Filters
Results 1 - 10 of 27
Results 1 - 10 of 27.
Search took: 0.022 seconds
Sort by: date | relevance |
AbstractAbstract
[en] Removal of T-lymphocytes from marrow inoculum with monoclonal antibody plus complement permitted establishment of long-lived allogeneic chimeras between C57BL/6 and AKR/J mice. Development of leukemia was prevented for 15 mo. Protection from leukemia occurred with both young (4 wk) and older (4 mo) recipients. AKR mice reconstituted with syngeneic marrow or control AKR mice all developed leukemia-lymphoma before 1 yr of age. During spontaneous lymphomagenesis in AKR mice, amplified expression of gag or env gene-coded virus antigens on the surface of thymocytes preceded leukemia development and evidence for amplification of other virus genes. These changes generally appeared before 6 mo. Similar viral gene expression and viral gene amplification occurred in the thymus and spleen cells of leukemia-resistant chimeric mice. Using monoclonal antibodies to Mr 70,000 glycoprotein epitopes characteristic of ecotropic, xenotropic, or dualtropic viruses, antigens marking each virus form were found on thymocytes of allogeneic 4-wk and 4-mo chimeras as well as on the cells of AKR mice and of AKR mice reconstituted with syngeneic marrow. Flow cytometric analysis showed amplification of the virus genes in mice protected from leukemia-lymphoma by allogeneic bone marrow transplantation from leukemia-resistant mice. Allogeneic chimeras and syngeneically transplanted mice both showed evidence of accelerated viremia and of recombinant virus formation. The findings suggest that an event essential to leukemogenesis which occurs within the AKR lymphoid cells or their environment is lacking in the allogeneic chimeras. The nature of this influence of a resistance gene or genes introduced into AKR mice by allogeneic bone marrow transplantation deserves further study
Primary Subject
Record Type
Journal Article
Journal
Country of publication
ANIMAL CELLS, ANIMALS, ANTIBODIES, BIOLOGICAL MATERIALS, BLOOD, BLOOD CELLS, BODY, BODY FLUIDS, CHIMERAS, CONNECTIVE TISSUE CELLS, DISEASES, HEMATOPOIETIC SYSTEM, HEMIC DISEASES, LEUKOCYTES, LYMPHATIC SYSTEM, MAMMALS, MATERIALS, MICROORGANISMS, MOSAICISM, NEOPLASMS, ONCOGENIC VIRUSES, ORGANS, PARASITES, RODENTS, SOMATIC CELLS, TISSUES, VERTEBRATES, VIRUSES
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Autoimmune-prone BXSB male mice were supralethally irradiated and transplanted with CBA/H bone marrow cells. A complete and long-term chimerism was established when donor mice had been induced to develop tolerance of BXSB male antigens by combined treatment with BXSB male spleen cells and cyclophosphamide. Such chimeras did not express autoimmune phenomena or develop lethal autoimmune manifestations. Nor did the recipient mice develop the wasting syndrome or evidence of persistent immunodeficiencies that have been seen in other strains of autoimmune-resistant mice that had been transplanted with bone marrow cells across major histocompatibility complex barriers following an initial purging of the bone marrow of Thy-1+ cells using anti-Thy-1+C
Primary Subject
Record Type
Journal Article
Journal
Proceedings of the National Academy of Sciences of the United States of America; ISSN 0027-8424; ; CODEN PNASA; v. 85(7); p. 2235-2239
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
No abstract available
Primary Subject
Record Type
Journal Article
Journal
Journal of Immunology; v. 109(6); p. 1405-1407
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
No abstract available
Primary Subject
Record Type
Journal Article
Journal
Proc. Nat. Acad. Sci. U. S. A; v. 68(9); p. 2083-2086
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
No abstract available
Original Title
Use of radiation for animal experiments on GVH disease
Primary Subject
Record Type
Journal Article
Journal
Progr. Clin. Pathol; v. 5 p. 1-18
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Protection and delayed-type hypersensitivity (DTH) to the facultative intracellular bacterium Listeria monocytogenes (L.m.) were studied in allogeneic and syngeneic bone marrow chimeras. Lethally irradiated AKR (H-2k) mice were successfully reconstituted with marrow cells from C57BL/10 (B10) (H-2b), B10 H-2-recombinant strains or syngeneic mice. Irradiated AKR mice reconstituted with marrow cells from H-2-compatible B10.BR mice, [BR----AKR], as well as syngeneic marrow cells, [AKR----AKR], showed a normal level of responsiveness to the challenge stimulation with the listeria antigens when DTH was evaluated by footpad reactions. These mice also showed vigorous activities in acquired resistance to the L.m. By contrast, chimeric mice that had total or partial histoincompatibility at the H-2 determinants between donor and recipient, [B10----AKR], [B10.AQR----AKR], [B10.A(4R)----AKR], or [B10.A(5R)----AKR], were almost completely unresponsive in DTH and antibacterial immunity. However, when [B10----AKR] H-2-incompatible chimeras had been immunized with killed L.m. before challenge with live L.m., these mice manifested considerable DTH and resistance to L.m. These observations suggest that compatibility at the entire MHC between donor and recipient is required for bone marrow chimeras to be able to manifest DTH and protection against L.m. after a short-term immunization schedule. However, this requirement is overcome by a preceding or more prolonged period of immunization with L.m. antigens. These antigens, together with marrow-derived antigen-presenting cells, can then stimulate and expand cell populations that are restricted to the MHC (H-2) products of the donor type
Primary Subject
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] The current studies were designed to evaluate the effectiveness of marrow transplantation within and outside the major histocompatibility complex (MHC) on the long-term survival and occurrence of spontaneous leukemia in AKR mice. AKR mice, which were lethally irradiated and received MHC-matched marrow from CBA/J mice (CBA----AKR), never developed leukemia and were alive and remained healthy for up to 280 days post-transplant. These long-term surviving chimeras possessed substantial immune vigor when both cell-mediated and humoral responses were tested. Lethally irradiated AKR mice, which had received MHC-mismatched marrow (anti-Thy-1.2 treated or nontreated) from C57BL/6J mice (B6----AKR), never developed leukemia and survived up to 170 days post-transplant. However, both groups of these chimeras began dying 180 to 270 days post-transplant due to a disease process which could not be readily identified. Histological analysis of B6----AKR chimeras revealed severe lymphoid cell depletion in thymus and spleen; however, none of these chimeras exhibited classical features of acute graft versus host disease. Concanavalin A mitogenesis, primary antibody responses to sheep red blood cells and the production of interleukin 2 (IL-2) were suppressed in B6----AKR chimeras. IL-2 treatment of B6----AKR chimeras was shown to partially correct these deficiencies without stimulating mixed lymphocyte responsiveness to donor or host lymphocytes. These studies indicate that the use of MHC-mismatched marrow for the prevention of spontaneous AKR leukemia may rely on augmentative IL-2 therapy for complete immune reconstitution of leukemia-free chimeras
Primary Subject
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] After lethal irradiation long-lived, immunologically vigorous C3Hf mice were produced by treatment with syngeneic fetal liver cells or syngeneic newborn or adult spleen cells. Treatment of lethally irradiated mice with syngeneic or allogeneic newborn thymus cells or allogeneic newborn or adult spleen cells regularly led to fatal secondary disease or graft-versus-host reactions. Treatment of the lethally irradiated mice with fetal liver cells regularly yielded long-lived, immunologically vigorous chimeras. The introduction of the fetal liver cells into the irradiated mice appeared to be followed by development of immunological tolerance of the donor cells. The findings suggest that T-cells at an early stage of differentiation are more susceptible to tolerance induction than are T-lymphocytes at later stages of differentiation. These investigations turned up a perplexing paradox which suggests that high doses of irradiation may injure the thymic stroma, rendering it less capable of supporting certain T-cell populations in the peripheral lymphoid tissue. Alternatively, the higher and not the lower dose of irradiation may have eliminated a host cell not readily derived from fetal liver precursors which represents an important helper cell in certain cell-mediated immune functions, e.g., graft-versus-host reactions, but which is not important in others, e.g., allograft rejections. The higher dose of lethal irradiation did not permit development or maintenance of a population of spleen cells that could initiate graft-versus-host reactions but did permit the development of a population of donor cells capable of achieving vigorous allograft rejection
Primary Subject
Record Type
Journal Article
Journal
Proceedings of the National Academy of Sciences of the United States of America; v. 72(10); p. 4100-4104
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
No abstract available
Original Title
X radiation
Primary Subject
Record Type
Journal Article
Journal
Proc. Nat. Acad. Sci. U. S. A; v. 71(6); p. 2544-2548
Country of publication
ANIMAL CELLS, ANIMALS, BIOLOGICAL EFFECTS, BIOLOGICAL MATERIALS, BLOOD, BLOOD CELLS, BODY, BODY FLUIDS, CHIMERAS, CONNECTIVE TISSUE CELLS, ELECTROMAGNETIC RADIATION, IONIZING RADIATIONS, IRRADIATION, LEUKOCYTES, LYMPHATIC SYSTEM, MAMMALS, MEDICINE, MOSAICISM, ORGANS, RADIATION EFFECTS, RADIATIONS, RODENTS, SOMATIC CELLS, SURGERY, VERTEBRATES
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Spleen cells from newborn syngeneic and allogeneic mice that lack fully differentiated T lymphocytes can be used as a hematopoietic source to reconstitute both hematopoietic and lymphoid systems of lethally irradiated mice without producing a GVHR. Fetal liver cells from syngeneic and allogeneic mice that lack postthymic T lymphocytes can also be used for hematopoietic and immunologic reconstitution of lethally irradiated mice without producing GVHR. Immunologic deficiency is observed in some experiments in mice given supralethal irradiation (1000 R) and fetal liver as reconstituting hematopoietic tissue. The findings suggest that T cells, at an early stage of differentiation, are more susceptible to tolerance induction than are T lymphocytes at later stages of differentiation and do not, in general, produce GVHR. It is postulated that hematopoietic cells, free of postthymic lymphoid cells, can be used for hematopoietic or immunologic reconstitution and celular engineering without producing GVHD
Original Title
X radiation, mice
Primary Subject
Record Type
Journal Article
Journal
Transplantation Proceedings; v. 8(4); p. 521-525
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
1 | 2 | 3 | Next |