Filters
Results 1 - 10 of 15
Results 1 - 10 of 15.
Search took: 0.021 seconds
Sort by: date | relevance |
AbstractAbstract
[en] Objective: In this presentation we will look into the basic components of 3-dimensional conformal treatment planning, and will discuss planning for some selected sites. We will also review some current and future trends in 3-D treatment planning. External beam radiation therapy is one of the arms of cancer treatment. In the recent years 3-D conformal therapy had significant impact on the practice of external beam radiation therapy. Conformal radiation therapy shapes the high-dose volume so as to conform to the target volume while minimizing the dose to the surrounding normal tissues. The advances that have been achieved in conformal therapy are in part due to the development of 3-D treatment planning, which in turn has capitalized on 3-D imaging for tumor and normal tissue localization, as well as on available computational power for the calculation of 3-D dose distributions, visualization of anatomical and dose volumes, and numerical evaluation of treatment plans. In this course we will give an overview of how 3-D conformal treatments are designed and transferred to the patient. Topics will include: 1) description of the major components of a 3-D treatment planning system, 2) techniques for designing treatments, 3) evaluation of treatment plans using dose distribution displays, dose-volume histograms and normal tissue complication probabilities, 4) implementation of treatments using shaped blocks and multileaf collimators, 5) verification of treatment delivery using portal films and electronic portal imaging devices. We will also discuss some current and future trends in 3-D treatment planning, such as field shaping with multileaf collimation, computerized treatment plan optimization, including the use of nonuniform beam profiles (intensity modulation), and incorporating treatment uncertainties due to patient positioning errors and organ motion into treatment planning process
Primary Subject
Source
S0360301697804919; Copyright (c) 1997 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
International Journal of Radiation Oncology, Biology and Physics; ISSN 0360-3016; ; CODEN IOBPD3; v. 39(2,suppl.1); p. 112
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Conformal radiation therapy shapes the high-dose volume so as to conform to the target volume while minamizing the dose to surrounding normal tissues. The advances that have been achieved in conformal therapy are in part due to the development of 3-dimensional treatment planning, which in turn has capitalized on 3-D imaging for tumor and normal tissue localization, as well as on available computational power for the calculation of 3-D dose distributions, visualization of anatomical and dose volumes, and numerical evaluation of treatment plans. The objective of this course is to give an overview of how 3-D conformal treatments are designed and transferred to the patient. Topics will include: 1) description of the major components of a 3-D treatment planning system, 2) techniques for designing treatments, 3) evaluation of treatment plans using dose distribution displays, dose-volume histograms and normal tissue complication probabilities, 4) implementation of treatments using shaped blocks and multileaf collimators, 5) verification of treatment delivery using portal films and electronic portal imaging devices. We will also discuss some future trends in 3D treatment planning, such as computerized treatment plan optimization, including the use of nonuniform beam profiles (intensity modulation), and incorporating treatment uncertainties due to patient positioning errors and organ motion into the treatment planning process
Primary Subject
Source
38. annual meeting of the American Society for Therapeutic Radiology and Oncology (ASTRO); Los Angeles, CA (United States); 27-30 Oct 1996; S0360301697852789; Copyright (c) 1996 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Literature Type
Conference
Journal
International Journal of Radiation Oncology, Biology and Physics; ISSN 0360-3016; ; CODEN IOBPD3; v. 36(1); p. 128
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Conformal radiation therapy shapes the high-dose volume so as to conform to the target volume while minimizing the dose to surrounding normal tissues. The advances that have been achieved in conformal therapy are in part due to the development of 3-dimensional treatment planning, which in turn has capitalized on 3-D imaging for tumor and normal tissue localization, as well as on available computational power for the calculation of 3-D dose distributions, visualization of anatomical and dose volumes, and numerical evaluation of treatment plans. The objective of this course is to give an overview of how 3-D conformal treatments are designed and transferred to the patient. Topics will include: 1) description of the major components of a 3-D treatment planning system, 2) techniques for designing treatments, 3) evaluation of treatment plans using dose distribution displays, dose-volume histograms and normal tissue complication probabilities, 4) implementation of treatments using shaped blocks and multileaf collimators, 5) verification of treatment delivery using portal films and electronic portal imaging devices. We will also discuss some future trends in 3D treatment planning, such as computerized treatment plan optimization, including the use of nonuniform beam profiles (intensity modulation), and incorporating treatment uncertainties due to patient positioning errors and organ motion into the treatment planning process
Primary Subject
Source
Copyright (c) 1995 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
International Journal of Radiation Oncology, Biology and Physics; ISSN 0360-3016; ; CODEN IOBPD3; v. 32(971); p. 111
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
Wagman, Raquel; Yorke, Ellen; Ford, Eric; Giraud, Philippe; Mageras, Gikas; Minsky, Bruce; Rosenzweig, Kenneth, E-mail: wagmanr@mskcc.org2003
AbstractAbstract
[en] Purpose: To determine the clinical impact of the Varian Real-Time Position Monitor (RPM) respiratory gating system for treatment of liver tumors. Methods and Materials: Ten patients with liver tumors were selected for evaluation of this passive system, which tracks motion of reflective markers mounted on the abdomen with an infrared-sensitive camera. At simulation, a fluoroscopic movie, breathing trace, and CT scans synchronized at end-expiration (E-E) and end-inspiration were acquired in treatment position using the RPM system. Organs and gross tumor volume were contoured on each CT. Each organ's positional change between two scan sets was quantified by calculation of the center of volume shift and an ''index coefficient,'' defined as the volume common to the two versions of the organ to the volume included in at least one (intersection/union). Treatment dose was determined by use of normal tissue complication probability calculations and dose-volume histograms. Gated portal images were obtained to monitor gating reproducibility with treatment. Results: Eight patients received 177 treatments with RPM gating. Average superior-to-inferior (SI) diaphragm motion on initial fluoroscopy was reduced from 22.7 mm without gating to 5.1 mm with gating. Comparing end-inspiration to E-E CT scans, average SI movement of the right diaphragm was 11.5 mm vs. 2.2 mm for two E-E CT scans. For all organs, average E-I SI organ motion was 12.8 mm vs. 2.0 mm for E-E studies. Index coefficients were closer to 1.0 for E-E than end-inspiration scans, indicating gating reproducibility. The average SI displacement of diaphragm apex on gated portal images compared with DRR was 2.3 mm. Treatment was prolonged less than 10 minutes with gating. The reproducible decrease in organ motion with gating enabled reduction in gross tumor volume-to-planning target volume margin from 2 to 1 cm. This allowed for calculated dose increases of 7%-27% (median: 21.3%) in 6 patients and enabled treatment in 2. Conclusion: Gating of radiotherapy for liver tumors enables safe margin reduction on tumor volume, which, in turn, may allow for dose escalation
Primary Subject
Source
S036030160203941X; Copyright (c) 2003 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
International Journal of Radiation Oncology, Biology and Physics; ISSN 0360-3016; ; CODEN IOBPD3; v. 55(3); p. 659-668
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Purpose: To develop a quality assurance (QA) procedure to assess the intensity profile and dosimetry for intensity-modulated (IM) treatment fields using electronic portal imaging devices (EPIDs). Methods and Materials: A series of rapidly acquired (∼1/sec) portal images are summed and converted to dose. For relative intensity QA, the intended profile is subtracted point-by-point from the measured profile forming a series of error values. The standard deviation, σ, of the errors, a measure of the goodness of the match, is minimized by applying a normalization and uniform scatter subtraction from the measured profile. For dose verification (dose to isocenter), an empirically determined phantom-correction factor is added to incorporate the effect of patient presence on EPID readings. Seventy prostate treatment fields were used in a phantom study to verify these approaches. Sensitivity was studied by creating artificial mismatches. Results: The average σ for relative profile verification is 3.3% (percentage of average intended intensity) whereas artificial mismatches resulted in σ values from 5% to 27%. The average isocentric dose calculated from EPID readings is 1.001 relative to the planned dose with a standard deviation of 0.018. Conclusions: An EPID can be used for profile verification and absolute isocentric dose measurement for IM fields
Primary Subject
Source
S0360301699005556; Copyright (c) 2000 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
International Journal of Radiation Oncology, Biology and Physics; ISSN 0360-3016; ; CODEN IOBPD3; v. 47(1); p. 231-240
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Purpose: The goal of this paper is to describe our initial experience with the deep inspiration breath-hold (DIBH) technique in conformal treatment of non-small-cell lung cancer with particular emphasis on the technical aspects required for implementation. Methods and Materials: In the DIBH technique, the patient is verbally coached through a modified slow vital capacity maneuver and brought to a reproducible deep inspiration breath-hold level. The goal is to immobilize the tumor and to expand normal lung out of the high-dose region. A physicist or therapist monitors and records patient breathing during simulation, verification, and treatment using a spirometer with a custom computer interface. Examination of internal anatomy during fluoroscopy over multiple breath holds establishes the reproducibility of the DIBH maneuver for each patient. A reference free-breathing CT scan and DIBH planning scan are obtained. To provide an estimate of tumor motion during normal tidal breathing, additional scan sets are obtained at end inspiration and end expiration. These are also used to set the spirometer action levels for treatment. Patient lung inflation is independently verified over the course of treatment by comparing the distance from the isocenter to the diaphragm measured from the DIBH digitally reconstructed radiographs to the distance measured on the portal films. Patient breathing traces obtained during treatment were examined retrospectively to assess the reproducibility of the technique. Results: Data from the first 7 patients, encompassing over 250 treatments, were analyzed. The inferred displacement of the centroid of gross tumor volume from its position in the planning scan, as calculated from the spirometer records in over 350 breath holds was 0.02 ± 0.14 cm (mean and standard deviation). These data are consistent with the displacements of the diaphragm (-0.1 ± 0.4 cm; range, from -1.2 to 1.1 cm) relative to the isocenter, as measured on the (92) portal films. The latter measurements include the patient setup error. The patient averaged displacement of the tumor during free breathing, determined from the tumor displacement between end inspiration and end expiration, was 0.8 ± 0.5 cm in both the superior-inferior and anterior-posterior directions and 0.1 cm (± 0.1 cm) medial-laterally. Conclusion: Treatment of patients with the DIBH technique is feasible in a clinical setting. With this technique, consistent lung inflation levels are achieved in patients, as judged by both spirometry and verification films. Breathing-induced tumor motion is significantly reduced using DIBH compared to free breathing, enabling better target coverage
Primary Subject
Source
S0360301600007471; Copyright (c) 2000 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
International Journal of Radiation Oncology, Biology and Physics; ISSN 0360-3016; ; CODEN IOBPD3; v. 48(4); p. 1175-1185
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Purpose: We describe a computerized method of determining target margins for beam aperture design in conformal radiotherapy plans. Materials and Methods: The method uses previously measured data from a population of patients to simulate setup error and organ motion in the patient currently being planned. Starting with a clinical target volume (CTV) and nontarget organs from the patient's planning CT scan, the simulation is repeated many times to produce a spatial probability distribution for each organ in the treatment machine coordinate system. This is used to determine a prescribed dose volume (PDV), defined as the volume to receive the prescribed dose, which encompasses the CTV while restricting the volume of nontarget organs within it, according to planner-specified values. The PDV is used to design beam apertures using a conventional margin for beam penumbra. Results: The method is applied to 6-field prostate conformal treatment plans, in which the PDV encloses the prostate and seminal vesicles while limiting the enclosed rectal wall volume. The effect of organ motion is assessed by applying the plans on subsequent CT scans of the same patients, calculating probabilities for tumor control (TCP) and normal tissue complication (NTCP), and comparing with plans designed from a physician-drawn planning target volume (PTV). Although prostate TCP and rectal wall NTCP are found to be similar in the two sets of plans, TCP for the seminal vesicles is significantly higher in the PDV-based plans. Conclusions: The method can improve the dose conformality of treatment plans by incorporating population-based measurements of treatment uncertainties and consideration of nontarget tissues in the design of nonuniform target margins
Primary Subject
Source
S0360301698003861; Copyright (c) 1999 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
International Journal of Radiation Oncology, Biology and Physics; ISSN 0360-3016; ; CODEN IOBPD3; v. 43(2); p. 437-445
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] Using multiple computed tomography (CT) scans, 50 patients undergoing prostate radiotherapy were tested for clinically significant time trends in the target and surrounding critical structures. Significant trends were observed toward increasing bladder volume and increasing bowel-to-planning target volume separation; however, no trends were observed in the prostate, seminal vesicles, or rectum. The subset of patients undergoing hormone therapy was also tested and did not independently exhibit any significant time trends
Primary Subject
Source
S0167814001004662; Copyright (c) 2002 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
AbstractAbstract
[en] There has been an increasing interest in the application of electronic portal imaging devices (EPIDs) to dosimetric verification, particularly for intensity modulated radiotherapy. Although not water equivalent, the phantom scatter factor of an EPID, Spe, is generally assumed to be that of a full phantom, Sp, a slab phantom, Sps, or a mini phantom. This assumption may introduce errors in absolute dosimetry using EPIDs. A calibration procedure that iteratively updates Spe and the calibration curve (pixel value to dose rate) is presented. The EPID (Varian Portal Vision) is irradiated using a 20x20 cm2 field with different beam intensities. The initial guess of dose rates in the EPID is calculated from ionization chamber measurements in air, multiplied by Sp or Sps. The calibration curve is obtained by fitting EPID readings from pixels near the beam central axis and dose rates in EPID to a quadratic equation. The Spe is obtained from EPID measurements in 10x10 cm2 and 20x20 cm2 field and from the calibration curve, and is in turn used to adjust the dose rate measurements and hence the calibration curve. The above procedure is repeated until it converges. The final calibration curve is used to convert portal dose to dose in the slab phantom, using the calibrated Spe, or assuming Spe=Sp or Spe=Sps. The converted doses are then compared with the dose measured using an ionization chamber. We also apply this procedure to off-axis points and study its dependence on the energy spectrum. The hypothesis testing results (on the 95% significance level) indicate that systematic errors are introduced when assuming Spe=Sp or Spe=Sps, and the dose calculated using Spe is more consistent with ionization chamber measurements. Differences between Spe and Sps are as large as 2% for large field sizes. The measured relative dose profile at dmax using the EPID agrees well with the measured profile at dmax of the isocentric plane using film in a polystyrene phantom with full buildup and full backup, for open and wedged fields, and for a broad range of field sizes of interest. The dependence of the EPID response on the energy spectrum is removed once the calibration is performed under the same conditions as the actual measurements
Primary Subject
Secondary Subject
Source
(c) 2001 American Association of Physicists in Medicine.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
External URLExternal URL
Sidhu, Kolby; Ford, Eric C.; Spirou, Spiridon; Yorke, Ellen; Chang Jenghwa; Mueller, Kevin; Todor, Dorin; Rosenzweig, Kenneth; Mageras, Gikas; Chui Chen; Ling, Clifton C.; Amols, Howard, E-mail: kulbir.sidhu@mail.tju.edu2003
AbstractAbstract
[en] Purpose: Megavoltage cone-beam computed tomography (MVCBCT) has been proposed for treatment verification in conformal radiotherapy. However, the doses required for such imaging may compromise the quality of the delivered dose distribution. The present paper explores the effect of cone-beam imaging on dose homogeneity and critical organ dose and the use of our new tool, adapted intensity-modulated radiation therapy (AIMRT). Methods and Materials: Three types of treatment plans were devised (3D-CRT [three-dimensional conformal radiotherapy], IMRT [intensity-modulated radiotherapy], and AIMRT) based on 4 patients with thoracic malignancies. MVCBCT fields were then integrated into the plans. The MVCBCT technique used 21 imaging portals at 10 deg. intervals. The MVCBCT apertures were shaped to conform to the planning target volume with a 6-mm margin. In a second set of plans, the field size was expanded by a further 2 cm. The unoptimized MVCBCT dose distribution was incorporated into the IMRT plan using AIMRT. Results: Normal-tissue complication probability with MVCBCT is acceptable for all plans at the 66.6 Gy level, but exceeds tolerance for both 3D-CRT alone and 3D-CRT with MVCBCT at higher doses. In contrast, the use of AIMRT planning with MVCBCT allowed safe dose escalation to 85 Gy. Expanding the MVCBCT aperture provided better anatomic visibility with an acceptable lung dose. The results using IMRT with MVCBCT fell between the values measured for 3D-CRT and AIMRT with MVCBCT. Conclusion: The present study is the first to demonstrate that MVCBCT can be incorporated into 3D-CRT and IMRT planning with minimal effect on planning target volume homogeneity and dose to critical structures. This paves the way for highly conformal radiotherapy at greater doses delivered with increased confidence and safety
Primary Subject
Source
S0360301602041524; Copyright (c) 2003 Elsevier Science B.V., Amsterdam, The Netherlands, All rights reserved.; Country of input: International Atomic Energy Agency (IAEA)
Record Type
Journal Article
Journal
International Journal of Radiation Oncology, Biology and Physics; ISSN 0360-3016; ; CODEN IOBPD3; v. 55(3); p. 757-767
Country of publication
Reference NumberReference Number
INIS VolumeINIS Volume
INIS IssueINIS Issue
1 | 2 | Next |