Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.023 seconds
Eggert, J; Hicks, D; Celliers, P; Bradley, D; Cox, J; Unites, W; Collins, G; McWilliams, R; Jeanloz, R; Bruygoo, S; Loubeyre, P
Lawrence Livermore National Lab., Livermore, CA (United States). Funding organisation: US Department of Energy (United States)2005
Lawrence Livermore National Lab., Livermore, CA (United States). Funding organisation: US Department of Energy (United States)2005
AbstractAbstract
[en] Most single-crystal shock experiments have been performed in high-symmetry directions while the nature of shock propagation in low-symmetry directions remains relatively unstudied. It is well known that small-amplitude, linear acoustic waves propagating in low-symmetry directions can focus and/or form caustics (Wolfe, 1995). In this report we provide evidence for similar focusing behavior in nonlinear (shock) waves propagating in single crystals of silicon and diamond. Using intense lasers, we have driven non-planar (divergent geometry) shock waves through single-crystals of silicon or diamond and into an isotropic backing plate. On recovery of the backing plates we observe a depression showing evidence of anisotropic plastic strain with well-defined crystallographic registration. We observe 4-, 2-, and 3-fold symmetric impressions for [100], [110], and [111] oriented crystals respectively
Source
26 May 2005; 7 p; 20. AIRAPT; Karlsruhe (Germany); 27 Jun - 1 Jul 2005; W-7405-ENG-48; Available from OSTI as DE00877895; PURL: https://www.osti.gov/servlets/purl/877895-lppY8A/; PDF-FILE: 7 ; SIZE: 1.6 MBYTES
Record Type
Report
Literature Type
Conference
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue