Hancher, C.W.; Taylor, P.A.; Napier, J.M.
Oak Ridge National Lab., Tenn. (USA)1978
Oak Ridge National Lab., Tenn. (USA)1978
AbstractAbstract
[en] Two denitrification fluidized-bed bioreactors of the same length (i.e., 5 m) but with different inside diameters (i.e., 5 and 10 cm) have been operated on feed ranging in nitrate concentration from 200 to 2000 g/m3; thus far, good agreement has been obtained. Two 10-cm-ID bioreactors operating in series have also been tested; the results are in accordance with predicted results based on the performance of a 5-cm-ID bioreactor. The overall denitrification rate in the dual 10-cm-ID bioreactor system was found to be 23 kg N(NO3-)/day-m3 using feed with a nitrate concentration of 1800 g/m3. Data obtained in operating-temperature tests indicate that the maximum denitrification rate is achieved between 22 and 300C. These data will form the basis of the design of our mobile pilot plant which consists of dual 20-cm-ID by 7.3-m-long bioreactors
Primary Subject
Secondary Subject
Source
1978; 36 p; Symposium on biotechnology in energy production; Gatlinburg, TN, USA; 10 - 12 May 1978; Available from NTIS., PC A03/MF A01
Record Type
Report
Literature Type
Conference
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Patton, B.D.; Hancher, C.W.; Pitt, W.W.; Walker, J.F.
Oak Ridge National Lab., TN (USA)1982
Oak Ridge National Lab., TN (USA)1982
AbstractAbstract
[en] Many commercial processes yield nitrate-containing wastewaters that are being discharged to the environment because traditional recovery or disposal methods are economically unacceptable. The anticipated discharge limits (i.e., 10 to 20 g (NO3-)/m3) being considered by many states will not allow continued release of these wastewaters. The new discharge standards can be met economically by use of the fluidizied-bed, biological denitrification process. Research and development studies were conducted with 0.05-, 0.10-, 0.20-, and 0.50-m-diam fluidized-bed bioreactor systems. Feed nitrate concentrations were in the 0 to 10,000 g (NO3-)/m3 range. Using the data from these studies, rate expressions were developed for the destruction of nitrate as a function of nitrate concentration. Methods were also developed for sizing bioreactors and biomass control systems. The sizing methods for fluidized-bed denitrification systems are described, and support systems such as sampling and analysis, instrumentation and controls, utilities, and bacteria storage are discussed. Operation of the process is also briefly discussed to aid the designer. Using the methods presented in this report, fluidized-bed, biological denitrification systems can be designed to treat nitrate wastewater streams
Primary Subject
Source
Jan 1982; 29 p; Available from NTIS., PC A03/MF A01 as DE82007131
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Pitt, W.W. Jr.; Hancher, C.W.; Patton, B.D.; Shumate, S.E. II.
Oak Ridge National Lab., TN (USA)1980
Oak Ridge National Lab., TN (USA)1980
AbstractAbstract
[en] Many of the processing steps in the nuclear fuel cycle generate aqueous effluent streams bearing contaminants that can, because of their chemical or radiological properties, pose an environmental hazard. Concentration of such contaminants must be reduced to acceptable levels before the streams can be discharged to the environment. Two classes of contaminants, nitrates and heavy metals, are addressed in this study. Specific techniques aimed at the removal of nitrates and radioactive heavy metals by biological processes are being developed, tested, and demonstrated. Although cost comparisons between biological processes and current treatment methods will be presented, these comparisons may be misleading because biological processes yield environmentally better end results which are difficult to price. The fluidized-bed biological denitrification process is an environmentally acceptable and economically sound method for the disposal of nonreusable sources of nitrate effluents. A very high denitrification rate can be obtained in a FBR as the result of a high concentration of denitrification bacteria in the bioreactor and the stagewise operation resulting from plug flow in the reactor. The overall denitrification rate in an FBR ranges from 20- to 100-fold greater than that observed for an STR bioreactor. It has been shown that the system can be operated using Ca2+, Na+, or NH4+ cations at nitrate concentrations up to 1 g/liter without inhibition. Biological sorption of uranium and other radionuclides (particularly the actinides) from dilute aqueous waste streams shows considerable promise as a means of recovering these valuable resources and reducing the environmental impact, however, further development efforts are required
Primary Subject
Source
1980; 15 p; 2. DOE environmental control symposium; Reston, VA, USA; 17 - 19 Mar 1980; Available from NTIS., PC A02/MF A01
Record Type
Report
Literature Type
Conference; Numerical Data
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Walker, J.F. Jr.; Hancher, C.W.; Patton, B.D.; Kowalchuk, M.
Oak Ridge National Lab., TN (USA); Goodyear Atomic Corp., Portsmouth, OH (USA)1981
Oak Ridge National Lab., TN (USA); Goodyear Atomic Corp., Portsmouth, OH (USA)1981
AbstractAbstract
[en] There are a number of nitrate-containing wastewater sources, as concentrated as 30 wt % NO3- and as large as 2000 m3/d, in the nuclear fuel cycle as well as in many commercial processes such as fertilizer production, paper manufacturing, and metal finishing. These nitrate-containing wastewater sources can be successfully biologically denitrified to meet discharge standards in the range of 10 to 20 gN(NO3-)/m3 by the use of a fluidized-bed bioreactor. The major strain of denitrification bacteria is Pseudomonas which was derived from garden soil. In the fluidized-bed bioreactor the bacteria are allowed to attach to 0.25 to 0.50-mm-diam coal particles, which are fluidized by the upward flow of influent wastewater. Maintaining the bacteria-to-coal weight ratio at approximately 1:10 results in a bioreactor bacteria loading of greater than 20,000 g/m3. A description is given of the results of two biodenitrification R and D pilot plant programs based on the use of fluidized bioreactors capable of operating at nitrate levels up to 7000 g/m3 and achieving denitrification rates as high as 80 gN(NO3-)/d per liter of empty bioreactor volume. The first of these pilot plant programs consisted of two 0.2-m-diam bioreactors, each with a height of 6.3 m and a volume of 208 liters, operating in series. The second pilot plant was used to determine the diameter dependence of the reactors by using a 0.5-m-diam reactor with a height of 6.3 m and a volume of 1200 liters. These pilot plants operated for a period of six months and two months respectively, while using both a synthetic waste and the actual waste from a gaseous diffusion plant operated by Goodyear Atomic Corporation
Primary Subject
Source
1981; 37 p; 3. symposium on biotechnology in energy production and conservation; Gatlinburg, TN, USA; 12 - 15 May 1981; Available from NTIS., PC A03/MF A01
Record Type
Report
Literature Type
Conference
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Shumate, S.E. II; Hancher, C.W.; Strandberg, G.W.; Scott, C.D.
Oak Ridge National Lab., Tenn. (USA)1978
Oak Ridge National Lab., Tenn. (USA)1978
AbstractAbstract
[en] Nitrates and radioactive heavy metals need to be removed from aqueous effluent streams in the fuel cycle. Biological methods are being developed for reducing nitrate or nitrite to N2 gas and for decreasing dissolved metal concentration to less than 1 g/m3. Fluidized-bed denitrification bioreactors are being tested. Removal of uranium from solution by Saccharomyces cerevisiae and Pseudomonas aeruginosa was studied
Original Title
Denitrification; removal of heavy metals
Primary Subject
Source
1978; 15 p; Waste management fuel cycles; Tucson, AZ, USA; 5 - 8 Mar 1978; Available from NTIS., PC A02/MF A01
Record Type
Report
Literature Type
Conference
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] There are a number of nitrate-containing wastewater sources, as concentrated as 30 wt.% NO3- and as large as 2000 m3/day, in the nuclear fuel cycle. The biological reduction of nitrate in wastewater to gaseous nitrogen, accompanied by the oxidation of a nutrient carbon source to gaseous carbon dioxide, is an ecologically sound and cost-effective method of treating wastewaters containing nitrates. These nitrate-containing wastewater sources can be successfully biologically denitrified to meet discharge standards in the range of 10 to 20 gN(NO3-)/m3 by the use of a fluidized-bed bioreactor. The denitrification bacteria are a mixed culture derived from garden soil; the major strain is Pseudomonas. In the fluidized-bed bioreactor the bacteria are allowed to attach to 0.25- to 0.50-mm-diam coal fluidization particles, which are then fluidized by the upward flow of influent wastewater. Maintaining the bacteria-to-coal weight ratio at approximately 1:10 results in a bioreactor bacteria loading of greater than 20,000 g/m3. This paper describes the results of a biodenitrification R and D program based on the use of fluidized bioreactors capable of operating at nitrate levels up to 7000 g/m3 and achieving denitrification rates as high as 80 g N(NO3-) per day per liter of empty bioreactor volume. 4 figures, 7 tables
Primary Subject
Record Type
Journal Article
Journal
Nuclear and Chemical and Waste Management; v. 2(1); p. 57-70
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Pitt, W.W. Jr.; Hancher, C.W.; Patton, B.D.; Shumate, S.E. II.
Oak Ridge National Lab., TN (USA)1979
Oak Ridge National Lab., TN (USA)1979
AbstractAbstract
[en] Many of the processing steps in the nuclear fuel cycle generate aqueous effluent streams bearing contaminants that can, because of their chemical or radiological properties, pose an environmental hazard. Concentration of such contaminants must be reduced to acceptable levels before the streams can be discharged to the environment. Two classes of contaminants, nitrates and heavy metals, are addressed in this study. Specific techniques aimed at the removal of nitrates and radioactive heavy metals by biological processes are being developed, tested, and demonstrated. Although cost comparisons between biological processes and current treatment methods are presented, these comparisons may be misleading because biological processes yield environmentally better end results which are difficult to price. However, a strong case is made for the use of biological processes for removing nitrates and heavy metals fron nuclear fuel cycle effluents. The estimated costs for these methods are as low as, or lower than, those for alternate processes. In addition, the resulting disposal products - nitrogen gas, CO2, and heavy metals incorporated into microorganisms - are much more ecologically desirable than the end products of other waste treatment methods
Primary Subject
Source
1979; 53 p; Waste management seminar; Oak Ridge, TN, USA; 6 - 7 Mar 1979; Available from NTIS., PC A04/MF A01
Record Type
Report
Literature Type
Conference
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] There are a number of nitrate-containing wastewater sources as concentrated as 30 wt % NO3- and as large as 2000 m3/day, in the nuclear fuel cycle. The biological reduction of nitrate in wastewater to gaseous nitrogen, accompanied by the oxidation of a nutrient carbon source to gaseous carbon dioxide, is an ecoligically sound and cost-effective method of nitrate waste disposal. (auth)
Primary Subject
Record Type
Journal Article
Journal
CIM (Can. Min. Metall.) Bull; ISSN 0317-0926; ; v. 73(819); p. 161-170
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Holmes, J.M.; Blanco, R.E.; Blomeke, J.O.; Clark, W.E.; Godbee, H.W.; Hancher, C.W.; Suddath, J.C.; Whatley, M.E.
Treatment and Storage of High-Level Radioactive Wastes. Proceedings of the Symposium on Treatment and Storage of High-Level Radioactive Wastes1963
Treatment and Storage of High-Level Radioactive Wastes. Proceedings of the Symposium on Treatment and Storage of High-Level Radioactive Wastes1963
AbstractAbstract
[en] The pot-calcination process has successfully converted synthetic non-radioactive Purex, TBP-25 (aluminium, HNO3) and Darex (stainless steel, HNO3) wastes to solids in both bench-scale(24 x 4 in diam.) and engineering-scale (82 X 8 in diam.) pots. The process includes feed evaporation, calcination to 900°C in the pot and recycle of the calciner vapour to the evaporator in a closed loop. Vapour from the evaporator is fractionated to produce water for disposal and nitric acid for re-use. The stainless-steel pot would be sealed after being filled and would serve as both the shipping and ultimate containment vessel. The nitrate content of the calcined solids varied between 60 and 500 ppm. Sulphate volatility during calcination of Purex waste was reduced to less than 0.8% by conversion to thermally stable sodium, magnesium, or calcium salts. Ruthenium volatility from the pot was reduced to less than 20% of the feed by the addition of phosphite or nitric oxide gas to the calciner. Steam stripping to avoid excessive acid build-up in the evaporator limited the volatility of ruthenium from the evaporator to approximately 2% of the feed. Addition of up to 1 ml/1 each of monobutyl and dibutyl phosphate to the feed to simulate solvent degradation products reduced the ruthenium volatility to < 1%. The mercury in TBP wastes was completely volatilized during calcination. Control of a 25-1 hold-up continuous evaporator close-coupled to the. engineering-scale pot calciner was demonstrated and a batch evaporation system was developed during 25 experimental tests. Average feed rates for both systems varied between 8 and 30 1/hr. Small-scale equipment (24 x 4 in diam. pots) for studying fission-product volatilities from actual wastes is installed in a hot cell at Oak Ridge National Laboratory. A 20-1/hr pilot plant for calcination of radioactive Purex, Darex, and TBP-25 wastes in 82 x 6-12-in-diam. pots is being designed for installation at the Idaho Chemical Processing Plant. Provisions will also be included for production of glassy solids in the calciner pots. A programme on mechanical aspects is in progress to develop methods for remotely connecting the calciner pots to the pilot-plant system and sealing them for permanent storage. (author)
[fr]
Par la méthode de calcination en pot (à l'échelle expérimentale: pots de 60 cm de haut et 10 cm de diamètre, et à l'échelle industrielle: 205 cm x 20 cm de diamètre), les auteurs ont transformé en solides les déchets inactifs synthétiques des procédés Purex, TBP-25 (aluminium, HNO3) et Darex (acier inoxydable, HNO3). La méthode comporte l'évaporation de la matière première, la calcination en pot à 900°C, et.le recyclage de la vapeur du calcinateur à l'évaporateur, en circuit fermé. La vapeur provenant de l'évaporateur est dissociée en eau que l'on évacue et en acide nitrique que l'on utilise à nouveau. Une fois rempli, le pot en acier inoxydable est fermé hermétiquement; il servira ainsi de récipient pour le transport et pour le stockage définitif des déchets. La teneur en nitrate des solides calcinés variait entre 60 et 500 ppm. On a réduit à moins de 0,8% la volatilité du sulfate pendant la calcination des déchets Purex en le convertissant en sels de sodium, de magnésium ou de calcium thermiquement stables. En ajoutant au calcinateur du phosphite ou de l'oxyde nitrique gazeux, on a réduit la volatilité du ruthénium contenu dans le pot à moins dé 20% de celle de la charge. L'extraction de la vapeur, pour éviter une accumulation excessive d'acide dans l'évaporateur, a permis de réduire la volatilité du ruthénium à environ 2% de celle de la charge. En ajoutant jusqu'à 1 ml/1 de phosphate de monobutyle et de phosphate de dibutyle à la charge, afin de simuler les produits de dégradation du solvant, on a réduit la volatilité du ruthénium à moins de 1%. Le mercure présent dans les déchets du procédé TBP s’est complètement volatilisé au cours de la calcination. Les auteurs ont démontré la possibilité de contrôler le fonctionnement en continu d’un évaporateür de 25 l en communication directe avec un pot de calcination de dimension industrielle, et ils ont mis au point, au cours d'une série de 25 essais, un système d'évaporation par charge. Les quantités chargées dans l'un et l'autre système variaient entre 8 et 30 l/h. Dans une cellule de haute activité du Laboratoire national d'Oak Ridge, on a installé des appareils de dimensions réduites (pots de 60 cm x 10 cm de diamètre) pour étudier la volatilité des produits de fission contenus dans des déchets réels. On étudie les plans d'une installation pilote, d'une capacité de 20 l/h, où les déchets radioactifs des procédés Purex, Darex et TBP-25 seraient calcinés dans des pots de 205 cm x 15 à 30 cm de diamètre. L'installation, qui serait destinée à l'Idaho Chemical Processing Plant, permettrait aussi de produire, dans les pots de calcination, des solides vitreux. On poursuit l'étude de méthodes qui permettraient de connecter par télécommande les pots de calcination à l'installation pilote et de les sceller hermétiquement en vue du stockage définitif. (author)[es]
Por calcinación en crisol de tamaflo experimental (24 x 4 pulg dediámetro) y de tamaflo industrial (82 x 8 pulg de diámetro) se ha logrado transformar en sólidos los desechos inactivos sintéticos de los procesos Purex, TBP-25 (aluminio, HNO3) y Darex (acero inoxidable, HNO3). El método comprende la evaporación de la carga, su calcinación en crisol a 900°C y la recirculación del vapor dél calcinador hasta el evaporador en circuito cenado. El vapor procedente del evaporador se separa en una fracción de agua, que se evacúa, y de ácido nítrico, que se vuelve a utilizar. El crisol de acero inoxidable se cierra herméticamente una vez lleno y sirve al mismo tiempo de recipiente de transporte y para el almacenamiento definitivo. El contenido de nitrato de los sólidos calcinados varía entre 60 y 500 ppm. La volatilidad del sulfato se redujo a menos de 0,8% durante la calcinación de los desechos Purex transformándolo en sales de sodio, magnesio, o calcio térmicamente estables. La volatilidad del rutenio contenido en el crisol se redujo a menos del 20% de la correspondiente a la carga, añadiendo fosñto u Óxido nítrico gaseoso al calcinador. Mediante una separación de vapor para evitar una acumulación excesiva de ácido en el evaporador, la volatilidad del rutenio en el evaporador se redujo hasta cerca de 2% de la correspondiente a la carga. La adición de hasta 1 ml/1 de fosfato de monobutilo y de fosfato de dibutilo a la carga, a fin de simular los productos de degradación del disolvente, redujo a menos de Vjo la volatilidad del rutenio. El mercurio presente en los desechos de TBP se volatilizó por completo durante la calcinación. Se demostró la posibilidad de controlar un evaporador de marcha continua de 25 l de capacidad, conectado directamente al crisol de calcinación de tamaño industrial y se perfeccionó un sistema de evaporación por cargas en una serie de 25 ensayos. Las cantidades cargadas en ambos sistemas varían entre 8 y 30 1/h. En una celda de gran actividad, del Oak Ridge National Laboratory, se instaló un equipo en pequeña escala (crisoles de 24 x 4 pulg de diámetro) para estudiar las volatilidades de los productos de fisión en desechos reales. Con el propósito de instalarla en la Idaho Chemical Processing Plant, se está proyectando una planta piloto de 20 l/h para calcinar desechos radiactivos de los procesos Purex, Darex y TBP-25 en crisoles de 82 x 6 a 12 pulg de diámetro. La instalación permitirá también obtener materiales vitreos en los crisoles de calcinación. Se viene aplicando un programa de estudio de métodos mecánicos para conectar a distancia los crisoles de calcinación con el circuito de la planta piloto y para cerrarlos herméticamente antes de proceder a su almacenamiento definitivo. (author)[ru]
Metodom kal'cinirovanija v tigljah sinteticheskie neradioaktivnye othody ''TBF-gb-processa'U'Pureks-processa'' i ''Dareks-processa'' prevrashhalis' v tverdoe sostojanie kak v laboratornom masshtabe (tigel' razmerom 60,9 h 10,1 sm, tak i v promyshlennom masshtabe (208,2 h 203,2 cm). Process zakljuchaetsja v vyparivanii ishodnogo rastvora s posledujushhim prokalivaniem ostavshejsja massy do 900°C v tigljah i v ispol'zovanii parov, vyhodjashhih iz kal'cinatora, dlja nagrevanija isparitelja. Pary iz isparitelja Frakcionirujutsja, davaja vodu, kotoraja udaljaetsja, i azotnuju kislotu, kotoraja ispol'zuetsja vnov'. Posle zapolnenija tigel' iz nerzhavejushhej stali germeticheski zavarivaetsja i mozhet sluzhit' kak v kachestve kontejnera pri transportirovke, tak i v kachestve kontejnera dlja okonchatel'nogo hranenija. Soderzhanie nitrata v kal'cinirovannom tverdom veshhestve izmenjalos' v predelah 60 - 500 chastic na million. Letuchest' sul'fata vo vremja kal'cinirovanija othodov ''Pureks-processa'' byla snizhena do < 0,0% prevrashheniem ih v termicheski ustojchivye soli natrija, magnija ili kal'cija. Letuchest' rutenija iz tiglja byla snizhena do 20% ot ishodnogo kolichestva putem dobavlenija v kal'cinator fosfid ta ili gazoobraznoj okisi azota. Otgonka legkih frakcij s parom vo izbezhanie nakoplenija kisloty v isparitele ogranichivaet letuchest' rutenija na stadii uparivanija priblizitel'no do 2% ot ishodnogo kolichestva. Dobavlenie monobutil- i dibutil-fosfata v ishodnyj rastvor v kolichestve do 1 ml/l dlja imitacii produktov razlozhenija jekstragenta snizhaet letuchest' rutenija do <1%. Rtut', soderzhashhajasja v othodah TBF-processa,polnost'ju uletuchivaetsja vo vremja kal'cinirovanija. Pokazano regulirovanie isparitelja postojannogo dejstvija emkost'ju v 25 l, sparennogo s tigel'nym kal'cinatorom promyshlennogo masshtaba. Sistema isparenija porcijami ispytyvalas' na 25 jeksperimentah. Srednjaja skorost' podachi obrabatyvaemogo veshhestva dlja obeih sistem izmenjalas' v predelah 6-30 l/chas. V gorjachej kamere Okridzhskoj nacional'noj laboratorii ustanovleno oborudovanie malyh razmerov (tigli razmerom 60,9 h 10,1 sm) dlja izuchenija letuchesti produktov delenija, obrazujushhihsja pri pererabotke real'nyh othodov. V nastojashhee vremja proektiruetsja opytnaja ustanovka s proizvoditel'nost'ju v 20 litrov v chas dlja kal'cinirovanija radioaktivnyh othodov vseh treh processov s tigljami razmerom ot 208,2 h 15,2 sm do 208,2 h 30,4 sm dlja ustanovki na himicheskom zavode a Ajdaho. Budut predusmotreny takzhe ustanovki dlja poluchenija v tigljah kal'cinatorov stekloobraznyh tverdyh produktov. Sostavljaetsja programma dlja razrabotki metodov distancionnoj smeny tiglej kal'cinatora na opytnoj ustanovke i ih distancionnogo zavarivanija dlja postojannogo hranenija. (author)Original Title
Calcination en Pot pour la Conversion en Solides de Dechets de Haute Activité; ПРОЦЕСС КАЛЬЦИНИРОВАНИЯ В ТИГЛЕ ДЛЯ ОТВЕРЖДЕНИЯ ВЫСОКОРАДИОАКТИВНЫХ ОТХОДОВ; El Méthodo de Calcinación en Crisol para Solidificar Desechos de Elevada Radiactividad
Primary Subject
Secondary Subject
Source
International Atomic Energy Agency, Vienna (Austria); 686 p; Feb 1963; p. 255-286; Symposium on Treatment and Storage of High-Level Radioactive Wastes Radioactive Wastes; Vienna (Austria); 8-12 Oct 1962; ISSN 0074-1884; ; 27 refs., 21 figs., 4 tabs.
Record Type
Book
Literature Type
Conference
Country of publication
ALLOYS, BUTYL PHOSPHATES, CARBON ADDITIONS, CHALCOGENIDES, CHEMICAL REACTIONS, DECOMPOSITION, ELEMENTS, EQUIPMENT, ESTERS, FLUIDS, FUEL REPROCESSING PLANTS, FUNCTIONAL MODELS, GASES, HIGH ALLOY STEELS, HYDROGEN COMPOUNDS, INORGANIC ACIDS, INORGANIC COMPOUNDS, IRON ALLOYS, IRON BASE ALLOYS, ISOTOPES, LABORATORY EQUIPMENT, MANAGEMENT, MATERIALS, METALS, NATIONAL ORGANIZATIONS, NITROGEN COMPOUNDS, NITROGEN OXIDES, NUCLEAR FACILITIES, ORGANIC COMPOUNDS, ORGANIC PHOSPHORUS COMPOUNDS, OXIDES, OXYGEN COMPOUNDS, PHASE TRANSFORMATIONS, PHOSPHORIC ACID ESTERS, PLATINUM METALS, PROCESSING, PYROLYSIS, RADIOACTIVE MATERIALS, RADIOACTIVE WASTE MANAGEMENT, RADIOACTIVE WASTES, REFRACTORY METALS, STEELS, THERMOCHEMICAL PROCESSES, TRANSITION ELEMENT ALLOYS, TRANSITION ELEMENTS, US AEC, US DOE, US ERDA, US ORGANIZATIONS, WASTE MANAGEMENT, WASTE PROCESSING, WASTES, WATER TREATMENT
Reference NumberReference Number
Related RecordRelated Record
INIS VolumeINIS Volume
INIS IssueINIS Issue