Abu-Hashem, A.; Abd Al-Halim, M. A.; Hassouba, M. A.; Masoud, M. M., E-mail: ma_halim74@yahoo.com2010
AbstractAbstract
[en] A dc cylindrical coaxial glow discharge with an inner grid anode has been studied. The region between the two electrodes is seen dark, while a brightly glowing region forms inside the grid anode up to the center. The current-voltage characteristic of a dc cylindrical glow discharge in nitrogen is similar to that of a normal glow discharge, while the normal glow discharge voltage decreases with increasing pressure. The minimum plasma potentials are observed in the hollow cathode region due to the accumulation of electrons at the back of the grid anode. At the center, some of the passed electrons are converged, so their potential is decreased. These electrons have a sufficient time to be redistributed to form one group with a Maxwellian electron energy distribution function. The electron temperature measured by electric probes varies from 1.6 to 3.6 eV, while the plasma density varies from 3.9 x 1016 to 7 x 1013 m-3, depending on the discharge current and probe position. The plasma density increases as the electrons move radially from the grid toward the central region, while their temperature decreases.
Primary Subject
Source
Copyright (c) 2010 Pleiades Publishing, Ltd.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] The dynamics of dc neon glow discharge is examined by calculating a Lyapunov exponent spectrum (LES) and correlation dimension (Dcorr) from experimental time series. The embedding theory is used to reconstruct an attractor with the delay coordinate method. The analysis refers to periodic, chaotic, and quasi-periodic attractors. The results obtained are confirmed by a comparison with other methods of time series analysis such as the Fourier power spectrum and autocorrelation function. The main object of the present work is the positive column of a dc neon glow discharge. The positive column is an excellent model for the study of a non-linearity plasma system because it is nonisothermal plasma far from equilibrium
Primary Subject
Secondary Subject
Source
(c) 2006 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
Hassouba, M. A.; Galaly, A. R.; Rashed, U. M., E-mail: hassouba@yahoo.com2013
AbstractAbstract
[en] Cylindrical probe data have been analyzed using different theories in order to determine some plasma parameters (electron temperature and electron and ion densities). Langmuir probe data are obtained in a cylindrical DC glow discharge in the positive column plasma at argon gas pressures varied from 0.5 to 6 Torr and at constant discharge current equal to 10 mA. The electron density has calculated from the electron current at the space potential and from Orbital Motion Limited (OML) collisionless theory. Ion density has obtained from the OML analysis of the ion saturation currents. In addition, the electron temperature has measured by three different methods using probe and electrons currents. The electron temperature Te, plasma density ne, and space potential Vs, have been obtained from the measured single cylindrical probe I–V characteristic curves. The radial distribution of the electron temperature and plasma density along the glow discharge are measured and discussed. Using the collisionless theories by Langmuir cylindrical probe and up to several Torr argon gas pressures the differences between the values of electron temperature and electron and ion densities stay within reasonable error limits.
Primary Subject
Source
Copyright (c) 2013 Pleiades Publishing, Ltd.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] A dc plane glow discharge in a nitrogen-hydrogen (N2-H2) gas mixture has been operated at discharge currents of 10 and 20 mA. The electron energy distribution function (EEDF) at different hydrogen concentrations is measured. A Maxwellian EEDF is found in the positive column region, while in both cathode fall and negative glow regions, a non-Maxwellian one is observed. Langmuir electric probes are used at different axial positions, gas pressures, and hydrogen concentrations to measure the electron temperature and plasma density. The electron temperature is found to increase with increasing H2 concentration and decrease with increasing both the axial distance from the cathode and the mixture pressure. At first, with increasing distance from the cathode, the ion density decreases, while the electron density increases; then, as the anode is further approached, they remain nearly constant. At different H2 concentrations, the electron and ion densities decrease with increasing the mixture pressure. Both the electron and ion densities slightly decrease with increasing H2 concentration.
Primary Subject
Source
Copyright (c) 2012 Pleiades Publishing, Ltd.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL