group-averaged covariances matrices on a user-supplied group structure. For large resonance covariance matrices, found for example in 235U, the execution time of PUFF-IV can be quite long. Recently the code was modified to take advandage of Basic Linear Algebra Subprograms (BLAS) routines for the most time-consuming matrix multiplications. This led to a substantial decrease in execution time. This faster processing capability allowed us to investigate the conversion of File 32 data into File 33 data using a larger number of user-defined groups. While conversion substantially reduces the ENDF/B file size requirements for evaluations with a large number of resonances, a trade-off is made between the number of groups used to represent the resonance parameter covariance as a point-wise covariance matrix and the file size. We are also investigating a hybrid version of the conversion, in which the low-energy part of the File 32 resonance parameter covariances matrix is retained and the correlations with higher energies as well as the high energy part are given in File 33.
Primary Subject
Source
1 Dec 2008; 4 p; Workshop on Neutron Cross Section Covariance; Port Jefferson, NY (United States); 24-27 Jun 2008; DP0902090; DPDP097; AC05-00OR22725; Available from Oak Ridge National Laboratory, Oak Ridge, TN (US)
Record Type
Miscellaneous
Literature Type
Conference
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Ramic, Kemal; Chapman, Chris W.; Arbanas, Goran; Brown, Jesse; Daemen, Luke; Abernathy, Doug; Kolesnikov, Alexander; Cheng, Yongqiang; Ramirez Cuesta, Anibal; Siefman, Daniel; Danon, Yaron; Fritz, Dominik
Book of Abstracts: Wonder 2023. 6th International Workshop on Nuclear Data Evaluation for Reactor Applications (WONDER)2023
Book of Abstracts: Wonder 2023. 6th International Workshop on Nuclear Data Evaluation for Reactor Applications (WONDER)2023
AbstractAbstract
[en] Historically, the free gas approximation has been used to treat the thermal scattering of neutrons with energies below a few electron-volts (eV) in unevaluated materials. However, this method inadequately reproduces neutron scattering at these energies. Until recently, only a limited number of materials had available thermal scattering law (TSL) files/libraries in the ENDF nuclear data libraries in this energy range. With advancements in atomistic modeling techniques, such as molecular dynamics, ab-initio molecular dynamics, and density functional theory, TSL libraries have become available for many more materials. This is particularly relevant due to the rising interest in several advanced reactor systems that require novel moderator and reflector materials. While quasi-integral and integral benchmarks have been designed to validate historically important moderator materials (such as light water and polyethylene), there is currently a lack of standard validation methods for TSLs, especially when multiple conflicting TSLs exist. To address this issue, the Oak Ridge National Lab Nuclear Data group has been working on utilizing inelastic neutron scattering (INS) measurements combined with transmission (i.e., total cross section) measurements to evaluate and validate TSLs for different materials. We plan to demonstrate how this method has worked on materials such as polyethylene, lucite, and polystyrene. In addition, we will compare the newly created libraries to ENDF libraries for these materials and explain why integral benchmarks should not be used for validation when multiple TSLs exist. (authors)
Primary Subject
Source
Danon, Y.; Brain, P.; Cook, K.; Fritz, D.; Golas, A.; Siemers, G.; Singh, S.; Wang, B. (Gaerttner LINAC Center Rensselaer Polytechnic Institute, Troy, NY, 12180, (United States)); Andrzejewski, J.; Gawlik, A.; Perkowski, J. (University of Lodz, Pomorska 149/153, Lodz, 90-236, (Poland)); Barry, D.; Daskalakis, A.; Epping, B.; Lewis, A.; Rapp, M.; Trumbull, T. (Naval Nuclear Laboratory, P.O. Box 1072, Schenectady, NY 12301, (United States)); Atsushi Kimura; Shunsuke Endo; Shoji Nakamura (Japan Atomic Energy Agency, 2-4 Shirakata, Tokai, Ibaraki 319-1195, (Japan)); Sanchez-Caballero, A.; Alcayne, V.; Cano-Ott, D.; Gonzalez-Romero, E.; Martinez, T.; Mendoza, E.; Perez de Rada, A. (Centro de Investigaciones Energeticas, Medioambientales y Tecnoligicas - CIEMAT, Av. Complutense 40, Madrid, 28040, (Spain)); Cardinaels, T.; Dries, P.; Leinders, G.; Van Hecke, K.; Vanaken, K.; Verguts, K.; Verwerft, M. (SCK CEN, Belgian Nuclear Research Centre, Boeretang 200, Mol, B-2400, (Belgium)); Heyse, J.; Moens, A.; Plompen, A.; Paradela, C.; Schillebeeckx, P.; Sibbens, G.; Vanleeuw, D.; Wynants, R.; Oprea, A. (European Commission, Joint Research Centre (JRC), Retieseweg 111, Geel, B- 2440, (Belgium)); Perez-Maroto, P.; Guerrero, C.; Millan, M.A.; Rodriguez, T. (Centro Nacional de Aceleradores, Universidad de Sevilla, 41092 Sevilla, (Spain); Dept. de Fisica Atomica, Molecular y Nuclear, Universidad de Sevilla, 41012 Sevilla, (Spain)); Casanovas, A.; Calvino, F.; Tarifeno, A. (Universitat Politecnica de Catalunya, 08034 Barcelona, (Spain)); Babiano, V.; Balibrea, J.; Domingo-Pardo, C.; Ladarescu, I.; Lerendegui-Marco, J (Instituto de Fisica Corpuscular - IFIC-CSIC, 4680 Valencia, (Spain)); Cabellos, O. (Universidad Politecnica de Madrid - UPM, 28040 Madrid, (Spain)); Capote, R. (International Atomic Energy Agency - IAEA, 1220 Vienna, (Austria)); Cristallo, S. (INFN Sezione Perugia, 06123 Perugia, (Italy)); Kopecky, S.; Paradela, C.; Schillebeeckx, P. (EC Joint Research Centre - JRC, 2440 Geel, (Belgium)); Leal, L. (Institut de Radioprotection et de Surete Nucleaire - IRSN, 92260 Fontenay-aux- Roses, (France)); Chatel, Carole; Kerveno, Maelle; Dessagne, Philippe; Henning, Greg (Universite de Strasbourg, CNRS, IPHC/DRS UMR 7178, 23 Rue du Loess, F-67037 Strasbourg, (France)); Wilson, Jonathan (CNRS, IJClab Orsay, bat 100, 15 rue G. Clemenceau, 91406 Orsay Cedex, (France)); Mathieu, L.; Aiche, M.; Marini, P.; Czajkowski, S.; Kattikat-Melcom, D.; Kurtukian, T.; Tsekhanovich, I. (Univ. Bordeaux, CNRS, LP2I, UMR 5797, F-33170 Gradignan, (France)); Bouland, O.; Serot, O.; Chebboubi, A.; Litaize, O.; Sabathe, M.; Tamagno, P.; Bazelaire, Guillaume; Bernard, David (CEA, DES, IRESNE, DER, SPRC, Physics Studies Laboratory, Cadarache, F-13108 Saint-Paul-lez-Durance, (France)); Chatel, C. (Universite de Strasbourg, CNRS, IPHC/DRS UMR 7178, 23 Rue du Loess, F-67037 Strasbourg, (France)); Oberstedt, S. (European Commission, DG Joint Research Centre, Directorate G - Nuclear Safety and Security, Unit G.2 SN3S, 2440 Geel, (Belgium)); Chasapoglou, S.; Vlastou, R.; Diakaki, M.; Kokkoris, M.; Amanatidis, L. (Department of Physics, National Technical University of Athens, Zografou Campus, Athens, 15772, (Greece)); Axiotis, M.; Harissopulos, S.; Lagoyannis, A. (Tandem Accelerator Laboratory, Institute of Nuclear and Particle Physics, N.C.S.R. 'Demokritos', Athens, 15341, (Greece)); Stamatopoulos, A.; Koehler, P.; Leal-Cidoncha, E.; Couture, A.; Ullmann, J. (Physics Division, Los Alamos National Laboratory, 87545, NM, (United States)); Rusev, G. (Chemistry Division, Los Alamos National Laboratory, 87545, NM, (United States)); Chevalier, A.; Lecolley, FR.; Lecouey, JL.; Marie-Nourry, N.; Lehaut, G. (LPC Caen, 6 Bd Marechal Juin, Caen 14000, (France)); Manduci, L. (EAMEA, BP 19 50115, Cherbourg Armees 50100, (France)); Ledoux, X. (GANIL, Bd Henri Becquerel, Caen 14000, (France)); Beyer, R.; Junghans, A. (HZDR, Bautzner Landstrasse 400, Dresden 01328, (Germany)); Leconte, Pierre (CEA Cadarache, DES/IRESNE/DER/SPRC/LEPh, 13108 Saint Paul Lez Durance Cedex, (France)); Geslot, Benoit; Kooyman, Timothee (CEA Cadarache, DES/IRESNE/DER/SPESI/LP2E, 13108 Saint Paul Lez Durance Cedex, (France)); Tadafumi Sano; Takashi Kanda; Jun-ichi Hori (Atomic Energy Research Institute, Kindai University, Kowakae, Higashi-Osaka, Osaka, 577-8502, (Japan)); Satoshi Chiba (NAT Research Center, Tokai, Naka Ibaraki 319-1112, (Japan); Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8550, (Japan)); Kazuya Shimada (Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8550, (Japan); Japan Atomic Energy Agency, Tokai, Naka, Ibaraki 319-1195, (Japan)); Chikako Ishizuka (Tokyo Institute of Technology, Ookayama, Meguro, Tokyo 