Filters
Results 1 - 1 of 1
Results 1 - 1 of 1.
Search took: 0.024 seconds
AbstractAbstract
[en] Landslides and rockfalls that initiate on a steep slope eventually come to rest after flowing for some runout distance on a flat. Rockfalls of very large masses have been observed to exhibit unexpectedly long runout distances. This problem becomes more significant as the development of resources in mountain regions becomes more intensive. As early as 1881, Albert Heim observed and described the Elm rockfall of Switzerland (quoted by as HsU). This rockfall produced a debris which moved more than 2 Km along a nearly horizontal valley floor and one of its branches surged up the side of the valley to a height of 100 m. From the deposit of the Elm and the eyewitnesses Heim concluded that the debris behaved as a flowing fluid rather than sliding solids. Davies, among others, suggested that the excessive runout distance is volume dependent and the larger the volume of the debris, the longer the relative travel distance. A summary of the numerous hypotheses which have been proposed to explain this puzzling phenomena were also presented by Davies. However, none of these have been completely satisfactory or generally accepted. A simple model of the flow and spreading of a finite mass of cohesionless granular material down incline has been developed as a part of the present preliminary investigation into the mechanics of rockfalls. (author)
Primary Subject
Source
Rasmussen, H. (ed.); Univ. of Western Ontario, Graphic Services Dept., London, Ontario (Canada); 2 v; ISBN 0-920049-01-X; ; 1985; (v.2) p. B3-B4; 10. Canadian Congress of applied mechanics : CANCAM'85; London, Ontario (Canada); 2-7 Jun 1985; Available from the University of Western Ontario, London, Ontario, Canada; 5 refs., 3 figs.
Record Type
Book
Literature Type
Conference
Country of publication
Reference NumberReference Number
Related RecordRelated Record
INIS VolumeINIS Volume
INIS IssueINIS Issue