Filters
Results 1 - 10 of 19
Results 1 - 10 of 19.
Search took: 0.018 seconds
Sort by: date | relevance |
AbstractAbstract
[en] Background and purpose: To assess the impact of both set-up errors and respiration-induced tumor motion on the cumulative dose delivered to a clinical target volume (CTV) in lung, for an irradiation based on current clinically applied field sizes. Materials and methods: A cork phantom, having a 50 mm spherically shaped polystyrene insertion to simulate a gross tumor volume (GTV) located centrally in a lung was irradiated with two parallel opposed beams. The planned 95% isodose surface was conformed to the planning target volume (PTV) using a multi leaf collimator. The resulting margin between the CTV and the field edge was 16 mm in beam's eye view. A dose of 70 Gy was prescribed. Dose area histograms (DAHs) of the central plane of the CTV (GTV+5 mm) were determined using radiographic film for different combinations of set-up errors and respiration-induced tumor motion. The DAHs were evaluated using the population averaged tumor control probability (TCPpop) and the equivalent uniform dose (EUD) model. Results: Compared with dose volume histograms of the entire CTV, DAHs overestimate the impact of tumor motion on tumor control. Due to the choice of field sizes a large part of the PTV will receive a too low dose resulting in an EUD of the central plane of the CTV of 68.9 Gy for the static case. The EUD drops to 68.2, 66.1 and 51.1 Gy for systematic set-up errors of 5, 10 and 15 mm, respectively. For random set-up errors of 5, 10 and 15 mm (1 SD), the EUD decreases to 68.7, 67.4 and 64.9 Gy, respectively. For similar amplitudes of respiration-induced motion, the EUD decreases to 68.8, 68.5 and 67.7 Gy, respectively. For a clinically relevant scenario of 7.5 mm systematic set-up error, 3 mm random set-up error and 5 mm amplitude of breathing motion, the EUD is 66.7 Gy. This corresponds with a tumor control probability TCPpop of 41.7%, compared with 50.0% for homogeneous irradiation of the CTV to 70 Gy. Conclusion: Systematic set-up errors have a dominant effect on the cumulative dose to the CTV. The effect of breathing motion and random set-up errors is smaller. Therefore the gain of controlling breathing motion during irradiation is expected to be small and efforts should rather focus on minimizing systematic errors. For the current clinically applied field sizes and a clinically relevant combination of set-up errors and breathing motion, the EUD of the central plane of the CTV is reduced by 3.3 Gy, at maximum, relative to homogeneous irradiation of the CTV to 70 Gy, for our worst case scenario
Primary Subject
Source
S0167814001003498; Copyright (c) 2001 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Purpose: A disadvantage of ovoid shields in a Fletcher-type applicator is that these shields cause artifacts on post implant CT images. CT images, however, make it possible to calculate the dose distribution in the rectum and the bladder. To be able to estimate the possible advantage of having CT information over the use of ovoid shields without having CT information, we investigated the influence of shielding segments in a Fletcher-type Selectron-LDR applicator on the dose distribution in rectum and bladder. Methods and Materials: Contours of rectum and bladder were delineated on transaxial CT slices of 15 unshielded applications. Of the volumes contained within these structures dose-volume histograms (DVHs) were calculated. In a similar way, DVHs of simulated shielded applications were calculated. The reduction, due to shielding, of the dose to the 2 cm3 (D2) and 5 cm3 (D5) volume of the cumulative DVHs of rectum and bladder, were determined. An isodose pattern in the sagittal plane through the center of each applicator was plotted to compare the location of the shielded area with the location of maximum dose in rectum and bladder in the unshielded situation. In two cases local dose reductions to the rectal wall were determined by calculating the dose in points at 10-mm intervals on the rectal contours. Results: For the rectum, the reduction of D2 ranged from 0 to 11.1%, with an average of 5.0%; the reduction of D5 ranged from 2.3 to 12.1%, with an average of 6.4%. The reduction of D2 and D5 for the bladder ranged from 0 to 11.9% and from 0 to 11.6%, with average values of 2.2 and 2.6%, respectively. In 8 out of 15 cases the rectal maximum dose was located inferior to the shielded area. In all cases except one the bladder maximum dose was located superior to the shielded area. Local dose reductions on the rectal wall can be as high as 30% or more in an optimally shielded area. Conclusions: Reductions of D2 and D5 to rectum and bladder due to shielding are rather small, because the shielded area does usually not coincide with the high dose region and even if it does, the shielded area is too small to result in large reductions of these values. Because local dose reductions vary largely, one should proceed with caution when calculating the dose in just one rectal or bladder reference point. Because large overall dose reductions cannot be achieved with shielding, it is safe to use an unshielded applicator when post implant CT images are used to realize optimized dose distributions
Primary Subject
Source
S0360301697002988; Copyright (c) 1997 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: Argentina
Record Type
Journal Article
Journal
International Journal of Radiation Oncology, Biology and Physics; ISSN 0360-3016; ; CODEN IOBPD3; v. 39(1); p. 237-245
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Background and purpose: To compare and evaluate intensity modulated (IMRT) and non-intensity modulated radiotherapy techniques in the treatment of the left breast and upper internal mammary lymph node chain. Material and methods: The breast, upper internal mammary chain (IMC), heart and lungs were delineated on a computed tomography (CT)-scan for 12 patients. Three different treatment plans were created: (1) tangential photon fields with oblique IMC electron-photon fields with manually optimized beam weights and wedges, (2) wide split tangential photon fields with a heart block and computer optimized wedge angles, and (3) IMRT tangential photon fields. For the IMRT technique, an inverse planning program (KonRad) generated the intensity profiles and a clinical three-dimensional treatment planning system (U-MPlan) optimized the segment weights. U-MPlan calculated the dose distribution for all three techniques. The normal tissue complication probabilities (NTCPs) for the organs at risk (ORs) were calculated for comparison. Results: The average root mean square deviation of the differential dose-volume histogram of the breast planning target volume was 4.6, 3.9 and 3.5% and the average mean dose to the IMC was 97.2, 108.0 and 99.6% for the oblique electron, wide split tangent and IMRT techniques, respectively. The average NTCP for the ORs (i.e. heart and lungs) were comparable between the oblique electron and IMRT techniques (≤0.7%). The wide split tangent technique resulted in higher NTCP values (≥2%) for the ORs. Conclusions: The lowest NTCP values were found with the oblique electron and the IMRT techniques. The IMRT technique had the best breast and IMC target coverage
Primary Subject
Source
S0167814001004728; Copyright (c) 2002 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Background and purpose: To assess the effect of differences in the calculation of the dose outside segment edges on the overall dose distribution and the optimisation process of intensity modulated radiation therapy (IMRT) treatment plans. Patients and methods: Accuracy of dose calculations of two treatment planning systems (TPS1 and TPS2) was assessed, to ensure that they are both suitable for IMRT treatment planning according to published guidelines. Successively, 10 treatment plans for patients with prostate and head and neck tumours were calculated in both systems. The calculations were compared in selected points as well as in combination with volumetric parameters concerning the planning target volume (PTV) and organs at risk. Results: For both planning systems, the calculations agree within 2.0% or 3 mm with the measurements in the high-dose region for single and multiple segment dose distributions. The accuracy of the dose calculation is within the tolerances proposed by recent recommendations. Below 35% of the prescribed dose, TPS1 overestimates and TPS2 underestimates the measured dose values, TPS2 being closer to the experimental data. The differences between TPS1 and TPS2 in the calculation of the dose outside segments explain the differences (up to 50% of the local value) found in point dose comparisons. For the prostate plans, the discrepancies between the TPS do not translate into differences in PTV coverage, normal tissue complication probability (NTCP) values and results of the plan optimisation process. The dose-volume histograms (DVH) of the rectal wall differ below 60 Gy, thus affecting the plan optimisation if a cost function would operate in this dose region. For the head and neck cases, the two systems give different evaluations of the DVH points for the PTV (up to 22% differences in target coverage) and the parotid mean dose (1.0-3.0 Gy). Also the results of the optimisation are influenced by the choice of the dose calculation algorithm. Conclusions: In IMRT, the accuracy of the dose calculation outside segment edges is important for the determination of the dose to both organs at risks and target volumes and for a correct outcome of the optimisation process. This aspect should therefore be of major concern in the commissioning of a TPS intended for use in IMRT. Fulfilment of the accuracy criteria valid for conformal radiotherapy is not sufficient. Three-dimensional evaluation of the dose distribution is needed in order to assess the impact of dose calculation accuracy outside the segment edges on the total dose delivered to patients treated with IMRT
Primary Subject
Source
S0167814003003335; Copyright (c) 2003 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: Argentina
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] Background and purpose: Conformal radiotherapy requires accurate dose calculation at the dose specification point, at other points in the planning target volume (PTV) and in organs at risk. To assess the limitations of treatment planning of lung tumours, errors in dose values, calculated by some simple tissue inhomogeneity correction algorithms available in a number of currently applied treatment planning systems, have been quantified. Materials and methods: Single multileaf collimator-shaped photon beams of 6, 8, 15 and 18 MV nominal energy were used to irradiate a 50 mm diameter spherical solid tumour, simulated by polystyrene, which was located centrally inside lung tissue, simulated by cork. The planned dose distribution was made conformal to the PTV, which was a 15 mm three-dimensional expansion of the tumour. Values of both the absolute dose at the International Commission on Radiation Units and Measurement (ICRU) reference point and relative dose distributions inside the PTV and in the lung were calculated using three inhomogeneity correction algorithms. The algorithms investigated in this study are the pencil beam algorithm with one-dimensional corrections, the modified Batho algorithm and the equivalent path length algorithm. The calculated data were compared with measurements for a simple beam set-up using radiographic film and ionization chambers. Results: For this specific configuration, deviations of up to 3.5% between calculated and measured values of the dose at the ICRU reference point were found. Discrepancies between measured and calculated beam fringe values (distance between the 50 and 90% isodose lines) of up to 14 mm have been observed. The differences in beam fringe and penumbra width (20-80%) increase with increasing beam energy. Our results demonstrate that an underdosage of the PTV up to 20% may occur if calculated dose values are used for treatment planning. The three algorithms predict a considerably higher dose in the lung, both along the central beam axis and in the lateral direction, compared with the actual delivered dose values. Conclusions: The dose at the ICRU reference point of such a tumour in lung geometry is calculated with acceptable accuracy. Differences between calculated and measured dose distributions are primarily due to changes in electron transport in the lung, which are not adequately taken into account by the simple tissue inhomogeneity correction algorithms investigated in this study. Particularly for high photon beam energies, clinically unacceptable errors will be introduced in the choice of field sizes employed for conformal treatments, leading to underdosage of the PTV. In addition, the dose to the lung will be wrongly predicted which may influence the choice of the prescribed dose level in dose-escalation studies
Primary Subject
Source
S0167814001003875; Copyright (c) 2001 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Background and purpose: To compare intensity-modulated treatment plans of patients with head and neck cancer generated by forward and inverse planning. Materials and methods: Ten intensity-modulated treatment plans, planned and treated with a step and shoot technique using a forward planning approach, were retrospectively re-planned with an inverse planning algorithm. For this purpose, two strategies were applied. First, inverse planning was performed with the same beam directions as forward planning. In addition, nine equidistant, coplanar incidences were used. The main objective of the optimisation process was the sparing of the parotid glands beside an adequate treatment of the planning target volume (PTV). Inverse planning was performed both with pencil beam and Monte Carlo dose computation to investigate the influence of dose computation on the result of the optimisation. Results: In most cases, both inverse planning strategies managed to improve the treatment plans distinctly due to a better target coverage, a better sparing of the parotid glands or both. A reduction of the mean dose by 3-11 Gy for at least one of the parotid glands could be achieved for most of the patients. For three patients, inverse planning allowed to spare a parotid gland that had to be sacrificed by forward planning. Inverse planning increased the number of segments compared to forward planning by a factor of about 3; from 9-15 to 27-46. No significant differences for PTV and parotid glands between both inverse planning approaches were found. Also, the use of Monte Carlo instead of pencil beam dose computation did not influence the results significantly. Conclusion: The results demonstrate the potential of inverse planning to improve intensity-modulated treatment plans for head and neck cases compared to forward planning while retaining clinical utility in terms of treatment time and quality assurance
Primary Subject
Source
S0167814003003062; Copyright (c) 2003 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: Argentina
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] Purpose: With the mean lung dose (MLD) as an estimator for the normal tissue complication probability (NTCP) of the lung, we assessed whether the probability of tumor control of lung tumors might be increased by dose escalation in combination with a reduction of field sizes, thus increasing target dose inhomogeneity while maintaining a constant MLD. Methods and Materials: An 8-MV AP-PA irradiation of a lung tumor, located in a cylindrically symmetric lung-equivalent phantom, was modeled using numerical simulation. Movement of the clinical target volume (CTV) due to patient breathing and setup errors was simulated. The probability of tumor control, expressed as the equivalent uniform dose (EUD) of the CTV, was assessed as a function of field size, under the constraint of a constant MLD. The approach was tested for a treatment of a non-small cell lung cancer (NSCLC) patient using the beam directions of the clinically applied treatment plan. Results: In the phantom simulation it was shown that by choosing field sizes that ensured a minimum dose of 95% in the CTV ('conventional' plan) taking into account setup errors and tumor motion, an EUD of the CTV of 43.8 Gy can be obtained for a prescribed dose of 44.2 Gy. By reducing the field size and thus shifting the 95% isodose surface inwards, the EUD increases to a maximum of 68.3 Gy with a minimum dose in the CTV of 55.2 Gy. This increase in EUD is caused by the fact that field size reduction enables escalation of the prescribed dose while maintaining a constant MLD. Further reduction of the field size results in decrease of the EUD because the minimum dose in the CTV becomes so low that it has a predominant effect on the EUD, despite further escalation of the prescribed dose. For the NSCLC patient, the EUD could be increased from an initial 62.2 Gy for the conventional plan, to 83.2 Gy at maximum. In this maximum, the prescribed dose is 88.1 Gy, and the minimum dose in the CTV is 67.4 Gy. In this case, the 95% isodose surface is conformed closely to the 'static' CTV during treatment planning. Conclusions: Iso-NTCP escalation of the probability of tumor control is possible for lung tumors by reducing field sizes and allowing a larger dose inhomogeneity in the CTV. Optimum field sizes can be derived, having the highest EUD and highest minimum dose in the CTV under condition of a constant NTCP of the lungs. We conclude that the concept of homogeneous dose in the target volume is not the best approach to reach the highest probability of tumor control for lung tumors
Primary Subject
Source
S0360301601017291; Copyright (c) 2001 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
International Journal of Radiation Oncology, Biology and Physics; ISSN 0360-3016; ; CODEN IOBPD3; v. 51(5); p. 1290-1298
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Background and purpose: The low density of lung tissue causes a reduced attenuation of photons and an increased range of secondary electrons, which is inaccurately predicted by the algorithms incorporated in some commonly available treatment planning systems (TPSs). This study evaluates the differences in dose in normal lung tissue computed using a simple and a more correct algorithm. We also studied the consequences of these differences on the dose-effect relations for radiation-induced lung injury. Materials and methods: The treatment plans of 68 lung cancer patients initially produced in a TPS using a calculation model that incorporates the equivalent-pathlength (EPL) inhomogeneity-correction algorithm, were recalculated in a TPS with the convolution-superposition (CS) algorithm. The higher accuracy of the CS algorithm is well-established. Dose distributions in lung were compared using isodoses, dose-volume histograms (DVHs), the mean lung dose (MLD) and the percentage of lung receiving >20 Gy (V20). Published dose-effect relations for local perfusion changes and radiation pneumonitis were re-evaluated. Results: Evaluation of isodoses showed a consistent overestimation of the dose at the lung/tumor boundary by the EPL algorithm of about 10%. This overprediction of dose was also reflected in a consistent shift of the EPL DVHs for the lungs towards higher doses. The MLD, as determined by the EPL and CS algorithm, differed on average by 17±4.5% (±1SD). For V20, the average difference was 12±5.7% (±1SD). For both parameters, a strong correlation was found between the EPL and CS algorithms yielding a straightforward conversion procedure. Re-evaluation of the dose-effect relations showed that lung complications occur at a 12-14% lower dose. The values of the TD50 parameter for local perfusion reduction and radiation pneumonitis changed from 60.5 and 34.1 Gy to 51.1 and 29.2 Gy, respectively. Conclusions: A simple tissue inhomogeneity-correction algorithm like the EPL overestimates the dose to normal lung tissue. Dosimetric parameters for lung injury (e.g. MLD, V20) computed using both algorithms are strongly correlated making an easy conversion feasible. Dose-effect relations should be refitted when more accurate dose data is available
Primary Subject
Source
S0167814003001956; Copyright (c) 2003 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: Argentina
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
Theuws, Jacqueline C.M.; Seppenwoolde, Yvette; Kwa, Stefan L.S.; Boersma, Liesbeth J.; Damen, Eugene M.F.; Baas, Paul; Muller, Sara H.; Lebesque, Joos V., E-mail: jlebes@nki.nl2000
AbstractAbstract
[en] Purpose: To assess the recovery from early local pulmonary injury after irradiation and to determine whether regional differences exist. Methods: For 110 patients treated for breast cancer or malignant lymphoma, single photon emission computed tomography (SPECT) perfusion and ventilation scans and CT scans were made before, 3, 18, and 48 months after radiotherapy. Dose-effect relations for changes in local perfusion, ventilation, and density were determined for each individual patient using spatially correlated SPECT and CT data sets, for each follow-up period. Average dose-effect relations for both subgroups were determined, as well as dose-effect relations for different regions. Results: In general, partial improvement of local pulmonary injury was observed between 3 and 18 months for each of the three endpoints. After 18 months, no further improvement was seen. Patients with breast cancer and malignant lymphoma showed a similar improvement (except for the perfusion parameter), which was attributed to a recovery from the early radiation response and could not be explained by contraction effects of fibrosis of lung parenchyma. No regional differences in radiosensitivity 18 months after treatment were observed, except for the dorsal versus ventral region. This difference was attributed to a gravity-related effect in the measuring procedure. Conclusion: For all patients, a partial recovery from early local perfusion, ventilation, and density changes, was seen between 3 and 18 months after radiotherapy. After 18 months, local lung function did not further improve (lymphoma patients)
Primary Subject
Secondary Subject
Source
S0360301600005460; Copyright (c) 2000 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
International Journal of Radiation Oncology, Biology and Physics; ISSN 0360-3016; ; CODEN IOBPD3; v. 47(5); p. 1201-1208
Country of publication
BIOLOGICAL EFFECTS, BIOLOGICAL RADIATION EFFECTS, BODY, COMPUTERIZED TOMOGRAPHY, DIAGNOSTIC TECHNIQUES, DISEASES, EMISSION COMPUTED TOMOGRAPHY, GLANDS, IMMUNE SYSTEM DISEASES, INJURIES, MEDICINE, NEOPLASMS, NUCLEAR MEDICINE, ORGANS, PATHOLOGICAL CHANGES, RADIATION EFFECTS, RADIOLOGY, RESPIRATORY SYSTEM, THERAPY, TOMOGRAPHY
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Bos, Luc J.; Damen, Eugene M.F.; Boer, Roel W. de; Mijnheer, Ben J.; McShan, Daniel L.; Fraass, Benedick A.; Kessler, Marc L.; Lebesque, Joos V., E-mail: jlebes@nki.nl2002
AbstractAbstract
[en] Purpose: To reduce the dose in the rectal wall from prostate irradiation at high dose levels. Methods and Materials: Treatment plans in which the boost fields were integrated into the large fields (simultaneous integrated boost [SIB]) were compared with plans in which the large fields and boost fields were planned individually and applied in a sequential manner (sequential boost). Two target volumes were delineated: PTV1, the target volume of the large fields that is irradiated to 68 Gy, and PTV2, the target volume of the boost fields that is irradiated to 10 Gy. The sequential boost and the SIB were normalized to the mean dose in PTV2, being 78 Gy. We used a five-field intensity-modulated radiotherapy (IMRT) technique, applied in a step and shoot mode, and included beam weight optimization. A set of 5 patients with varying degree of overlap between PTV1 and the rectal wall was used for analysis. Results: The SIB resulted in a reduction of the dose in the rectal wall. Rectal normal tissue complication probability (NTCP) decreased for the SIB, on average, by a factor of almost 2, compared with the sequential boost. Conclusion: The SIB reduced the dose in the rectal wall, compared with the sequential boost technique
Primary Subject
Source
S0360301601026761; Copyright (c) 2002 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
International Journal of Radiation Oncology, Biology and Physics; ISSN 0360-3016; ; CODEN IOBPD3; v. 52(1); p. 254-265
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
1 | 2 | Next |