AbstractAbstract
[en] The range R distribution g(α, R) of particles having lost an amount α of energy is connected with the energy epsilon distribution h(R, epsilon) of particles passing through a thickness R of thin absorber. In order to obtain the moments of g(α, R), we must solve a Fredholm integral equation of the second kind
[fr]
On etudie la densite de probabilite g(α, R) du parcours R associe au depot d'une energie α et la connexion avec h(R, epsilon), densite de probabilite de la perte d'energie epsilon relative a un parcours R. Le calcul des moments de g(α, R) revient a la resolution d'une equation integrale de Fredholm de seconde especeOriginal Title
Fluctuations du parcours de particules chargees ayant depose la meme quantite d'energie dans la matiere
Primary Subject
Record Type
Journal Article
Journal
Journal de Physique; ISSN 0302-0738; ; v. 44(2); p. 137-140
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] It is considered the problem of neutron absorption by a slab of absorbing and multiplying medium, within the framework of the theory of birth and death process. The number of transmitted neutrons is a random variable the probability of which is a solution of Chapman-Kolmogorof equations
Primary Subject
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] The energy straggling distributions of particles passing through a thin absorber are solutions of an integro-differential equation of transport the Green's function of which is given as an Edgeworth's series. The efficiency of the method is illustrated by the calculations for 50 MeV protons passing through 0.127 g/cm2 of lead. (Auth.)
Original Title
Fluctuations de perte d'energie de particules passant a travers une faible epaisseur de matiere
Primary Subject
Secondary Subject
Record Type
Journal Article
Journal
Nuclear Instruments and Methods; v. 128(1); p. 191-193
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue