Etchessahar, Bertrand; Bicrel, Béatrice; Cassany, Bruno; Desanlis, Thierry; Voisin, Luc; Maisonny, Rémi; Toury, Martial; Hourdin, Laurent; Cartier, Frédéric; Cartier, Stéphanie; D'Almeida, Thierry; Delbos, Christophe; Garrigues, Alain; Plouhinec, Damien; Ritter, Sandra; Sol, David; Zucchini, Frédéric; Caron, Michel2013
AbstractAbstract
No abstract available
Primary Subject
Source
(c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
Etchessahar, Bertrand; Bicrel, Béatrice; Cassany, Bruno; Desanlis, Thierry; Voisin, Luc; Maisonny, Rémi; Toury, Martial; Hourdin, Laurent; Cartier, Frédéric; Cartier, Stéphanie; D'Almeida, Thierry; Delbos, Christophe; Garrigues, Alain; Plouhinec, Damien; Ritter, Sandra; Sol, David; Zucchini, Frédéric; Caron, Michel2013
AbstractAbstract
[en] The Self Magnetic Pinch (SMP) diode is a potential high-brightness X-ray source for high voltage generators (2–10 MV) that has shown good reliability for flash radiography applications [D. D. Hinchelwood et al., “High power self-pinch diode experiments for radiographic applications” IEEE Trans. Plasma Sci. 35(3), 565–572 (2007)]. We have studied this diode at about 4 MV, driven by the ASTERIX generator operated at the CEA/GRAMAT [G. Raboisson et al., “ASTERIX, a high intensity X-ray generator,” in Proceedings of the 7th IEEE Pulsed Power Conference (1989), pp. 567–570]. This generator, made up of a capacitor bank and a Blumlein line, was initially designed to test the behavior of electronic devices under irradiation. In our experiments, the vacuum diode is modified in order to set up flash radiographic diodes. A previous set of radiographic experiments was carried out on ASTERIX with a Negative Polarity Rod Pinch (NPRP) diode [B. Etchessahar et al., “Study and optimization of negative polarity rod pinch diode as flash radiography source at 4.5 MV,” Phys. Plasmas 19(9), 093104 (2012)]. The SMP diode which is examined in the present study provides an alternative operating point on the same generator and a different radiographic performance: 142 ± 11 rad at 1 m dose (Al) for a 3.46 ± 0.42 mm spot size (1.4× FWHM of the LSF). This performance is obtained in a reproducible and robust nominal configuration. However, several parametric variations were also tested, such as cathode diameter and anode/cathode gap. They showed that an even better performance is accessible after optimization, in particular, a smaller spot size (<3 mm). Numbers of electrical, optical, and X-ray diagnostics have been implemented in order to gain more insight in the diode physics and to optimize it further. For the first time in France, visible and laser imaging of the SMP diode has been realized, from a radial point of view, thus, providing key information on the electrode plasmas evolution, responsible for the gap closure
Primary Subject
Source
(c) 2013 AIP Publishing LLC; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
Etchessahar, Bertrand; Bicrel, Béatrice; Cassany, Bruno; Desanlis, Thierry; Voisin, Luc; Hébert, David; Bernigaud, Virgile; Magnin, Laurent; Nicolas, Rémi; Poulet, Frédéric; Tailleur, Yaël; Caron, Michel; Cartier, Frédéric; Cartier, Stéphanie; Hourdin, Laurent; Rosol, Rodolphe; Toury, Martial; Delbos, Christophe; Garrigues, Alain; Soleilhavoup, Isabelle2012
AbstractAbstract
[en] The negative polarity rod pinch diode (NPRPD) is a potential millimeter spot size radiography source for high voltage generators (4 to 8 MV) [Cooperstein et al., “Considerations of rod-pinch diode operation in negative polarity for radiography,” in Proceedings of the 14th IEEE Pulsed Power Conference, 2003, pp. 975–978]. The NPRPD consists of a small diameter (few mm) cylindrical anode extending from the front end of the vacuum cell through a thin annular cathode, held by a central conductor. The polarity has been inverted when compared to the original rod pinch diode [Cooperstein et al., “Theoretical modeling and experimental characterization of a rod-pinch diode,” Phys. Plasmas 8(10), 4618–4636 (2001)] in order to take advantage from the maximal x-ray emission toward the anode holder at such a voltage [Swanekamp et al., “Evaluation of self-magnetically pinched diodes up to 10 MV as high resolution flash X-ray sources,” IEEE Trans. Plasma Sci. 32(5), 2004–2016 (2004). We have studied this diode at 4.5 MV, driven by the ASTERIX generator [Raboisson et al., “ASTERIX, a high intensity X-ray generator,” in Proceedings of the 7th IEEE Pulsed Power Conference, 1989, pp. 567–570.]. This generator, made up of a capacitor bank and a Blumlein line, was initially designed to test the behavior of electronic devices under irradiation. In our experiments, the vacuum diode has been modified in order to set up flash a radiographic diode [Etchessahar et al., “Negative polarity rod pinch diode experiments on the ASTERIX generator,” in Conference Records–Abstracts, 37th IEEE International Conference on Plasma Science, 2010]. The experiments and numerical simulations presented here allowed the observation and analysis of various physical phenomena associated with the diode operation. Also, the influence of several experimental parameters, such as cathode and anode diameters, materials and surface states, was examined. In order to achieve the most comprehensive characterization of the diode, both optical and x-ray diagnostics were used, including high speed multi-image ICCD (intensified CCD) cameras, streak camera, dosimeters, spot size measurements, and pinhole cameras. A set of new results have been obtained through this study. The plasma emission from the anode and cathode surfaces and its expansion appear to be critical for the diode functioning. Also, for the first time, potential sources of diode instability were identified. Finally, an optimal and stable diode configuration was found with the following parameters: 52 rad at 1 m (in Al) and 2.2 mm spot size.
Primary Subject
Source
(c) 2012 American Institute of Physics; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
CAPACITORS, CATHODES, CHARGE-COUPLED DEVICES, COMPUTERIZED SIMULATION, CYLINDRICAL CONFIGURATION, DOSEMETERS, ELECTRIC POTENTIAL, ELECTRONIC EQUIPMENT, OPTIMIZATION, PINCH EFFECT, PLASMA DIAGNOSTICS, RADIATION EFFECTS, RESOLUTION, STREAK CAMERAS, THERMIONIC DIODES, X-RAY EMISSION ANALYSIS, X-RAY SOURCES
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL