AbstractAbstract
[en] This Analysis/Model Report (AMR) describes the methods used to develop numerical grids of the unsaturated hydrogeologic system beneath Yucca Mountain. Numerical grid generation is an integral part of the development of a complex, three-dimensional (3-D) model, such as the Unsaturated-Zone Flow and Transport Model (UZ Model) of Yucca Mountain. The resulting numerical grids, developed using current geologic, hydrogeologic, and mineralogic data, provide the necessary framework to: (1) develop calibrated hydrogeologic property sets and flow fields, (2) test conceptual hypotheses of flow and transport, and (3) predict flow and transport behavior under a variety of climatic and thermal loading conditions. Revision 00 of the work described herein follows the planning and work direction outlined in the ''Development of Numerical Grids for UZ Flow and Transport Modeling'' (CRWMS M and O 1999c). The technical scope, content, and management of ICN 01 of this AMR is currently controlled by the planning document, ''Technical Work Plan for Unsaturated Zone (UZ) Flow and Transport Process Model Report'' (BSC 2001a). The scope for the TBV resolution actions in this ICN is described in the ''Technical Work Plan for: Integrated Management of Technical Product Input Department'' (BSC 2001 b, Addendum B, Section 4.1). The steps involved in numerical grid development include: (1) defining the location of important calibration features, (2) determining model grid layers and fault geometry based on the Geologic Framework Model (GFM), the Integrated Site Model (ISM), and definition of hydrogeologic units (HGUs), (3) analyzing and extracting GFM and ISM data pertaining to layer contacts and property distributions, (4) discretizing and refining the two-dimensional (2-D), plan-view numerical grid, (5) generating the 3-D grid with finer resolution at the repository horizon and within the Calico Hills nonwelded (CHn) hydrogeologic unit, and (6) formulating the dual-permeability mesh. The products of grid development include a set of one-dimensional (1-D) vertical columns of gridblocks for hydrogeologic property set inversions, a 2-D UZ Model vertical cross-sectional grid for fault hydrogeologic property calibrations, a 3-D UZ Model grid for additional model calibrations, and a 3-D UZ Model grid for generating flow fields for Performance Assessment (PA)
Primary Subject
Source
18 Dec 2001; 70 p; MOL.20020211.0002; DC 28963; Also available from OSTI as DE00837045; PURL: https://www.osti.gov/servlets/purl/837045-CwdMU9/webviewable/
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
No abstract available
Primary Subject
Source
Conference on nuclear power for tomorrow; Atlantic City, NJ; 22 Aug 1972; Published in summary form only.
Record Type
Journal Article
Literature Type
Conference
Journal
Trans. Amer. Nucl. Soc; v. 15(suppl. no. 2); p. 3
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
No abstract available
Primary Subject
Source
Annual meeting of the American Nuclear Society; Philadelphia, PA; 23 Jun 1974; Published in summary form only.
Record Type
Journal Article
Literature Type
Conference
Journal
Trans. Amer. Nucl. Soc; v. 18 p. 254
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] This work presents modeling studies investigating the effects of capillary barriers on fluid-flow and tracer-transport processes in the unsaturated zone of Yucca Mountain, Nevada, a potential site for storing high-level radioactive waste. These studies are designed to identify factors controlling the formation of capillary barriers and to estimate their effects on the extent of possible large-scale lateral flow in unsaturated fracture rocks. The modeling approach is based on a continuum formulation of coupled multiphase fluid and tracer transport through fractured porous rock. Flow processes in fractured porous rock are described using a dual-continuum concept. In addition, approximate analytical solutions are developed and used for assessing capillary-barrier effects in fractured rocks. This study indicates that under the current hydrogeologic conceptualization of Yucca Mountain, strong capillary-barrier effects exist for significantly diverting moisture flow
Primary Subject
Source
1 Oct 2000; 66 p; MOL--20011015.0464; DC-NO--28921; Also available from OSTI as DE00860283; PURL: https://www.osti.gov/servlets/purl/860283-pJvf10/
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue