Rosene, C. A.; Jones, H. E.
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Funding organisation: USDOE (United States)2016
Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States). Funding organisation: USDOE (United States)2016
AbstractAbstract
[en] The purposes of the Lawrence Livermore National Laboratory Environmental Report 2015 are to record Lawrence Livermore National Laboratory's (LLNL's) compliance with environmental standards and requirements, describe LLNL's environmental protection and remediation programs, and present the results of environmental monitoring at the two LLNL sites-the Livermore Site and Site 300. The report is prepared for the U.S. Department of Energy (DOE) by LLNL's Environmental Functional Area. Submittal of the report satisfies requirements under DOE Order 231.1B, ''Environment, Safety and Health Reporting,'' and DOE Order 458.1, ''Radiation Protection of the Public and Environment.''
Primary Subject
Source
22 Sep 2016; 174 p; OSTIID--1330753; AC52-07NA27344; Available from https://e-reports-ext.llnl.gov/pdf/837745.pdf; PURL: http://www.osti.gov/servlets/purl/1330753/
Record Type
Report
Report Number
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] A field ammonia (NH3) release experiment and open top chambers containing moorland monoliths continuously fumigated with NH3 or sprayed with NH4Cl were used to assess the potential for using δ15N values in determining the area of influence around a point NH3 emission source. δ15N values are being increasingly used as environmental tracers and we tested the hypothesis that the δ15N signal from an NH3 emission source is observable in nearby vegetation. Using modified monitoring devices, atmospheric NH3 concentrations were found to decrease with distance from source, with δ15N values also reflecting this trend, producing a signal shift with changing concentration. Open top chamber studies of δ15N values of Calluna vulgaris (L.) Hull indicated a correlation with deposition treatments in current year shoots. Analysis of Calluna shoots from the NH3 release showed a similar trend of δ15N enrichment. Significant linear correlations between δ15N and percent N in plant material were found, both in the controlled conditions of the open top chambers and at the NH3 release site, illustrating the possible use of this technique in N deposition biomonitoring
Primary Subject
Source
Copyright (c) 2004 Kluwer Academic Publishers; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Water, Air and Soil Pollution. Focus; ISSN 1567-7230; ; v. 4(6); p. 219-228
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
AbstractAbstract
[en] A field ammonia (NH3) release experiment and open top chambers containing moorland monoliths continuously fumigated with NH3 or sprayed with NH4Cl were used to assess the potential for using δ15N values in determining the area of influence around a point NH3 emission source. δ15N values are being increasingly used as environmental tracers and we tested the hypothesis that the δ15N signal from an NH3 emission source is observable in nearby vegetation. Using modified monitoring devices, atmospheric NH3 concentrations were found to decrease with distance from source, with δ15N values also reflecting this trend, producing a signal shift with changing concentration. Open top chamber studies of δ15N values of Calluna vulgaris (L.) Hull indicated a correlation with deposition treatments in current year shoots. Analysis of Calluna shoots from the NH3 release showed a similar trend of δ15N enrichment. Significant linear correlations between δ15N and percent N in plant material were found, both in the controlled conditions of the open top chambers and at the NH3 release site, illustrating the possible use of this technique in N deposition biomonitoring
Primary Subject
Source
Copyright (c) 2004 Kluwer Academic Publishers; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Water, Air and Soil Pollution. Focus; ISSN 1567-7230; ; v. 4(6); p. 219-228
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL