Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.026 seconds
AbstractAbstract
[en] We analyze a probabilistic cellular automaton describing the dynamics of coexistence of a predator-prey system. The individuals of each species are localized over the sites of a lattice and the local stochastic updating rules are inspired by the processes of the Lotka-Volterra model. Two levels of mean-field approximations are set up. The simple approximation is equivalent to an extended patch model, a simple metapopulation model with patches colonized by prey, patches colonized by predators and empty patches. This approximation is capable of describing the limited available space for species occupancy. The pair approximation is moreover able to describe two types of coexistence of prey and predators: one where population densities are constant in time and another displaying self-sustained time oscillations of the population densities. The oscillations are associated with limit cycles and arise through a Hopf bifurcation. They are stable against changes in the initial conditions and, in this sense, they differ from the Lotka-Volterra cycles which depend on initial conditions. In this respect, the present model is biologically more realistic than the Lotka-Volterra model
Primary Subject
Source
S1751-8113(07)47566-7; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Journal of Physics. A, Mathematical and Theoretical (Online); ISSN 1751-8121; ; v. 40(43); p. 12901-12915
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue