Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.036 seconds
Pedro, Georges; Blanzat, Bernard; Albrecht, Pierre; Berthelin, Jacques; Boudot, Jean-Pierre; Munier-Lamy, Colette; Cossa, Daniel; Feix, Isabelle; Guillaumont, Robert; HUC, Alain Yves; Lavelle, Patrick; Lebrun, Michel; Lucas, Yves; Metivier, Henri; Ourisson, Guy; Raimbault, Patrick; Ranger, Jacques; Gerard, Frederic; Schmidt-Laine, Claudine; Dercourt, Jean; Gaillardet, Jerome; Bourrie, Guilhem; Trolard, Fabienne; Gerard, Frederic; Dambrine, Etienne; Meunier, Jean Dominique; Benoit, Marc; Breda, Nathalie; Dupouey, Jean-Luc; Granier, Andre; Franc, Alain; GARBAYE, Jean; Martin, Francis; Landmann, Guy; Loustau, Denis; Martinez, Jose; Crochon, Philippe; Gay, Jean-Didier; Peres, Jean-Marc; Tamponnet, Christian; Andreux, Francis; Tusseauvuillemin, Marie-Helene; Barker, Evelyne; Bouisset, Patrick; Germain, Pierre; Masson, Olivier; Boust, Dominique; Bailly du Bois, Pascal; Abdelouas, Abdesselam; Grambow, Bernd; Ansoborlo, Erich; Chiappini, Remo; Lobinski, Ryzsard; Montavon, Gilles; Moulin, Christophe; Moulin, Valerie; Ollivier, Bernard; Haeseler, Franck; Prieur, Daniel; Magot, Michel; Charmasson, Sabine; Poss, Roland; Grimaldi, Catherine; Grimaldi, Michel; Malet, Caroline
EDP Sciences, 17 avenue du Hoggar, PA de Courtaboeuf, 91944 Les Ulis cedex A (France); Academie des Sciences, 23 Quai de Conti, 75006 Paris (France)2007
EDP Sciences, 17 avenue du Hoggar, PA de Courtaboeuf, 91944 Les Ulis cedex A (France); Academie des Sciences, 23 Quai de Conti, 75006 Paris (France)2007
AbstractAbstract
[en] The aim of this report is to demonstrate that the biogeochemical approach provides a uniting framework for managing the environment of our planet and in particular the environment of a planet reshaped by Man in the best possible way. This framework is based on the study of the biogeochemical cycles that characterize the biosphere (i.e. the place where life is present) and that are naturally linked to the Earth's overall geochemical cycles. The goal of this report is not to describe the biogeochemical cycles of all the chemical elements, but to show why and how these cycles have a significant role in the evolution of a planet shaped by man. In order to do so, the report is divided into two units and four parts: In the first unit, all the information that is directly linked to understanding geochemical cycles is brought together. It is divided in two parts. The first part concerns the description of the biogeochemical cycle of some of the elements that play a major role in the bio-geosphere. We have focused on: - carbon, because it is involved in all of the cycles, i.e. the atmospheric, ecological and geological cycles (chapter 1); - nitrogen, phosphorus and sulfur because they are specific to the living world and because their role is likely to be primordial in the environment (chapter 2); - silicon, aluminum and iron because they allow us to make a bridge between the ecological and the geological systems (chapter 3); - finally, radionuclides (natural and artificial), due to their impact on the biological environment (chapter 4); The second part concerns the biogeochemical study of a number of representative environments of the natural and man-shaped planet. Regarding natural ecosystems, we have focused on: - forest ecosystems, which are highly characteristic of terrestrial environments and which are the site of often very efficient biogeochemical recycling (chapter 5.1); - oceanic environments. Although not part of our topic, the biogeochemistry of these environments is described very briefly to show that in this field everything at the surface of the planet is linked (chapter 5.2). In environments that are highly influenced by Man where the excess and overload of certain elements can lead to dysfunctions, we have focused on three types of environments: - the agricultural sector, where we looked at the practice of manuring using exogenous organic matter (EOM) which is found in areas of intensive breeding farms (chapter 6.1); - the industrial sector; we present a number of environments where certain elements are in excess, such as can happen in mining and metallurgy areas (chapter 6.2); - Finally, we looked at estuary environments because they are the collection point for numerous contaminants coming from the continents (chapter 6.3). The second unit proceeds from all we have learnt in the first, briefly that biogeochemical cycles are the consequence of complex systems that necessitate many scientific fields and numerous data. This consideration implies: a) further studies in certain scientific areas; b) a particular interest in data collection; c) the reliance on model building. Point a) constitutes the third part which stresses the development of all venues concerning the role of the soil as a living environment. Knowledge is still lacking in this area. Concerning this issue, two points are considered in particular: - research on micro-organisms that are crucial for transforming waste and other residues from living beings and their return to the mineral state (chapter 7); - research on soil organic matter, which plays a fundamental role because it is an intermediate between the mineral world and the living world (chapter 8). Points b) and c) are treated in the fourth part of the report which discusses model operations (chapter 9) and problems linked to a generalized collection of data (for instance, observatories, networks) (chapter 10)
Original Title
Cycles biogeochimiques et ecosystemes continentaux. Rapport sur la science et la technologie No. 27
Primary Subject
Source
Nov 2007; 482 p; ISBN 978-2-86883-938-1; ; Available from the INIS Liaison Officer for France, see the INIS website for current contact and E-mail addresses
Record Type
Miscellaneous
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue