Caldwell, Curtis B.; Mah, Katherine; Ung, Yee C.; Danjoux, Cyril E.; Balogh, Judith M.; Ganguli, S. Nimu; Ehrlich, Lisa E., E-mail: curtis.caldwell@swchsc.on.ca2001
AbstractAbstract
[en] Purpose: To quantify interobserver variation in gross tumor volume (GTV) localization using CT images for patients with non-small-cell lung carcinoma and poorly defined tumors on CT and to determine whether variability would be reduced if coregistered 2-[18F]fluoro-2-deoxy-d-glucose (FDG)-hybrid positron emission tomography (PET) with CT images were used. Methods and Materials: Prospectively, 30 patients with non-small-cell lung carcinoma had CT and FDG-hybrid PET examinations in radiation treatment position on the same day. Images were coregistered using eight fiducial markers. Guidelines were established for contouring GTVs. Three radiation oncologists performed localization independently. The coefficient of variation was used to assess interobserver variability. Results: The size of the GTV defined showed great variation among observers. The mean ratios of largest to smallest GTV were 2.31 and 1.56 for CT only and for CT/FDG coregistered data, respectively. The addition of PET reduced this ratio in 23 of 30 cases and increased it in 7. The mean coefficient of variation for GTV based on the combined modalities was significantly smaller (p<0.01) than that for CT data only. Conclusions: High observer variability in CT-based definition of the GTV can occur. A more consistent definition of the GTV can often be obtained if coregistered FDG-hybrid PET images are used
Primary Subject
Source
S0360301601017229; Copyright (c) 2001 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
International Journal of Radiation Oncology, Biology and Physics; ISSN 0360-3016; ; CODEN IOBPD3; v. 51(4); p. 923-931
Country of publication
BETA DECAY RADIOISOTOPES, BETA-PLUS DECAY RADIOISOTOPES, BODY, COMPUTERIZED TOMOGRAPHY, DIAGNOSTIC TECHNIQUES, DISEASES, EMISSION COMPUTED TOMOGRAPHY, FLUORINE ISOTOPES, HOURS LIVING RADIOISOTOPES, ISOMERIC TRANSITION ISOTOPES, ISOTOPES, LIGHT NUCLEI, NEOPLASMS, NUCLEI, ODD-ODD NUCLEI, ORGANS, RADIOISOTOPES, RESPIRATORY SYSTEM, TOMOGRAPHY
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Mah, Katherine; Caldwell, Curtis B.; Ung, Yee C.; Danjoux, Cyril E.; Balogh, Judith M.; Ganguli, S. Nimu; Ehrlich, Lisa E.; Tirona, Romeo, E-mail: kathy.mah@tsrcc.on.ca2002
AbstractAbstract
[en] Purpose: To prospectively study the impact of coregistering 18F-fluoro-deoxy-2-glucose hybrid positron emission tomographic (FDG-PET) images with CT images on the planning target volume (PTV), target coverage, and critical organ dose in radiation therapy planning of non-small-cell lung carcinoma. Methods and Materials: Thirty patients with poorly defined tumors on CT, referred for radical radiation therapy, underwent both FDG-PET and CT simulation procedures on the same day, in radiation treatment position. Image sets were coregistered using external fiducial markers. Three radiation oncologists independently defined the gross tumor volumes, using first CT data alone and then coregistered CT and FDG-PET data. Standard margins were applied to each gross tumor volume to generate a PTV, and standardized treatment plans were designed and calculated for each PTV. Dose-volume histograms were used to evaluate the relative effect of FDG information on target coverage and on normal tissue dose. Results: In 7 of 30 (23%) cases, FDG-PET information changed management strategy from radical to palliative. In 5 of the remaining 23 (22%) cases, new FDG-avid nodes were found within 5 cm of the primary tumor and were included in the PTV. The PTV defined using coregistered CT and FDG-PET would have been poorly covered by the CT-based treatment plan in 17-29% of cases, depending on the physician, implying a geographic miss had only CT information been available. The effect of FDG-PET on target definition varied with the physician, leading to a reduction in PTV in 24-70% of cases and an increase in 30-76% of cases. The relative change in PTV ranged from 0.40 to 1.86. On average, FDG-PET information led to a reduction in spinal cord dose but not in total lung dose, although large differences in dose to the lung were seen for a few individuals. Conclusion: The coregistration of planning CT and FDG-PET images made significant alterations to patient management and to the PTV. Ultimately, changes to the PTV resulted in changes to the radiation treatment plans for the majority of cases. Where possible, we would recommend that FDG-PET data be integrated into treatment planning of non-small-cell lung carcinoma, particularly for three-dimensional conformal techniques
Primary Subject
Source
S0360301601018247; Copyright (c) 2002 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
International Journal of Radiation Oncology, Biology and Physics; ISSN 0360-3016; ; CODEN IOBPD3; v. 52(2); p. 339-350
Country of publication
BETA DECAY RADIOISOTOPES, BETA-PLUS DECAY RADIOISOTOPES, BODY, COMPUTERIZED TOMOGRAPHY, DIAGNOSTIC TECHNIQUES, DISEASES, EMISSION COMPUTED TOMOGRAPHY, FLUORINE ISOTOPES, HOURS LIVING RADIOISOTOPES, ISOMERIC TRANSITION ISOTOPES, ISOTOPES, LIGHT NUCLEI, MEDICINE, NEOPLASMS, NUCLEAR MEDICINE, NUCLEI, ODD-ODD NUCLEI, ORGANS, RADIOISOTOPES, RADIOLOGY, RESPIRATORY SYSTEM, THERAPY, TOMOGRAPHY
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue