AbstractAbstract
[en] This work is a summary of experiments, numerical simulations, and analytic modeling that demonstrate improved radiation confinement when changing from a hohlraum made from gold to one made from a mixture of high Z materials (''cocktail''). First, the results from several previous planar sample experiments are described that demonstrated the potential of cocktail wall materials. Then a series of more recent experiments are described in which the radiation temperatures of hohlraums made from uranium-based cocktails were directly measured and compared with a gold reference hohlraum. Cocktail hohlraums meeting the oxygen specification (<5% atomic fraction oxygen) demonstrated an increase in radiation of up to 7 eV, agreeing well with modeling. When applied to an indirectly driven fusion capsule absorbing ∼160 kJ of x-ray energy, these data suggest that a hohlraum made from a suitably chosen uranium-based cocktail would have about 17% less wall losses and require about 10% less laser energy than a gold hohlraum of the same size
Primary Subject
Source
(c) 2007 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
Laser Coupling to Reduced-Scale Targets at the Early Light Program of the National Ignition Facility
Hinkel, D E; Schneider, M B; Baldis, H A; Bower, D; Campbell, K M; Celeste, J R; Compton, S; Costa, R; Dewald, E L; Dixit, S; Eckart, M J; Eder, D C; Edwards, M J; Ellis, A; Emig, J; Froula, D H; Glenzer, S H; Hargrove, D; Haynam, C A; Heeter, R F; Holder, J P; Holtmeier, G; James, L; Jancaitis, K S; Kalantar, D H; Kauffman, R L; Kimbrough, J; Kirkwood, R K; Koniges, A E; Kamperschroer, J; Landen, O L; Landon, M; Langdon, A B; Lee, F D; MacGowan, B J; MacKinnon, A J; Manes, K R; May, M J; McDonald, J W; Munro, D H; Murray, J R; Niemann, C; Pellinen, D; Rekow, V; Ruppe, J A; Schein, J; Shepherd, R; Singh, M S; Springer, P T; Still, C H; Suter, L J; Turner, R E; Wallace, R J; Warrick, A; Watts, P; Weber, F; Williams, E A; Young, B K; Young, P E
Lawrence Livermore National Lab., Livermore, CA (United States). Funding organisation: US Department of Energy (United States)2004
Lawrence Livermore National Lab., Livermore, CA (United States). Funding organisation: US Department of Energy (United States)2004
AbstractAbstract
[en] A platform for analysis of material properties under extreme conditions, where a sample is bathed in radiation with a high temperature, is under development. This hot environment is produced with a laser by depositing maximum energy into a small, high-Z can. Such targets were recently included in an experimental campaign using the first four of the 192 beams of the National Ignition Facility, under construction at the University of California Lawrence Livermore National Laboratory. These targets demonstrate good laser coupling, reaching a radiation temperature of 340 eV. In addition, there is a unique wavelength dependence of the Raman backscattered light that is consistent with Brillouin backscatter of Raman forward scatter [A. B. Langdon and D. E. Hinkel, Physical Review Letters 89, 015003 (2002)]. Finally, novel diagnostic capabilities indicate that 20% of the direct backscatter from these reduced-scale targets is in the polarization orthogonal to that of the incident light
Primary Subject
Source
18 Nov 2004; 0.3 Megabytes; 46. Annual American Physical Society Division of Plasma Physics Meeting; Savannah, GA (United States); 15-19 Nov 2004; W--7405-ENG-48; Available from PURL: https://www.osti.gov/servlets/purl/15011788-SSm9hY/native/
Record Type
Report
Literature Type
Conference
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Campbell, K. M.; Davis, J. A.; Bargar, J.; Giammar, D.; Bernier-Latmani, R.; Williams, K. H.; Veramani, H.; Ulrich, K. U.; Stubbs, J.; Yabusaki, S.; Figueroa, L.; Lesher, E.; Wilkins, M. J.; Peacock, A.; Long, P. E.
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Funding organisation: USDOE (United States); LBNL, Earth Sciences Division (United States)2011
Ernest Orlando Lawrence Berkeley National Laboratory, Berkeley, CA (United States). Funding organisation: USDOE (United States); LBNL, Earth Sciences Division (United States)2011
AbstractAbstract
[en] Reductive biostimulation is currently being explored as a possible remediation strategy for uranium (U) contaminated groundwater, and is currently being investigated at a field site in Rifle, CO, USA. The long-term stability of the resulting U(IV) phases is a key component of the overall performance and depends upon a variety of factors, including rate and mechanism of reduction, mineral associations in the subsurface, and propensity for oxidation. To address these factors, several approaches were used to evaluate the redox sensitivity of U: measurement of the rate of oxidative dissolution of biogenic uraninite (UO2(s)) deployed in groundwater at Rifle, characterization of a zone of natural bioreduction exhibiting relevant reduced mineral phases, and laboratory studies of the oxidative capacity of Fe(III) and reductive capacity of Fe(II) with regard to U(IV) and U(VI), respectively
Primary Subject
Secondary Subject
Source
LBNL--5343E; OSTIID--1062104; DE-AC02--05CH11231; Available from: DOI:10.1016/j.apgeochem.2011.03.094; Country of input: United States; Journal Publication Date: 2011
Record Type
Journal Article
Journal
Applied Geochemistry; ISSN 0883-2927; ; v. 26; p. S167
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
Hinkel, D E; Schneider, M B; Young, B K; Holder, J P; Langdon, A B; Baldis, H A; Bonanno, G; Bower, D E; Bruns, H C; Campbell, K M; Celeste, J R; Compton, S; Costa, R L; Dewald, E L; Dixit, S N; Eckart, M J; Eder, D C; Edwards, M J; Ellis, A D; Emig, J A; Froula, D H; Glenzer, S H; Hargrove, D; Haynam, C A; Heeter, R F; Henesian, M A; Holtmeier, G; James, D L; Jancaitis, K S; Kalantar, D H; Kamperschroer, J H; Kauffman, R L; Kimbrough, J; Kirkwood, R K; Koniges, A E; Landen, O L; Landon, M; Lee, F D; MacGowan, B J; Mackinnon, A J; Manes, K R; Marshall, C; May, M J; McDonald, J W; Menapace, J; Moses, S I; Munro, D H; Murray, J R; Niemann, C; Pellinen, D; Power, G D; Rekow, V; Ruppe, J A; Schein, J; Shepherd, R; Singh, M S; Springer, P; Still, C H; Suter, L J; Tietbohl, G L; Turner, R E; VanWonterghem, B M; Wallace, R J; Warrick, A; Watts, P; Weber, F; Wegner, P J; Williams, E A; Young, P E
Lawrence Livermore National Lab., Livermore, CA (United States). Funding organisation: US Department of Energy (United States)2005
Lawrence Livermore National Lab., Livermore, CA (United States). Funding organisation: US Department of Energy (United States)2005
AbstractAbstract
[en] Deposition of maximum laser energy into a small, high-Z enclosure in a short laser pulse creates a hot environment. Such targets were recently included in an experimental campaign using the first four of the 192 beams of the National Ignition Facility [J. A. Paisner, E. M. Campbell, and W. J. Hogan, Fusion Technology 26 26, 755 (1994)], under construction at the University of California Lawrence Livermore National Laboratory. These targets demonstrate good laser coupling, reaching a radiation temperature of 340 eV. In addition, the Raman backscatter spectrum contains features consistent with Brillouin backscatter of Raman forward scatter [A. B. Langdon and D. E. Hinkel, Physical Review Letters 89, 015003 (2002)]. Also, NIF Early Light diagnostics indicate that 20% of the direct backscatter from these reduced-scale targets is in the polarization orthogonal to that of the incident light
Primary Subject
Source
31 Aug 2005; 6 p; 4. International Conference on Inertial Fusion Sciences and Applications (IFSA2005); Biarritz (France); 4-9 Sep 2005; W-7405-ENG-48; Available from OSTI as DE00883512; PURL: https://www.osti.gov/servlets/purl/883512-oYBlWb/; PDF-FILE: 6; SIZE: 0.5 MBYTES
Record Type
Report
Literature Type
Conference
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue