AbstractAbstract
[en] Our conclusions are that for the production of optimum hard copy digital imaging techniques are essential. For routine imaging each image can be correctly exposed and windowed to ensure accurate diagnosis. Digital imaging is ideal in difficult low activity examinations such as gallium-67 studies, labelled monoclonal antibodies or MIBG imaging. The correct choice of matrix size is important. For high information density imaging the 256x256 matrix size with a large field of view camera seems to be optimum for most types of nuclear medicine examinations. In the low information density situation it is probably better to use a 128x128 matrix with some computer smoothing. An algorithm which modulated the intensity of individual pixels based on the average counting rate along the x- or y-axis would help in accentuating small changes in radioactivity. From our experiments in digitising high photon images it is obvious that there should be no edges, lines or empty space visible on the image. To overcome this problem some form of spot wobble is suggested which will only marginally degrade the spacial information on the image. The optimum form of hard copy has yet to be found. So far all forms of paper output have yielded less than satisfactory results. Transparent films appear to be most popular. For this form of output, digital imaging is ideal since the computer can be adjusted so that the end image directly reflects what has been seen on the digital camera monitor. While instant prints are valuable for including in the patients notes, probably the ideal medium is instant hard copy in the form of a transparent image. (orig.)
[de]
Fuer eine optimale Dokumentation nuklearmedizinischer Befunde wird eine digitale Bildgebung fuer unverzichtbar gehalten. Im Routineablauf kann jedes Bild optimal belichtet und fuer die akkurate Diagnose exakt eingestellt werden. Die digitale Darstellung ist ideal bei schwierigen Untersuchungen mit niedrigen Aktivitaeten, wie z.B. bei 67Gallium-Studien, markierten monoklonalen Antikoerpern oder bei der Untersuchung mit MIBG. Dabei ist die korrekte Wahl der Matrixgroesse bedeutsam. Bei hoher Informationsdichte scheint fuer die Grossfeld-Gammakamera die 256x256-Matrix bei den meisten nuklearmedizinischen Untersuchungen am besten geeignet zu sein. Bei niedriger Informationsdichte ist die 128x128-Matrix bei Glaettungsoperationen moeglicherweise guenstiger. Ein Algorithmus, der die Intensitaet der einzelnen Pixels veraendert auf der Basis der mittleren Zaehlrate ueber die X- oder Y-Achse, kann hilfreich sein zur besseren Darstellung geringer Aktivitaetsunterschiede. Unsere Untersuchungen bei der Digitalisierung von Szintigrammen mit hohen Intensitaeten haben ergeben, dass auf dem Bild keine Ecken, Linien oder Leerraeume zu sehen sein sollten. Dieses Problem kann durch eine gewisse Verwischung von Punktdarstellungen geloest werden, wodurch das raeumliche Aufloesungsvermoegen des Bildes nur geringfuegig vermindert wird. Die optimale Form der Dokumentation ist noch nicht gefunden. Bisher waren alle Arten der Papier-Dokumentation nicht zufriedenstellend. Die Transparentfilm-Darstellung ist am verbreitetsten, sie ist dafuer gut geeignet, da die digitale Bildgebung vom Computer her optimal darauf eingestellt werden kann, um das zu dokumentieren, was auf dem Bildschirm visuell zu erkennen ist. Sofortausdrucke sind guenstig, um die verbale Dokumentation mit einzubeziehen, moeglicherweise ist hier auch ein transparentes Informationsmedium als definitive Dokumentation ideal. (orig.)Primary Subject
Secondary Subject
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] There is no doubt that for routine imagine the ability to post-process images greatly assists diagnosis and facilitates the production of high quality hard copy. In addition it gives increased confidence in diagnosis of many pathological abnormalities especially in situations where it is difficult to predict what the end image will be like. It is felt that this facility should in the long-term greatly improve clinical diagnostic rates and, therefore, it is expected that future gamma cameras will be built around computers and digital imaging will become as important for production of the images as it is for the processing of dynamic studies. (orig.)
[de]
In der klinischen Routinediagnostik stellt die Moeglichkeit der digitalen Datenspeicherung mit anschliessender Bearbeitung eine bedeutende Verbesserung der Diagnostik dar und erleichtert die Herstellung hochwertiger Befunddokumentationen. Diese Technologie erhoeht das Vertrauen in die Diagnose verschiedener pathologischer Befunde besonders in Situationen, in denen der Untersucher nicht genau weiss, wie der Endbefund aussehen wird. Es ist anzunehmen, dass diese Dokumentations- und Bildanalyse-Moeglichkeiten im Laufe der Zeit die klinische Diagnostik entscheidend verbessern. In der Zukunft sollten Gammakameras um leistungsfaehige Computersysteme angeordnet werden, wobei die digitale Bildverarbeitung eine wichtige Moeglichkeit sein wird, um nuklearmedizinische Befunde herzustellen, neben der Generierung und Bearbeitung dynamischer Studien. (orig.)Original Title
Digitale Akquisition, Speicherung und Wiedergabe von nuklearmedizinischen Befunden
Primary Subject
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Denis Bacelar, A.M.; Dearnaley, D.P.; Divoli, A.; Chittenden, S.; Du, Y.; Flux, G.D.; O'Sullivan, J.M.
EANM'13 - Annual Congress of the European Association of Nuclear Medicine - Selection of abstracts2015
EANM'13 - Annual Congress of the European Association of Nuclear Medicine - Selection of abstracts2015
AbstractAbstract
[en] Full text of publication follows. Aim: intravenous administration of Re-186 hydroxyethylidene-diphosphonate (HEDP) is used for metastatic bone pain palliation in hormone refractory prostate cancer patients. Dosimetry for bone seeking radionuclides is challenging due to the complex structure with osteoblastic, osteolytic and mixed lesions. The aim of this study was to perform image-based patient-specific 3D convolution dosimetry to obtain a distribution of the absorbed doses to each lesion and estimate inter- and intra-patient variations. Materials and methods: 28 patients received a fixed 5 GBq activity of Re-186 HEDP followed by peripheral blood stem cell rescue at 14 days in a phase II trial. A FORTE dual-headed gamma camera was used to acquire sequential Single-Photon-Emission Computed Tomography (SPECT) data of the thorax and pelvis area at 1, 4, 24, 48 and 72 hours following administration. The projection data were reconstructed using filtered-back projection and were corrected for attenuation and scatter. Voxelised cumulated activity distributions were obtained with two different methods. First, the scans were co-registered and the time-activity curves were obtained on a voxel-by-voxel basis. Second, the clearance curve was obtained from the mean number of counts in each individual lesion and used to scale the uptake distribution taken at 24 hours. The calibration factors required for image quantification were obtained from a phantom experiment. An in-house developed EGSnrc Monte Carlo code was used for the calculation of dose voxel kernels for soft-tissue and cortical/trabecular bone used to perform convolution dosimetry. Cumulative dose-volume histograms were produced and mean absorbed doses calculated for each spinal and pelvic lesion. Results: preliminary results show that the lesion mean absorbed doses ranged from 25 to 55 Gy when the medium was soft tissue and decreased by 40% if bone was considered. The use of the cumulated activity distribution obtained from the scan acquired at 24 hours following administration reduced the number of artefacts introduced by the registration and voxelised cumulated activity calculations. Conclusion: patient-specific convolution dosimetry calculations show that the absorbed dose to each lesion changes significantly depending on the medium density considered. This suggests that specific lesion and surrounding tissue compositions should be considered to overcome the limitations of convolution dosimetry, which could explain the range of absorbed doses observed. Future work will include the correlation of absorbed dose with patient outcome. (authors)
Primary Subject
Source
European Association of Nuclear Medicine - EANM, Hollandstrasse 14, A-1020 Vienna (Austria); 78 p; 2015; p. 20-21; EANM'13: Annual Congress of the European Association of Nuclear Medicine; Lyon (France); 19-23 Oct 2013; Available in abstract form only, full text entered in this record
Record Type
Miscellaneous
Literature Type
Conference
Report Number
Country of publication
BETA DECAY RADIOISOTOPES, BETA-MINUS DECAY RADIOISOTOPES, BODY, DAYS LIVING RADIOISOTOPES, DOSES, DRUGS, ELECTRON CAPTURE RADIOISOTOPES, HEAVY NUCLEI, ISOMERIC TRANSITION ISOTOPES, ISOTOPES, LABELLED COMPOUNDS, MATERIALS, NUCLEI, ODD-ODD NUCLEI, ORGANS, RADIATION DOSES, RADIOACTIVE MATERIALS, RADIOISOTOPES, RHENIUM ISOTOPES, YEARS LIVING RADIOISOTOPES
Reference NumberReference Number
Related RecordRelated Record
INIS VolumeINIS Volume
INIS IssueINIS Issue