152-8550, (Japan)); Dore, D.; Berthoumieux, E.; Ballu, M.; Herran, P.; Kaur, G.; Letourneau, A.; Materna, T.; Miriot-Jaubert, P.; Mom, B.; Thulliez, L.; Vandebrouck, M. (Irfu, CEA, Universite Paris-Saclay, 91191 Gif-sur-Yvette, (France)); Ramos, D.; Ducret, J.E.; Ledoux, X.; Pancin, J.; Frelin, A.M.; Sharma, P.; Jangid, I. (GANIL, Caen,14000, (France)); Marini, P. (GANIL, Caen,14000, (France); Univ. Bordeaux, CNRS, LP2I, UMR 5797, F-33170 Gradignan, (France)); Porta, A.; Estienne, M.; Fallot, M.; Bonnet, E.; Pepin, J. (Laboratoire Subatech, University of Nantes, CNRS/IN2P3, Institut Mines Telecom Atlantique, 44307 Nantes, (France)); Marini, P. (LP2I Bordeaux, UMR5797, Universite de Bordeaux, CNRS, F-33170, Gradignan, (France); CEA, DAM, DIF, F-91297 Arpajon, (France)); Taieb, J.; Belier, G.; Chatillon, A.; Laurent, B.; Morfouace, P. (CEA, DAM, DIF, F-91297 Arpajon, (France); Universite Paris-Saclay, CEA, LMCE, 91680 Bruyeres-le-Chatel, (France)); Neudecker, D.; Devlin, M.; Gomez, J.A.; Haight, R.C.; Kelly, K.J.; O'Donnell, J.M. (Los Alamos National Laboratory, Los Alamos, NM-87545, (United States)); Etasse, D. (Normandie Univ, ENSICAEN, UNICAEN, CNRS/IN2P3, LPC Caen, 14000 Caen, (France)); Tudora, Anabella (University of Bucharest, Faculty of Physics, str. Atomistilor 405, Magurele, Ro-77125, (Romania)); Sidorova, Olga; Zeynalov, Shakir (Joint Institute for Nuclear Research, Dubna, (Russian Federation)); Ogawa, Tatsuhiko (Japan Atomic Energy Agency, 2-4, Shirakata, Tokai, Naka, Ibaraki 319-1195, (Japan); Universite Paris-Saclay, CEA, Service d'Etudes des Reacteurs et de Mathematiques Appliquees, Gif-sur-Yvette 91191, (France)) (and others); CEA IRESNE, DES, CEA Cadarache, St Paul lez Durance (France); NEA France, 2, rue Andre Pascal 75775 Paris Cedex 16 (France); Metropole Aix-Marseille-Provence Le Pharo 58, boulevard Charles-Livon 13007 Marseille (France); 59 p; 2023; p. 57; Wonder 2023: 6. International Workshop on Nuclear Data Evaluation for Reactor Applications; Aix-en-Provence (France); 5-9 Jun 2023; Available from the INIS Liaison Officer for France, see the INIS website for current contact and E-mail addresses
Record Type
Miscellaneous
Literature Type
Conference
Report Number
Country of publication
Reference NumberReference Number
Related RecordRelated Record
INIS VolumeINIS Volume
INIS IssueINIS Issue
Derrien, Herve; Leal, Luiz C.; Guber, Klaus H.; Wiarda, Dorothea; Arbanas, Goran
Oak Ridge National Laboratory (United States). Funding organisation: NNSA USDOE - National Nuclear Security Administration (United States)2009
Oak Ridge National Laboratory (United States). Funding organisation: NNSA USDOE - National Nuclear Security Administration (United States)2009
AbstractAbstract
[en] The previous 58Ni and 60Ni set of resonance parameters (ENDF/B-VII-0, JEFF-3, etc.) was based on the SAMMY analysis of Oak Ridge National Laboratory neutron transmission, scattering cross section and capture cross section measurements by C. M. Perey et al. The present results were obtained by adding to the SAMMY experimental data base the capture cross sections measured recently at the Oak Ridge Linear Electron Accelerator by Guber et al. and the Geel Electron Linear Accelerator very high-resolution neutron transmission measurements performed by Brusegan et al. A complete resonance parameter covariance matrix (RPCM) was obtained from the SAMMY analysis of the experimental database. The data sets were made consistent, when needed, by adjusting the neutron energy scales, the normalization coefficients, and the background corrections. The RPCM allows the calculation of the cross section uncertainties due mainly to statistical errors in the experimental data. The systematic uncertainties of the experimental data, estimated from the preliminary analyses of the experimental database, were taken into account in the cross section covariance matrix (CSCM) for total, scattering, and capture cross sections. The diagonal elements of the CSCM were obtained by quadratic combination of the different components of the uncertainties. Because of a lack of experimental information, the energy correlations were not obtained, and a value of 0.5 was arbitrarily taken for all the CSCM nondiagonal elements.
Primary Subject
Source
1 Sep 2009; vp; Wonder 2009: 2. International Workshop on Nuclear Data Evaluation for Reactor Applications; Cadarache (France); 29 Sep - 2 Oct 2009; DP0902090; DPDP097; AC05-00OR22725; Available from Oak Ridge National Laboratory (ORNL)
Record Type
Miscellaneous
Literature Type
Conference
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Arbanas, Goran; Bertulani, C.A.; Dean, D.J.; Kerman, A.K.; Roche, K.J.
Oak Ridge National Laboratory (United States). Funding organisation: SC USDOE - Office of Science (United States)2011
Oak Ridge National Laboratory (United States). Funding organisation: SC USDOE - Office of Science (United States)2011
AbstractAbstract
[en] Kawai, Kerman, and McVoy have shown that a statistical treatment of many open channels that are coupled by direct reactions leads to modifications of the Hauser- Feshbach expression for energy-averaged cross section (Ann. of Phys. 75 (1973) 156). The energy averaging interval for this cross section is on the order of the width of single particle resonances, 1MeV, revealing only a gross structure in the cross section. When the energy-averaging interval is decreased down to a width of a doorway state 0.1 MeV, a so-called intermediate structure may be observed in cross sections. We extend the Kawai-Kerman-McVoy theory into the intermediate structure by leveraging a theory of doorway states developed by Feshbach, Kerman, and Lemmer (Ann. of Phys. 42 (1967) 230). As a byproduct of the extension, an alternative derivation of the central result of the Kawai-Kerman-McVoy theory is suggested. We quantify the effect of the approximations used in derivation by performing numerical computations for a large set of compound nuclear states.
Primary Subject
Source
1 Jan 2011; vp; CNR 2011: 3. International Workshop on Compound Nuclear Reactions and Related Topics; Prague (Czech Republic); 19-23 Sep 2011; KB0301052; ERKBP17; AC05-00OR22725; Available from http://info.ornl.gov/sites/publications/files/Pub33123.pdf; PURL: https://www.osti.gov/servlets/purl/1031540/
Record Type
Miscellaneous
Literature Type
Conference
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Leal, Luiz C.; Derrien, Herve; Guber, Klaus H.; Arbanas, Goran; Wiarda, Dorothea
Oak Ridge National Laboratory (United States). Funding organisation: US Department of Energy (United States)2011
Oak Ridge National Laboratory (United States). Funding organisation: US Department of Energy (United States)2011
AbstractAbstract
[en] The intent of this work is to report the results and describe the procedures utilized to evaluate the chromium isotopes cross sections, i.e., (50)Cr, (52)Cr, (53)Cr, and (54)Cr, for criticality safety applications. The evaluations were done in the resolved resonance region using the reduced Reich-Moore R-matrix formalism. The novel aspect of this evaluation is the inclusion of new transmission and capture cross-section measurements performed at the Oak Ridge Electron Linear Accelerator (ORELA) for energies below 100 keV and the extension of the (53)Cr energy region. The resonance analysis was performed with the multilevel R-matrix code, SAMMY, which utilizes the generalized least-squares technique based on the Bayes theory. Complete sets of resonance parameters and resonance parameter covariance matrices (RPCMs) were obtained for each of the chromium isotopes from the SAMMY analysis of the experimental database.
Primary Subject
Source
AC05-00OR22725
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
1 | 2 | 3 | Next |