AbstractAbstract
[en] Entanglement has been studied extensively for understanding the mysteries of non-classical correlations between quantum systems. In the bipartite case, there are well known monotones for quantifying entanglement such as concurrence, relative entropy of entanglement (REE) and negativity, which cannot be increased via local operations. The study on these monotones has been a hot topic in quantum information [1-7] in order to understand the role of entanglement in this discipline. It can be observed that from any arbitrary quantum pure state a mixed state can obtained. A natural generalization of this observation would be to consider local operations classical communication (LOCC) transformations between general pure states of two parties. Although this question is a little more difficult, a complete solution has been developed using the mathematical framework of the majorization theory [8]. In this work, we analyze the relation between entanglement monotones concurrence and negativity with respect to majorization for general two-level quantum systems of two particles.
Primary Subject
Source
APMAS '15): 5. international advances in applied physics and materials science congress and exhibition; Oludeniz (Turkey); 16-19 Apr 2015; (c) 2016 Author(s); Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Literature Type
Conference
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] Quantum entanglement is at the heart of quantum information processing. Ordering the quantum systems due to their entanglement is a popular problem of the field. For two level (qubit) systems of two particles, state ordering has been studied with respect to well-known entanglement measures such as Concurrence, Negativity and Relative Entropy of Entanglement (REE) [1-5]. In this work, we study the state ordering of the three-level quantum systems of two particles with respect to Concurrence and Negativity. In particular, constructing 10K random states and calculating their Concurrences and Negativities, we obtain the orderings of the states and present our results which are interesting when compared to that of two-level systems
Primary Subject
Source
APMAS 2014: 4. International Congress in Advances in Applied Physics and Materials Science; Fethiye (Turkey); 24-27 Apr 2014; (c) 2015 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Literature Type
Conference
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL